1
|
Tian X, Li HD, Lin H, Li C, Wang YP, Bai HX, Lan W, Liu J. Inspired by pathogenic mechanisms: A novel gradual multi-modal fusion framework for mild cognitive impairment diagnosis. Neural Netw 2025; 187:107343. [PMID: 40081274 DOI: 10.1016/j.neunet.2025.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), and its progression involves complex pathogenic mechanisms. Specifically, disturbed by gene variants, the regulation of gene expression ultimately changes brain structure, resulting in the progression of brain diseases. However, the existing works rarely take these mechanisms into account when designing their diagnosis methods. Therefore, we propose a novel gradual multi-modal fusion framework to fuse representative data from each stage of disease progression in hybrid feature space, including single nucleotide polymorphism (SNP), gene expression (GE), and magnetic resonance imaging (MRI). Specifically, to integrate genetic sequence and expression data, we design a SNP-GE fusion module, which performs multi-modal fusion to obtain genetic embedding by considering the relation between SNP and GE. Compared with SNP-GE fusion, representation of genetic embedding and MRI have more obvious heterogeneity, especially correlation with disease. Therefore, we propose to align the manifold of genetic and imaging representations, which can explore the high-order relationship between imaging and genetic data in the presence of modal heterogeneity. Our proposed framework was validated using the Alzheimer's Disease Neuroimaging Initiative dataset, and achieved diagnosis accuracy of 76.88%, 72.84%, 87.72%, and 95.00% for distinguishing MCI from control normal, lately MCI from early MCI, MCI from AD, and AD from control normal, respectively. Additionally, our proposed framework helps to identify some multi-modal biomarkers related to MCI progression. In summary, our proposed framework is effective not only for MCI diagnosis but also for guiding the further development of genetic and imaging-based brain studies. Our code is published at https://github.com/tianxu8822/workflow_MCI/tree/main/.
Collapse
Affiliation(s)
- Xu Tian
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hong-Dong Li
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hanhe Lin
- School of Science and Engineering, School of Medicine, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - Chao Li
- School of Science and Engineering, School of Medicine, University of Dundee, Dundee, DD1 4HN, United Kingdom; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Harrison X Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Jin Liu
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China; Xinjiang Engineering Research Center of Big Data and Intelligent Software, School of software, Xinjiang University, Urumqi, 830008, China.
| |
Collapse
|
2
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025; 48:349-361. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
3
|
Franzmeier N, Roemer-Cassiano SN, Bernhardt AM, Dehsarvi A, Dewenter A, Steward A, Biel D, Frontzkowski L, Zhu Z, Gnörich J, Pescoller J, Wagner F, Hirsch F, de Bruin H, Ossenkoppele R, Palleis C, Strübing F, Schöll M, Levin J, Brendel M, Höglinger GU. Alpha synuclein co-pathology is associated with accelerated amyloid-driven tau accumulation in Alzheimer's disease. Mol Neurodegener 2025; 20:31. [PMID: 40098057 PMCID: PMC11916967 DOI: 10.1186/s13024-025-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Aggregated alpha-Synuclein (αSyn) is a hallmark pathology in Parkinson's disease but also one of the most common co-pathologies in Alzheimer's disease (AD). Preclinical studies suggest that αSyn can exacerbate tau aggregation, implying that αSyn co-pathology may specifically contribute to the Aβ-induced aggregation of tau that drives neurodegeneration and cognitive decline in AD. To investigate this, we combined a novel CSF-based seed-amplification assay (SAA) to determine αSyn positivity with amyloid- and tau-PET neuroimaging in a large cohort ranging from cognitively normal individuals to those with dementia, examining whether αSyn co-pathology accelerates Aβ-driven tau accumulation and cognitive decline. METHODS In 284 Aβ-positive and 308 Aβ-negative subjects, we employed amyloid-PET, Flortaucipir tau-PET, and a CSF-based αSyn seed-amplification assay (SAA) to detect in vivo αSyn aggregation. CSF p-tau181 measures were available for 384 subjects to assess earliest tau abnormalities. A subset of 155 Aβ-positive and 135 Aβ-negative subjects underwent longitudinal tau-PET over approximately 2.5 years. Using linear regression models, we analyzed whether αSyn SAA positivity was linked to stronger Aβ-related increases in baseline fluid and PET tau biomarkers, faster Aβ-driven tau-PET increase, and more rapid cognitive decline. RESULTS αSyn SAA positivity was more common in Aβ + vs. Aβ- subjects and increased with clinical severity (p < 0.001). Most importantly, αSyn positivity was also associated with greater amyloid-associated CSF p-tau181 increases (p = 0.005) and higher tau-PET levels in AD-typical brain regions (p = 0.006). Longitudinal analyses confirmed further that αSyn positivity was associated with faster amyloid-related tau accumulation (p = 0.029) and accelerated amyloid-related cognitive decline, potentially driven driven by stronger tau pathology. CONCLUSIONS Our findings suggest that αSyn co-pathology, detectable via CSF-based SAAs, is more prevalent in advanced AD and contributes to the development of aggregated tau pathology thereby driving faster cognitive decline. This highlights that a-Syn co-pathology may specifically accelerate amyloid-driven tau pathophysiology in AD, underscoring the need to consider αSyn in AD research and treatment strategies.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal and Gothenburg, Sweden.
