1
|
Bartha‐Doering L, Giordano V, Mandl S, Benavides‐Varela S, Weiskopf A, Mader J, Andrejevic J, Adrian N, Ashmawy LE, Appel P, Seidl R, Doering S, Berger A, Alexopoulos J. Lateralization of Neural Speech Discrimination at Birth Is a Predictor for Later Language Development. Dev Sci 2025; 28:e13609. [PMID: 39807603 PMCID: PMC11730390 DOI: 10.1111/desc.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits. This investigation also holds clinical importance, as differences in neonatal speech discrimination and its functional networks may serve as predictors of later language outcomes. We therefore investigated neural speech discrimination using functional near-infrared spectroscopy in 92 preterm- and term-born neonates and its predictive value for language development in 45 of them. Three to five years later, preterm-born and term-born children did not significantly differ in language comprehension, sentence production, the use of morphological rules, or phonological short-term memory. In addition, the gestational age at birth was not a significant predictor of language development. Neural speech discrimination, in contrast, was strongly correlated with later phonological short-term memory. However, not the extent of speech discrimination, but rather its lateralization, was a predictor of language development. Children with less right hemisphere involvement-and therefore more left-lateralized speech discrimination at birth-showed better development of phonological short-term memory three to five years later. These findings suggest that the ability of fetuses to form memory traces is reflected by neonatal abilities to neurally discriminate speech, which in turn is a predictor for later phonological short-term memory.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Vito Giordano
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Sophie Mandl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | | | - Anna Weiskopf
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johannes Mader
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Austrian Institute of TechnologyViennaAustria
| | - Julia Andrejevic
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Nadine Adrian
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Lisa Emilia Ashmawy
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Patrick Appel
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Stephan Doering
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Li J, Su M, Zhou W. Neural Correlates of Narrative Reading Development: A Comparative fMRI Study of Adults and Children Using Time-Locked Inter-Subject Correlation Analyses. Psychophysiology 2025; 62:e70005. [PMID: 39878134 DOI: 10.1111/psyp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
The naturalistic paradigm and analytical methods present new approaches that are particularly suitable for research concentrating on narrative reading development. We analyzed fMRI data from 44 adults and 42 children engaged in story reading using time-locked inter-subject correlation (ISC), inter-subject representation similarity analysis (IS-RSA), and inter-subject functional correlation (ISFC). The ISC results indicated that for both children and adults, narrative reading recruited not only traditional reading areas but also regions that are sensitive to long-time-scale information, such as the medial prefrontal cortex and hippocampus, which increased involvement from children to adults. The results of the IS-RSA indicated that during narrative reading, children exhibited greater uniqueness in neural patterns, while adults demonstrated greater similarity. The analysis of reading-level subgroups with the ISC and ISFC reveals differences in narrative reading development that span from children to adults, especially for regions sensitive to long-time-scale semantic processing. These results indicate that the maturity and experience play a crucial role in narrative reading development.
Collapse
Affiliation(s)
- Jingxiao Li
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Mengmeng Su
- College of Elementary Education, Capital Normal University, Beijing, China
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
3
|
Ramirez Y, Castillo Y, Acea S, Pagani LS. Auditory Risk Factors at Birth and Language Development at 2 Years of Age: A Longitudinal Analysis. Glob Pediatr Health 2024; 11:2333794X241273201. [PMID: 39257634 PMCID: PMC11384531 DOI: 10.1177/2333794x241273201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
Aim. To analyze the relationship between auditory risk factors at birth and subsequent language development in toddlerhood. Methods. Participants are 136 children from a longitudinal birth cohort follow-up at age 2 years. They were divided into 2 groups: One comprising 105 children without hearing risk factors at birth and another comprising 31 children with auditory risk factors at birth but normal hearing. Results. In children with and without risk factors, the combination of socio-emotional, socio-economic, and auditory risk factors at birth significantly predicted language development at age 2 years. Family socio-economic status had a significant impact on overall child development, even after controlling for socio-emotional development and the presence of risk factors. Conclusions. The study was conducted in an upper-middle income country with a socialized health care system. It underscores the importance of a holistic approach to early childhood language development, taking into account biological, socioeconomic, and emotional factors.
Collapse
Affiliation(s)
- Yaser Ramirez
- Centro Universitario Municipal Rodas. Universidad de Cienfuegos, Cienfuegos, Cuba
| | | | - Shuyeng Acea
- Centro Auditivo Provincial de Cienfuegos, Cienfuegos, Cuba
| | | |
Collapse
|
4
|
Hiersche KJ, Schettini E, Li J, Saygin ZM. Functional dissociation of the language network and other cognition in early childhood. Hum Brain Mapp 2024; 45:e26757. [PMID: 38888027 PMCID: PMC11184366 DOI: 10.1002/hbm.26757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Is language distinct from other cognition during development? Does neural machinery for language emerge from general-purpose neural mechanisms, becoming tuned for language after years of experience and maturation? Answering these questions will shed light on the origins of domain-specificity in the brain. We address these questions using precision fMRI, scanning young children (35 months to 9 years of age) on an auditory language localizer, spatial working memory localizer (engaging the domain-general multiple demand [MD] network), and a resting-state scan. We create subject-specific functional regions of interest for each network and examine their selectivity, specificity, and functional connectivity. We find young children show domain-specific, left-lateralized language activation, and that the language network is not responsive to domain-general cognitive load. Additionally, the cortically adjacent MD network is selective to cognitive load, but not to language. These networks show higher within versus between-network functional connectivity. This connectivity is stable across ages (examined cross-sectionally and longitudinally), whereas language responses increase with age and across time within subject, reflecting a domain-specific developmental change. Overall, we provide evidence for a double dissociation of the language and MD network throughout development, in both their function and connectivity. These findings suggest that domain-specificity, even for uniquely human cognition like language, develops early and distinctly from mechanisms that presumably support other human cognition.
