1
|
Wang Y, Zhou S, Wang X, Lu D, Yang J, Lu Y, Fan X, Li C, Wang Y. Electroactive membranes enhance in-situ alveolar ridge preservation via spatiotemporal electrical modulation of cell motility. Biomaterials 2025; 317:123077. [PMID: 39756273 DOI: 10.1016/j.biomaterials.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process. Initially, the membrane's endogenous-level surface potential recruits stem cells from the socket. Subsequently, adherent cell-migration-triggered forces generate on-demand piezopotential, stimulating intracellular calcium ion fluctuations and activating the Ca2+/calcineurin/NFAT1 signaling pathway via Cav3.2 channels. This enhances cell motility and osteogenic differentiation predominantly in the coronal socket region, counteracting the natural healing trajectory. The membrane's self-powered energy supply, proportional to cell migration velocity and manifested as nanoparticle deformation, mitigates ridge shrinkage, both independently and in conjunction with bone grafts. This energy-autonomous membrane, based on the spatiotemporal modulation of cell motility, presents a novel approach for in-situ ARP treatment and the development of 4D bionic scaffolds.
Collapse
Affiliation(s)
- Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaoshuang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongheng Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaolei Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Changhao Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
2
|
Wang Z, Liu H, Zhao H, Zhang C. Simulation study on the force-electric effect of piezoelectric bone and osteocytes under static and dynamic compression. Comput Methods Biomech Biomed Engin 2025:1-11. [PMID: 40167207 DOI: 10.1080/10255842.2025.2484562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
This study analyzed the generation rule of streaming potential (SP) considering the piezoelectric effect of bone under static and dynamic compression. The piezoelectric equation was introduced into the equation of SP, and an osteon's 3D fluid-structure interaction finite element model with osteocytes was developed using COMSOL software. Seven working conditions helped study SP. The results showed positive and negative SP alternately acted on osteocyte under dynamic loads, and SP was about three orders of magnitude higher than that under static loads. Therefore, dynamic loads improved the osteocytes' force-electric microenvironment. The force-electric effect revealed the mechanism of treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhu Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Hanqing Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
3
|
Zhu J, Li M, Yang S, Zou Y, Lv Y. Multifunctional electrospinning periosteum: Development status and prospect. J Biomater Appl 2025; 39:996-1013. [PMID: 39797782 DOI: 10.1177/08853282251315186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.
Collapse
Affiliation(s)
- Jinli Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Meifeng Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, P.R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| |
Collapse
|
4
|
Parida APK, Mishra B, Gupta MK, Kumar P. Structural, microstructural, dielectric, mechanical properties of PVDF/HAP nanocomposite films for bone regeneration applications. Biomed Mater 2025; 20:025041. [PMID: 40009994 DOI: 10.1088/1748-605x/adbaa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Poly(vinylidene fluoride) (PVDF)/hydroxyapatite (HAP) nanocomposite films, incorporating HAP nanoparticles as filler within a PVDF matrix, were successfully synthesized by solution casting method. Increasing the HAP concentration in the nanocomposite significantly enhances its electroactive properties, with synergistic effects on surface, electrical and biological characteristics are investigated comprehensively. Improvements in topographical and mechanical parameters reveal the nanocomposite films for biomimetic suitability. Notably, the impact of dielectric and ferroelectric properties on biological studies is well established. With increasing the HAP concentration, we observed significant improvements in remnant polarization from 0.28 to 1.87 µC cm-2, saturation polarization from 1.1 to 2.10 µC cm-2, and coercive field from 88.55 to 243.65 kV cm-1. Inin-vitroexperiments with osteosarcoma cells, the nanocomposite films with 40% HAP showed higher cell proliferation and viability. Present finding indicated 60PVDF/40HAP nanocomposite films as a biomimicry candidate for bone regeneration applications.