| | - Sebastian Niclas Roemer-Cassiano
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Maximilian Bernhardt
- Department of Neurology, LMU University Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fabian Hirsch
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Hannah de Bruin
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Carla Palleis
- Department of Neurology, LMU University Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Felix Strübing
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
| | - Michael Schöll
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
4
|
Luo J, Ping J, Zhang H, Zhang Y, Tan Z, Kong C, Liu X. Exploring the association between BIN1 gene polymorphisms and hippocampal subfield volume in community mild cognitive impairment. Front Neurol 2025; 16:1525664. [PMID: 40012995 PMCID: PMC11864292 DOI: 10.3389/fneur.2025.1525664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Mild cognitive impairment (MCI) is an early stage of Alzheimer's disease (AD), crucial for early diagnosis. BIN1, a key AD susceptibility gene after APOE, has higher brain expression in AD and interacts with tau, affecting its pathology. Specific BIN1 SNPs are linked to AD and MCI, but mechanisms are unclear. This study will explore how BIN1 polymorphisms might influence MCI development and correlate with hippocampal integrity in MCI patients using MRI. Methods This study enrolled a total of 52 elderly individuals with MCI and 55 cognitively CN individuals from five communities in Zhongshan Torch Development Zone. Blood samples were collected for analysis of BIN1 rs10200967, rs1060743, and rs4663093 gene polymorphisms, and MRI scans were conducted to assess the volume of hippocampal subregions. The study also seeks to examine the distribution of BIN1 genotypes in both MCI and healthy control populations, as well as to investigate the potential association between BIN1 rs10200967, rs1060743, and rs4663093 genotypes and hippocampal subregion structure in individuals with MCI. Results Significant structural atrophy was observed in multiple hippocampal subregions, including left cornu ammonis (lCA), left dentate gyrus (lDG), left hippocampal-amygdaloid transition area (lHATA), left subiculum (lSubc), right ornu ammonis (rCA), right dentate gyrus (rDG), right subiculum (rSubc), left entire hippocampus complex (lHIP), and right entire hippocampus complex (rHIP) in seniors with MCI compared to those in the CN (p < 0.05), after adjusting for age, gender, education level, and APOEε4 status. Conversely, no significant differences were observed in left entorhinal cortex (lEC), right entorhinal cortex (rEC), right hippocampal-amygdaloid transition area (rHATA), and total intracranial volume (TIV) (p > 0.05). Notably, there were no significant differences in the distribution of BIN1 rs10200967, rs1060743, and rs4663093 genotypes among elderly individuals (p > 0.05). Furthermore, the association between the BIN1 rs10200967 genotype and lHATA atrophy significant in the MCI after adjusting for age, gender, education level, APOEε4 status, and TIV (p < 0.05). Conclusion This study presents novel findings indicating an association between the BIN1 rs10200967 genotype and lHATA atrophy, with the rs10200967 CC genotype showing a higher volume of lHATA in individuals with MCI. These results suggest that the rs10200967 CC genotype may confer a protective effect against MCI, offering a potential basis for early detection and prevention of AD.