Collapse
Affiliation(s)
- K. J. Hiersche
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - E. Schettini
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - J. Li
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - Z. M. Saygin
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
5
|
Bartha-Doering L, Roberts D, Baumgartner B, Yildirim MS, Giordano V, Spagna A, Pal-Handl K, Javorszky SM, Kasprian G, Seidl R. Developmental surface dyslexia and dysgraphia in a child with corpus callosum agenesis: an approach to diagnosis and treatment. Cogn Neuropsychol 2024; 41:148-170. [PMID: 38942485 DOI: 10.1080/02643294.2024.2368876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniel Roberts
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Bettina Baumgartner
- Department of Logopedics, Phoniatrics, and Audiology, University of Applied Sciences, Vienna, Austria
| | - Mehmet Salih Yildirim
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, USA
| | - Katharina Pal-Handl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Susanne Maria Javorszky
- Department of Logopedics, Phoniatrics, and Audiology, University of Applied Sciences, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Day TKM, Hermosillo R, Conan G, Randolph A, Perrone A, Earl E, Byington N, Hendrickson TJ, Elison JT, Fair DA, Feczko E. Multi-level fMRI analysis applied to hemispheric specialization in the language network, functional areas, and their behavioral correlations in the ABCD sample. Dev Cogn Neurosci 2024; 66:101355. [PMID: 38354531 PMCID: PMC10875197 DOI: 10.1016/j.dcn.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.
Collapse
Affiliation(s)
- Trevor K M Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Robert Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Li C, Solinsky J, Cohen T, Pakhomov S. A curious case of retrogenesis in language: Automated analysis of language patterns observed in dementia patients and young children. NEUROSCIENCE INFORMATICS 2024; 4:100155. [PMID: 38433986 PMCID: PMC10907010 DOI: 10.1016/j.neuri.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Introduction While linguistic retrogenesis has been extensively investigated in the neuroscientific and behavioral literature, there has been little work on retrogenesis using computerized approaches to language analysis. Methods We bridge this gap by introducing a method based on comparing output of a pre-trained neural language model (NLM) with an artificially degraded version of itself to examine the transcripts of speech produced by seniors with and without dementia and healthy children during spontaneous language tasks. We compare a range of linguistic characteristics including language model perplexity, syntactic complexity, lexical frequency and part-of-speech use across these groups. Results Our results indicate that healthy seniors and children older than 8 years share similar linguistic characteristics, as do dementia patients and children who are younger than 8 years. Discussion Our study aligns with the growing evidence that language deterioration in dementia mirrors language acquisition in development using computational linguistic methods based on NLMs. This insight underscores the importance of further research to refine its application in guiding developmentally appropriate patient care, particularly in early stages.
Collapse
Affiliation(s)
- Changye Li
- Institute of Health Informatics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Jacob Solinsky
- College of Pharmacy, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Trevor Cohen
- Division of Biomedical Informatics and Medical Education, University of Washington, Seattle, 98195, WA, USA
| | - Serguei Pakhomov
- College of Pharmacy, University of Minnesota, Minneapolis, 55455, MN, USA
| |
Collapse
|
9
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
10
|
Stein CR, Wu H, Bellinger DC, Smith DR, Wolff MS, Savitz DA. Exposure to metal mixtures and neuropsychological functioning in middle childhood. Neurotoxicology 2022; 93:84-91. [PMID: 36122627 PMCID: PMC10513744 DOI: 10.1016/j.neuro.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/09/2023]
Abstract
Elevated exposure to multiple trace metals can be neurotoxic even at relatively low levels. These findings are primarily evident from adult occupational studies as well as in children exposed prenatally or in early childhood. Less research has focused on the neurodevelopmental impacts of exposure to metals among school-aged children. We examined associations between exposure to a mixture of four metals (arsenic, cadmium, manganese, lead) measured in hair and markers of cognition, attention, and behavior among 222 6-12 year old children who participated in a 2009-2010 neurodevelopmental follow-up to the C8 Health Project. Using quantile-based g-computation we estimated the adjusted overall metal mixture effect ψ (95 % CI) as the change in outcome per decile increase in all metals in the mixture. Hair metal levels varied by metal, with cadmium being lowest (median 0.007, interquartile range (IQR) 0.013 μg/g) and lead the highest concentration (median 0.152, IQR 0.252 μg/g). Children's cognitive skills and development, attention/impulsivity, and behavior were all close to standardized population means. Each decile increase in all metals was associated with a Full Scale IQ reduction of 1.01 points (95 % confidence interval (CI) -1.88, -0.15) and Verbal IQ reduction of 1.11 points (95 % CI -1.97, -0.25), adjusted for child age, sex, secondhand smoke exposure, HOME score, maternal education, maternal IQ, and examiner. Maternal report of ADHD-like behaviors and executive functioning also showed adverse associations with the metal mixture. Our findings suggest that similar to exposure during prenatal and early childhood periods, recent exposure to metals during middle childhood is associated with adverse neurodevelopmental consequences. Middle childhood may also be a developmental window of susceptibility to the negative consequences of exposure to environmental neurotoxicants.