Collapse
Affiliation(s)
- A P Kajal Parida
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Pawan Kumar
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
5
|
Bai Y, Li X, Wu K, Heng BC, Zhang X, Deng X. Biophysical stimuli for promoting bone repair and regeneration. MEDICAL REVIEW (2021) 2025; 5:1-22. [PMID: 39974560 PMCID: PMC11834751 DOI: 10.1515/mr-2024-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 02/21/2025]
Abstract
Bone injuries and diseases are associated with profound changes in the biophysical properties of living bone tissues, particularly their electrical and mechanical properties. The biophysical properties of healthy bone are attributed to the complex network of interactions between its various cell types (i.e., osteocytes, osteoclast, immune cells and vascular endothelial cells) with the surrounding extracellular matrix (ECM) against the backdrop of a myriad of biomechanical and bioelectrical stimuli arising from daily physical activities. Understanding the pathophysiological changes in bone biophysical properties is critical to developing new therapeutic strategies and novel scaffold biomaterials for orthopedic surgery and tissue engineering, as well as provides a basis for the application of various biophysical stimuli as therapeutic agents to restore the physiological microenvironment of injured/diseased bone tissue, to facilitate its repair and regeneration. These include mechanical, electrical, magnetic, thermal and ultrasound stimuli, which will be critically examined in this review. A significant advantage of utilizing such biophysical stimuli to facilitate bone healing is that these may be applied non-invasively with minimal damage to surrounding tissues, unlike conventional orthopedic surgical procedures. Furthermore, the effects of such biophysical stimuli can be localized specifically at the bone defect site, unlike drugs or growth factors that tend to diffuse away after delivery, which may result in detrimental side effects at ectopic sites.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon C. Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
6
|
Bovari-Biri J, Miskei JA, Kover Z, Steinerbrunner-Nagy A, Kardos K, Maroti P, Pongracz JE. Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ). Cells 2025; 14:145. [PMID: 39851573 PMCID: PMC11763601 DOI: 10.3390/cells14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Judith A Miskei
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Zsanett Kover
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| |
Collapse
|
7
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
8
|
Jiang C, Fu J, Zhang H, Hua Y, Cao L, Ren J, Zhou M, Jiang F, Jiang X, Ling S. Self-Reinforcing Ionogel Bioadhesive Interface for Robust Integration and Monitoring of Bioelectronic Devices with Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413028. [PMID: 39632650 DOI: 10.1002/adma.202413028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Integrating bioelectronic devices with hard tissues, such as bones and teeth, is essential for advancing diagnostic and therapeutic technologies. However, stable and durable adhesion in dynamic, moist environments remains challenging. Traditional bioadhesives often fail to maintain strong bonds, especially when interfacing with metal electrodes and hard tissues. This study introduces a self-reinforcing ionogel bioadhesive interface (IGBI) combining silk fibroin and calcium ions, designed to provide robust and conductive integration of bioelectronic devices with hard tissues. The IGBI exhibits strong adhesion (up to 186 J m-2) and undergoes mechanical self-reinforcement through a structural transition in silk fibroin under physiological conditions. In vivo experiments demonstrate the IGBI's effectiveness in repairing bone defects and reimplanting teeth, with the added capability of wireless, real-time monitoring of bone healing. This approach allows for continuous tracking of tissue regeneration without a second invasive surgery for device removal. The IGBI represents a significant advancement in bioelectronic integration, offering a durable and versatile solution for challenging environments. Such unique self-reinforcing properties make the IGBI a promising material for biomedical applications where traditional adhesives are insufficient.
Collapse
Affiliation(s)
- Chenghao Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Junhao Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Hao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yingjie Hua
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Mingliang Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Fei Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Xinquan Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Zhang L, Ma M, Li J, Qiao K, Xie Y, Zheng Y. Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier. Bioact Mater 2024; 39:147-162. [PMID: 38808158 PMCID: PMC11130597 DOI: 10.1016/j.bioactmat.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.
Collapse
Affiliation(s)
- LiYang Zhang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- Beijing Wanjie Medical Device Co., Ltd, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yajie Xie
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
10
|
Alashi S, Alkhouri I, Alghoraibi I, Kochaji N, Houri A, Karkoutly M. Evaluating various properties of nanohydroxyapatite synthesized from eggshells and dual-doped with Si 4+ and Zn 2+: An in vitro study. Heliyon 2024; 10:e35907. [PMID: 39224256 PMCID: PMC11366878 DOI: 10.1016/j.heliyon.2024.e35907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aimed to evaluate morphological, chemical and biocompatible properties of nanohydroxyapatite (N-HA) synthesized from eggshells and dual-doped with Si4+ and Zn2+. METHODS In the current study, N-HA was synthesized from chicken eggshells using the wet chemical precipitation method and doped with Si4+ and Zn2+. The physical assessment was carried out using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) analysis. Crystal size was calculated using the Scherrer equation. Cytotoxicity was studied in vitro using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) cytotoxicity assay. The optical density (OD) of each well was obtained and recorded at 570 nm for 24 h (t1), 48 h (t2), 72 h (t3), and 5 days (t4) using a microplate reader. RESULTS The results of Si-Zn-doped HA showed a high specific surface area with an irregular nano-sized spherical particle structure. The atomic percentage provided the ratio of calcium to phosphate; for non-doped HA, the atomic Ca/P ratio was 1.6, but for Si-Zn-doped HA, where Zn+2 Ca and Si + replaced 4 substituted P, the atomic ratio (Ca + Zn)/(P + Si) was 1.76. The average crystal size of Si-Zn-doped HA was 46 nm, while for non-doped HA it was 61 nm. both samples were non-toxic and statistically significantly less viable than the control group After 5 days, the mean cell viability of Si-Zn-doped HA (79.17 ± 2.18) was higher than that of non-doped HA (76.26 ± 1.71) (P = 0.091). CONCLUSIONS The MTT assay results showed that Si-Zn-doped HA is biocompatible. In addition, it showed characteristic physiochemical properties of a large surface area with interconnected porosity.