Collapse
Affiliation(s)
- Jiali Luo
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Junjiao Ping
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Haibo Zhang
- Department of Radiology, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Ying Zhang
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Zhenkun Tan
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Chuijia Kong
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Xinxia Liu
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
| |
Collapse
|
5
|
Altmann A, Aksman LM, Oxtoby NP, Young AL, Alexander DC, Barkhof F, Shoai M, Hardy J, Schott JM. Towards cascading genetic risk in Alzheimer's disease. Brain 2024; 147:2680-2690. [PMID: 38820112 PMCID: PMC11292901 DOI: 10.1093/brain/awae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (-). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer's disease. Here, we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70-4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84-1.42; P = 0.53). Conversely, for the transition from A+T- to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05-2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27-2.36; P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05-6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87-3.49; P = 0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer's disease, in addition to opening therapeutic windows for targeted interventions.
Collapse
Affiliation(s)
- Andre Altmann
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Leon M Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Alexandra L Young
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, 1081 HV, The Netherlands
| | - Maryam Shoai
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - John Hardy
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Jonathan M Schott
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
6
|
Mattsson-Carlgren N. Disentangling genetic risks for development and progression of Alzheimer's disease. Brain 2024; 147:2604-2606. [PMID: 39018494 PMCID: PMC11292895 DOI: 10.1093/brain/awae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
This scientific commentary refers to ‘Towards cascading genetic risk in Alzheimer’s disease’ by Altmann et al. (https://doi.org/10.1093/brain/awae176).
Collapse
Affiliation(s)
- Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 20502 Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, 22185 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| |
Collapse
|
7
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
8
|
Rubinski A, Dewenter A, Zheng L, Franzmeier N, Stephenson H, Deming Y, Duering M, Gesierich B, Denecke J, Pham AV, Bendlin B, Ewers M. Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner. Eur J Nucl Med Mol Imaging 2024; 51:1035-1049. [PMID: 38049659 PMCID: PMC10881623 DOI: 10.1007/s00259-023-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aβ) PET tracers bind to WM myelin. We assessed 43 Aβ-biomarker negative (Aβ-) cognitively normal participants and 108 Aβ+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aβ+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Henry Stephenson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jannis Denecke
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - An-Vi Pham
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Barbara Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
9
|
Angelopoulou E, Koros C, Hatzimanolis A, Stefanis L, Scarmeas N, Papageorgiou SG. Exploring the Genetic Landscape of Mild Behavioral Impairment as an Early Marker of Cognitive Decline: An Updated Review Focusing on Alzheimer's Disease. Int J Mol Sci 2024; 25:2645. [PMID: 38473892 PMCID: PMC10931648 DOI: 10.3390/ijms25052645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical features and pathophysiology of neuropsychiatric symptoms (NPSs) in dementia have been extensively studied. However, the genetic architecture and underlying neurobiological mechanisms of NPSs at preclinical stages of cognitive decline and Alzheimer's disease (AD) remain largely unknown. Mild behavioral impairment (MBI) represents an at-risk state for incident cognitive impairment and is defined by the emergence of persistent NPSs among non-demented individuals in later life. These NPSs include affective dysregulation, decreased motivation, impulse dyscontrol, abnormal perception and thought content, and social inappropriateness. Accumulating evidence has recently begun to shed more light on the genetic background of MBI, focusing on its potential association with genetic factors related to AD. The Apolipoprotein E (APOE) genotype and the MS4A locus have been associated with affective dysregulation, ZCWPW1 with social inappropriateness and psychosis, BIN1 and EPHA1 with psychosis, and NME8 with apathy. The association between MBI and polygenic risk scores (PRSs) in terms of AD dementia has been also explored. Potential implicated mechanisms include neuroinflammation, synaptic dysfunction, epigenetic modifications, oxidative stress responses, proteosomal impairment, and abnormal immune responses. In this review, we summarize and critically discuss the available evidence on the genetic background of MBI with an emphasis on AD, aiming to gain insights into the potential underlying neurobiological mechanisms, which till now remain largely unexplored. In addition, we propose future areas of research in this emerging field, with the aim to better understand the molecular pathophysiology of MBI and its genetic links with cognitive decline.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Christos Koros
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| |
Collapse
|
10
|
Franzmeier N, Dehsarvi A, Steward A, Biel D, Dewenter A, Roemer SN, Wagner F, Groß M, Brendel M, Moscoso A, Arunachalam P, Blennow K, Zetterberg H, Ewers M, Schöll M. Elevated CSF GAP-43 is associated with accelerated tau accumulation and spread in Alzheimer's disease. Nat Commun 2024; 15:202. [PMID: 38172114 PMCID: PMC10764818 DOI: 10.1038/s41467-023-44374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
In Alzheimer's disease, amyloid-beta (Aβ) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aβ induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aβ-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aβ-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aβ and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aβ-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden.
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Niclas Roemer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Mattes Groß
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Alexis Moscoso
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Prithvi Arunachalam
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Kaj Blennow
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Schöll
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
Guo F, Tan MS, Hu H, Ou YN, Zhang MZ, Sheng ZH, Chi HC, Tan L. sTREM2 Mediates the Correlation Between BIN1 Gene Polymorphism and Tau Pathology in Alzheimer's Disease. J Alzheimers Dis 2024; 101:693-704. [PMID: 39240638 DOI: 10.3233/jad-240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Bridging integrator 1 (BIN1) gene polymorphism has been reported to play a role in the pathological processes of Alzheimer's disease (AD). Objective To explore the association of BIN1 loci with neuroinflammation and AD pathology. Methods Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 495) was the discovery cohort, and Chinese Alzheimer's Biomarker and LifestylE (CABLE, N = 619) study was used to replicate the results. Two BIN1 gene polymorphism (rs7561528 and rs744373) were included in the analysis. Multiple linear regression model and causal mediation analysis conducted through 10,000 bootstrapped iterations were used to examine the BIN1 loci relationship with cerebrospinal fluid (CSF) AD biomarkers and alternative biomarker of microglial activation microglia-soluble triggering receptor expressed on myeloid cells 2 (sTREM2). Results In ADNI database, we found a significant association between BIN1 loci (rs7561528 and rs744373) and levels of CSF phosphorylated-tau (P-tau) (pc = 0.017; 0.010, respectively) and total-tau (T-tau) (pc = 0.011; 0.013, respectively). The BIN1 loci were also correlated with CSF sTREM2 levels (pc = 0.010; 0.008, respectively). Mediation analysis demonstrated that CSF sTREM2 partially mediated the association of BIN1 loci with P-tau (Proportion of rs7561528 : 20.8%; Proportion of rs744373 : 24.8%) and T-tau (Proportion of rs7561528 : 36.5%; Proportion of rs744373 : 43.9%). The analysis in CABLE study replicated the mediation role of rs7561528. Conclusions This study demonstrated the correlation between BIN1 loci and CSF AD biomarkers as well as microglia biomarkers. Additionally, the link between BIN1 loci and tau pathology was partially mediated by CSF sTREM2.
Collapse
Affiliation(s)
- Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hao Hu
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ming-Zhan Zhang
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao-Chen Chi
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
12
|
Chhetri A, Goel K, Ludhiadch A, Singh P, Munshi A. Role of Imaging Genetics in Alzheimer's Disease: A Systematic Review and Current Update. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1143-1156. [PMID: 38243986 DOI: 10.2174/0118715273264879231027070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder characterized by severe cognitive, behavioral, and psychological symptoms, such as dementia, cognitive decline, apathy, and depression. There are no accurate methods to diagnose the disease or proper therapeutic interventions to treat AD. Therefore, there is a need for novel diagnostic methods and markers to identify AD efficiently before its onset. Recently, there has been a rise in the use of imaging techniques like Magnetic Resonance Imaging (MRI) and functional Magnetic Resonance Imaging (fMRI) as diagnostic approaches in detecting the structural and functional changes in the brain, which help in the early and accurate diagnosis of AD. In addition, these changes in the brain have been reported to be affected by variations in genes involved in different pathways involved in the pathophysiology of AD. METHODOLOGY A literature review was carried out to identify studies that reported the association of genetic variants with structural and functional changes in the brain in AD patients. Databases like PubMed, Google Scholar, and Web of Science were accessed to retrieve relevant studies. Keywords like 'fMRI', 'Alzheimer's', 'SNP', and 'imaging' were used, and the studies were screened using different inclusion and exclusion criteria. RESULTS 15 studies that found an association of genetic variations with structural and functional changes in the brain were retrieved from the literature. Based on this, 33 genes were identified to play a role in the development of disease. These genes were mainly involved in neurogenesis, cell proliferation, neural differentiation, inflammation and apoptosis. Few genes like FAS, TOM40, APOE, TRIB3 and SIRT1 were found to have a high association with AD. In addition, other genes that could be potential candidates were also identified. CONCLUSION Imaging genetics is a powerful tool in diagnosing and predicting AD and has the potential to identify genetic biomarkers and endophenotypes associated with the development of the disorder.