Collapse
Affiliation(s)
- Shaza Alashi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Isam Alkhouri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Ibrahim Alghoraibi
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic
| | - Nabil Kochaji
- Department of Oral Pathology, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Abdullah Houri
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic
| | - Mawia Karkoutly
- Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| |
Collapse
|
11
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
12
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
13
|
Pan S, Hou Z, Liu J, Xu L. Numerical calculation of streaming potential around osteocytes under human gait loading. Comput Biol Med 2024; 172:108247. [PMID: 38493605 DOI: 10.1016/j.compbiomed.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Streaming potential is a type of stress-generated potential in bone that affects the electrical environment of osteocytes and may play a role in bone remodeling. Because the electrical environment around osteocytes has been difficult to measure experimentally until now, a numerical solid-liquid-streaming potential coupling method was proposed to analyze the streaming potential generated by bone deformation in the lacunae and canaliculus network (LCN) of the bone. Using this method, the cellular shear stress caused by liquid flow on the osteocyte surface was first calculated, and the results were consistent with those reported in the literature. Subsequently, the streaming potentials in the LCN caused by bone matrix deformation under an external gait load were calculated numerically. The results showed that the streaming potential increased slowly in the lacuna and relatively rapidly in the canaliculus and that the streaming potential increased with a decrease in the radius or an increase in the length of the canaliculus. The results also showed that relatively large gaps between the lacunae and osteocytes could induce higher streaming potentials under the same loading.
Collapse
Affiliation(s)
- Shaozhe Pan
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhende Hou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China.
| | | | - Lianyun Xu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Dehnov FZ, Hayati R, Tayebi L. Studying the electrical, mechanical, and biological properties of BCZT-HA composites. J Biomed Mater Res B Appl Biomater 2024; 112:e35392. [PMID: 38385983 PMCID: PMC11389554 DOI: 10.1002/jbm.b.35392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
The piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio-piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO3 -x(Ba,Ca)TiO3 , abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol-gel method. Subsequently, various composite samples of BCZT-xHA were prepared using the conventional solid-state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT-xHA samples, the BCZT-20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d33 value of 10 pC/N, dielectric permittivity of 110, and the g33 equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT-20HA sample.