Collapse
Affiliation(s)
- Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Paramdeep Singh
- Department of Radiology, All Indian Institute of Medical Sciences, Bathinda, Punjab 151001, India
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
13
|
Veitch DP, Weiner MW, Miller M, Aisen PS, Ashford MA, Beckett LA, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Nho KT, Nosheny R, Okonkwo O, Perrin RJ, Petersen RC, Rivera Mindt M, Saykin A, Shaw LM, Toga AW, Tosun D, for the Alzheimer's Disease Neuroimaging Initiative. The Alzheimer's Disease Neuroimaging Initiative in the era of Alzheimer's disease treatment: A review of ADNI studies from 2021 to 2022. Alzheimers Dement 2024; 20:652-694. [PMID: 37698424 PMCID: PMC10841343 DOI: 10.1002/alz.13449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Melanie Miller
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Miriam A. Ashford
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Robert C. Green
- Division of GeneticsDepartment of MedicineBrigham and Women's HospitalBroad Institute Ariadne Labs and Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Kwangsik T. Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Monica Rivera Mindt
- Department of PsychologyLatin American and Latino Studies InstituteAfrican and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research CenterCenter for Neurodegenerative ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingInstitute of Neuroimaging and InformaticsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
14
|
Zhang X, Zou L, Tang L, Xiong M, Yan XX, Meng L, Chen G, Xiong J, Nie S, Zhang Z, Chen Q, Zhang Z. Bridging integrator 1 fragment accelerates tau aggregation and propagation by enhancing clathrin-mediated endocytosis in mice. PLoS Biol 2024; 22:e3002470. [PMID: 38206965 PMCID: PMC10783739 DOI: 10.1371/journal.pbio.3002470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
The bridging integrator 1 (BIN1) gene is an important risk locus for late-onset Alzheimer's disease (AD). BIN1 protein has been reported to mediate tau pathology, but the underlying molecular mechanisms remain elusive. Here, we show that neuronal BIN1 is cleaved by the cysteine protease legumain at residues N277 and N288. The legumain-generated BIN1 (1-277) fragment is detected in brain tissues from AD patients and tau P301S transgenic mice. This fragment interacts with tau and accelerates its aggregation. Furthermore, the BIN1 (1-277) fragment promotes the propagation of tau aggregates by enhancing clathrin-mediated endocytosis (CME). Overexpression of the BIN1 (1-277) fragment in tau P301S mice facilitates the propagation of tau pathology, inducing cognitive deficits, while overexpression of mutant BIN1 that blocks its cleavage by legumain halts tau propagation. Furthermore, blocking the cleavage of endogenous BIN1 using the CRISPR/Cas9 gene-editing tool ameliorates tau pathology and behavioral deficits. Our results demonstrate that the legumain-mediated cleavage of BIN1 plays a key role in the progression of tau pathology. Inhibition of legumain-mediated BIN1 cleavage may be a promising therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Tang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
16
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
17
|
Belapurkar V, Mahadeva Swamy HS, Singh N, Kedia S, Setty SRG, Jose M, Nair D. Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM. Cell Mol Life Sci 2023; 80:295. [PMID: 37726569 PMCID: PMC11072284 DOI: 10.1007/s00018-023-04939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Interdisciplinary Institute for Neuroscience CNRS UMR5297, University of Bordeaux, Bordeaux, France
| | - H S Mahadeva Swamy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Tata Institute for Genetics and Society, Bengaluru, India
| | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
18
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
19
|
Lamontagne-Kam D, Ulfat AK, Hervé V, Vu TM, Brouillette J. Implication of tau propagation on neurodegeneration in Alzheimer's disease. Front Neurosci 2023; 17:1219299. [PMID: 37483337 PMCID: PMC10360202 DOI: 10.3389/fnins.2023.1219299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Propagation of tau fibrils correlate closely with neurodegeneration and memory deficits seen during the progression of Alzheimer's disease (AD). Although it is not well-established what drives or attenuates tau spreading, new studies on human brain using positron emission tomography (PET) have shed light on how tau phosphorylation, genetic factors, and the initial epicenter of tau accumulation influence tau accumulation and propagation throughout the brain. Here, we review the latest PET studies performed across the entire AD continuum looking at the impact of amyloid load on tau pathology. We also explore the effects of structural, functional, and proximity connectivity on tau spreading in a stereotypical manner in the brain of AD patients. Since tau propagation can be quite heterogenous between individuals, we then consider how the speed and pattern of propagation are influenced by the starting localization of tau accumulation in connected brain regions. We provide an overview of some genetic variants that were shown to accelerate or slow down tau spreading. Finally, we discuss how phosphorylation of certain tau epitopes affect the spreading of tau fibrils. Since tau pathology is an early event in AD pathogenesis and is one of the best predictors of neurodegeneration and memory impairments, understanding the process by which tau spread from one brain region to another could pave the way to novel therapeutic avenues that are efficient during the early stages of the disease, before neurodegeneration induces permanent brain damage and severe memory loss.
Collapse
|
20
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
21
|
Gan Q, Ding Y, Peng M, Chen L, Dong J, Hu J, Ma Y. The Potential of Edible and Medicinal Resource Polysaccharides for Prevention and Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:biom13050873. [PMID: 37238743 DOI: 10.3390/biom13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Yugang Ding
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Maoyao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jiaxi Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
22
|
Steward A, Biel D, Brendel M, Dewenter A, Roemer S, Rubinski A, Luan Y, Dichgans M, Ewers M, Franzmeier N, for the Alzheimer's Disease Neuroimaging Initiative (ADNI). Functional network segregation is associated with attenuated tau spreading in Alzheimer's disease. Alzheimers Dement 2022; 19:2034-2046. [PMID: 36433865 DOI: 10.1002/alz.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Lower network segregation is associated with accelerated cognitive decline in Alzheimer's disease (AD), yet it is unclear whether less segregated brain networks facilitate connectivity-mediated tau spreading. METHODS We combined resting state functional magnetic resonance imaging (fMRI) with longitudinal tau positron emission tomography (PET) in 42 betamyloid-negative controls and 81 amyloid beta positive individuals across the AD spectrum. Network segregation was determined using resting-state fMRI-assessed connectivity among 400 cortical regions belonging to seven networks. RESULTS AD subjects with higher network segregation exhibited slower brain-wide tau accumulation relative to their baseline entorhinal tau PET burden (typical onset site of tau pathology). Second, by identifying patient-specific tau epicenters with highest baseline tau PET we found that stronger epicenter segregation was associated with a slower rate of tau accumulation in the rest of the brain in relation to baseline epicenter tau burden. DISCUSSION Our results indicate that tau spreading is facilitated by a more diffusely organized connectome, suggesting that brain network topology modulates tau spreading in AD. HIGHLIGHTS Higher brain network segregation is associated with attenuated tau pathology accumulation in Alzheimer's disease (AD). A patient-tailored approach allows for the more precise localization of tau epicenters. The functional segregation of subject-specific tau epicenters predicts the rate of future tau accumulation.
Collapse
Affiliation(s)
- Anna Steward
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Matthias Brendel
- Department of Nuclear Medicine University Hospital LMU Munich Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Sebastian Roemer
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- Department of Neurology University Hospital LMU Munich Munich Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD) University Hospital LMU Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | | |
Collapse
|
23
|
Mehta K, Mohebbi M, Pasco JA, Williams LJ, Walder K, Ng BL, Gupta VB. Genetic polymorphism in BIN1 rather than APOE is associated with poor recognition memory among men without dementia. Sci Rep 2022; 12:17802. [PMID: 36280690 PMCID: PMC9592585 DOI: 10.1038/s41598-022-20587-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
Although several genetic polymorphisms have been linked with the risk of Alzheimer's disease, less is known about their impact on cognitive performance among cognitively healthy individuals. Our aim was to investigate the association of the genetic variant, rs744373 in the bridging integrator 1 gene (BIN1), the strongest genetic risk factor for Alzheimer's disease after the APOE ε4 allele, with different cognitive domains among non-demented older men. Cognitive function was measured using the CogState Brief Battery, which assessed cognitive performance across four domains: psychomotor function, visual attention, recognition memory and working memory. Linear regression analysis revealed that individuals with the BIN1 risk allele performed poorly on the recognition memory task as compared to those without the risk allele. However, this was in contrast with the individuals who harboured the APOE ε4 risk allele as they displayed better performance on the recognition task in comparison to those without the ε4 risk allele. To the best of our knowledge, this is the first study that demonstrates genetic variation in BIN1 to be a better predictor of recognition memory than APOE, which remains the biggest genetic risk factor for Alzheimer's disease.