Collapse
Affiliation(s)
| | - Raziye Hayati
- Department of Materials Engineering, Yasouj University, Yasouj, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Dolai J, Maity A, Mukherjee B, Ray R, Jana NR. Piezoelectric Amyloid Fibril for Energy Harvesting, Reactive Oxygen Species Generation, and Wireless Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:217-227. [PMID: 38123449 DOI: 10.1021/acsami.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Biomolecular piezoelectric materials are envisioned for advanced biomedical applications for their robust piezoelectricity, biocompatibility, and flexibility. Here, we report the piezoelectric property of amyloid fibrils derived from three distinct proteins: lysozyme, insulin, and amyloid-β. We found that piezoelectric properties are dependent on the extent of the β-sheet structure and the extent of fibril anisotropy. We have observed the piezoelectric constant value in the range of 24-42 pm/V for fibrils made of lysozyme/insulin/amyloid-β, and for the sheet/bundle-like structure of lysozyme aggregates, the value becomes 62 pm/V. These piezoelectric constant values are 4-10 times higher than the native lysozyme/insulin/amyloid proteins. Computational studies show that extension of the β-sheet structure produces an asymmetric arrangement of charges (in creating dipole moment) and mechanical stress induces an aligned orientation of these dipoles that results in a piezoelectric effect. It is shown that these piezoelectric fibrils can harvest mechanical as well as ultrasound-based energy to produce a voltage of up to 1 V and a current of up to 13 nA. These fibrils are employed for reactive oxygen species (ROS) generation under ultrasound exposure and utilized for ultrasonic degradation of organic pollutants or killing of cancer cells via intracellular ROS generation under ultrasound exposure. Our findings demonstrate that the piezoelectric property of protein fibrils has potential for wireless therapeutic applications and may have physiological roles that are yet to be explored.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Buddhadev Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
16
|
Li Z, He D, Guo B, Wang Z, Yu H, Wang Y, Jin S, Yu M, Zhu L, Chen L, Ding C, Wu X, Wu T, Gong S, Mao J, Zhou Y, Luo D, Liu Y. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun 2023; 14:6963. [PMID: 37907455 PMCID: PMC10618168 DOI: 10.1038/s41467-023-42598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Infected bone defects are a major challenge in orthopedic treatment. Native bone tissue possesses an endogenous electroactive interface that induces stem cell differentiation and inhibits bacterial adhesion and activity. However, traditional bone substitutes have difficulty in reconstructing the electrical environment of bone. In this study, we develop a self-promoted electroactive mineralized scaffold (sp-EMS) that generates weak currents via spontaneous electrochemical reactions to activate voltage-gated Ca2+ channels, enhance adenosine triphosphate-induced actin remodeling, and ultimately achieve osteogenic differentiation of mesenchymal stem cells by activating the BMP2/Smad5 pathway. Furthermore, we show that the electroactive interface provided by the sp-EMS inhibits bacterial adhesion and activity via electrochemical products and concomitantly generated reactive oxygen species. We find that the osteogenic and antibacterial dual functions of the sp-EMS depend on its self-promoting electrical stimulation. We demonstrate that in vivo, the sp-EMS achieves complete or nearly complete in situ infected bone healing, from a rat calvarial defect model with single bacterial infection, to a rabbit open alveolar bone defect model and a beagle dog vertical bone defect model with the complex oral bacterial microenvironment. This translational study demonstrates that the electroactive bone graft presents a promising therapeutic platform for complex defect repair.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- Department of Stomatology, Peking University People's Hospital, Beijing, 100044, PR China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Bowen Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zekun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Huajie Yu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China.
| |
Collapse
|
17
|
Brito-Pereira R, Martins P, Lanceros-Mendez S, Ribeiro C. Polymer-based magnetoelectric scaffolds for wireless bone repair: The fillers’ effect on extracellular microenvironments. COMPOSITES SCIENCE AND TECHNOLOGY 2023; 243:110263. [DOI: 10.1016/j.compscitech.2023.110263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol 2023; 11:1240861. [PMID: 37662432 PMCID: PMC10469876 DOI: 10.3389/fbioe.2023.1240861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Addressing critical bone defects necessitates innovative solutions beyond traditional methods, which are constrained by issues such as immune rejection and donor scarcity. Smart polymeric biomaterials that respond to external stimuli have emerged as a promising alternative, fostering endogenous bone regeneration. Light-responsive polymers, employed in 3D-printed scaffolds and photothermal therapies, enhance antibacterial efficiency and bone repair. Thermo-responsive biomaterials show promise in controlled bioactive agent release, stimulating osteocyte differentiation and bone regeneration. Further, the integration of conductive elements into polymers improves electrical signal transmission, influencing cellular behavior positively. Innovations include advanced 3D-printed poly (l-lactic acid) scaffolds, polyurethane foam scaffolds promoting cell differentiation, and responsive polymeric biomaterials for osteogenic and antibacterial drug delivery. Other developments focus on enzyme-responsive and redox-responsive polymers, which offer potential for bone regeneration and combat infection. Biomaterials responsive to mechanical, magnetic, and acoustic stimuli also show potential in bone regeneration, including mechanically-responsive polymers, magnetic-responsive biomaterials with superparamagnetic iron oxide nanoparticles, and acoustic-responsive biomaterials. In conclusion, smart biopolymers are reshaping scaffold design and bone regeneration strategies. However, understanding their advantages and limitations is vital, indicating the need for continued exploratory research.
Collapse
Affiliation(s)
| | | | | | | | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, China
| |
Collapse
|