Collapse
Affiliation(s)
- Kanika Mehta
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia
| | - Mohammadreza Mohebbi
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia ,grid.1021.20000 0001 0526 7079Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC Australia
| | - Julie A. Pasco
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia ,grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, Monash University, Prahran, VIC Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, VIC Australia
| | - Lana J. Williams
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia
| | - Ken Walder
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia
| | - Boon Lung Ng
- grid.414257.10000 0004 0540 0062Department of Geriatric Medicine, Barwon Health, Geelong, VIC Australia
| | - Veer Bala Gupta
- grid.1021.20000 0001 0526 7079Deakin University, IMPACT – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC Australia
| |
Collapse
|
24
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
25
|
Frontzkowski L, Ewers M, Brendel M, Biel D, Ossenkoppele R, Hager P, Steward A, Dewenter A, Römer S, Rubinski A, Buerger K, Janowitz D, Binette AP, Smith R, Strandberg O, Carlgren NM, Dichgans M, Hansson O, Franzmeier N. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat Commun 2022; 13:4899. [PMID: 35987901 PMCID: PMC9392750 DOI: 10.1038/s41467-022-32592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/08/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn Alzheimer’s disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.
Collapse
|
26
|
Heal M, McFall GP, Vergote D, Jhamandas JH, Westaway D, Dixon RA. Bridging Integrator 1 (BIN1, rs6733839) and Sex Are Moderators of Vascular Health Predictions of Memory Aging Trajectories. J Alzheimers Dis 2022; 89:265-281. [DOI: 10.3233/jad-220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A promising risk loci for sporadic Alzheimer’s disease (AD), Bridging Integrator 1 (BIN1), is thought to operate through the tau pathology pathway. Objective: We examine BIN1 risk for a moderating role with vascular health (pulse pressure; PP) and sex in predictions of episodic memory trajectories in asymptomatic aging adults. Methods: The sample included 623 participants (Baseline Mean age = 70.1; 66.8% female) covering a 44-year longitudinal band (53–97 years). With an established memory latent variable arrayed as individualized trajectories, we applied Mplus 8.5 to determine the best fitting longitudinal growth model. Main analyses were conducted in three sequential phases to investigate: 1) memory trajectory prediction by PP, 2) moderation by BIN1 genetic risk, and 3) stratification by sex. Results: We first confirmed that good vascular health (lower PP) was associated with higher memory level and shallower decline and males were more severely affected by worsening PP in both memory performance and longitudinal decline. Second, the PP prediction of memory trajectories was significant for BIN1 C/C and C/T carriers but not for persons with the highest AD risk (T/T homozygotes). Third, when further stratified by sex, the BIN1 moderation of memory prediction by PP was selective for females. Conclusion: We observed a novel interaction whereby BIN1 (linked with tauopathy in AD) and sex sequentially moderated a benchmark PP prediction of differential memory decline in asymptomatic aging. This multi-modal biomarker interaction approach, disaggregated by sex, can be an effective method for enhancing precision of AD genetic risk assessment.
Collapse
Affiliation(s)
- Mackenzie Heal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - G. Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - David Vergote
- Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Jack H. Jhamandas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
28
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
29
|
Hansson O. Biomarkers for neurodegenerative diseases. Nat Med 2021; 27:954-963. [PMID: 34083813 DOI: 10.1038/s41591-021-01382-x] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Biomarkers for neurodegenerative diseases are needed to improve the diagnostic workup in the clinic but also to facilitate the development and monitoring of effective disease-modifying therapies. Positron emission tomography methods detecting amyloid-β and tau pathology in Alzheimer's disease have been increasingly used to improve the design of clinical trials and observational studies. In recent years, easily accessible and cost-effective blood-based biomarkers detecting the same Alzheimer's disease pathologies have been developed, which might revolutionize the diagnostic workup of Alzheimer's disease globally. Relevant biomarkers for α-synuclein pathology in Parkinson's disease are also emerging, as well as blood-based markers of general neurodegeneration and glial activation. This review presents an overview of the latest advances in the field of biomarkers for neurodegenerative diseases. Future directions are discussed regarding implementation of novel biomarkers in clinical practice and trials.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|