Collapse
Affiliation(s)
- Cheryl R Stein
- Hassenfeld Children's Hospital at NYU Langone, Department of Child and Adolescent Psychiatry, Child Study Center, One Park Avenue, 7th Floor, New York, NY 10016, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032, USA.
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Farley Basement Box 127, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, 442 Physical Sciences Building, Santa Cruz, CA 95064, USA.
| | - Mary S Wolff
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102 Street, New York, NY 10029, USA.
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, 121 S. Main Street, Box G-S-121-2, Providence, RI 02912, USA.
| |
Collapse
|
11
|
Morange-Majoux F, Devouche E. Neonatal manual specialization in language and music conditions: Consistency with the hemispheric specialization adult model. Early Hum Dev 2022; 168:105575. [PMID: 35468573 DOI: 10.1016/j.earlhumdev.2022.105575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
The main purpose of this study was to test in neonates the influence of the sound environment, i.e., language versus music, on asymmetric hand movement activity in the presence of a target object. Based on hemispheric specialization, our hypothesis was that infants would use their right hand more in the speech context (left hemisphere) and their left hand more in the music context (right hemisphere). The study involved 19 full-term 3-day-old neonates. An object was presented successively in the two sound environments in counterbalance order for 120 s each. Left and right movements and mouth activity were scored during the target object presentation. Results show that neonates moved their left hand twice as much as their right hand in the music condition than in the language condition, and they moved their right hand a longer time in the language condition than in the music condition. The average number of sucking bursts was significantly higher in the language condition than in the music condition. We discuss the results in terms of manual specialization in relation to the development of hemispheric specialization.
Collapse
Affiliation(s)
- F Morange-Majoux
- Université de Paris, LPPS, F-92100 Boulogne-Billancourt, France; Laboratory Paragraphe, EA 349, Paris 8 University, 93200 Saint-Denis, France.
| | - E Devouche
- Université de Paris, LPPS, F-92100 Boulogne-Billancourt, France.
| |
Collapse
|
12
|
Kraus D, Horowitz‐Kraus T. Functional MRI research involving healthy children: Ethics, safety and recommended procedures. Acta Paediatr 2022; 111:741-749. [PMID: 34986521 DOI: 10.1111/apa.16247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
AIM This specific review aims to expose clinicians, researchers and administrators in hospitals to the importance, procedures and safety of fMRI studies to promote the increased utilisation of such studies in different geographical places worldwide. The child's brain is developing rapidly, both structurally and functionally. These functional changes can only be detected using functional scans generated from an MRI machine and referred to as a functional MRI (fMRI). This method may be used clinically in complex medical and surgical conditions (e.g., epilepsy surgery), but these days are often used for research purposes. However, due to ethical and logistical considerations, fMRI in the paediatric population is not widely and equally used in different geographical places. CONCLUSIONS The benefits of using this method to define the functional changes occurring in the developing brain are discussed in this review, along with desensitisation methods recommended when working with this vulnerable population in research and even in a clinical setting.
Collapse
Affiliation(s)
- Dror Kraus
- Pediatric Neurology Institute Schneider Children's Medical Center of Israel Tel Aviv University Petach‐Tiqua Israel
| | - Tzipi Horowitz‐Kraus
- Educational Neuroimaging Group Faculty of Education in Science and Technology Faculty of Biomedical Engineering Haifa Israel
- Kennedy Krieger Institute Baltimore Maryland USA
- Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
13
|
Wang J, Lytle MN, Weiss Y, Yamasaki BL, Booth JR. A longitudinal neuroimaging dataset on language processing in children ages 5, 7, and 9 years old. Sci Data 2022; 9:4. [PMID: 35013348 PMCID: PMC8748964 DOI: 10.1038/s41597-021-01106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
This dataset examines language development with a longitudinal design and includes diffusion- and T1-weighted structural magnetic resonance imaging (MRI), task-based functional MRI (fMRI), and a battery of psycho-educational assessments and parental questionnaires. We collected data from 5.5-6.5-year-old children (ses-5) and followed them up when they were 7-8 years old (ses-7) and then again at 8.5-10 years old (ses-9). To increase the sample size at the older time points, another cohort of 7-8-year-old children (ses-7) were recruited and followed up when they were 8.5-10 years old (ses-9). In total, 322 children who completed at least one structural and functional scan were included. Children performed four fMRI tasks consisting of two word-level tasks examining phonological and semantic processing and two sentence-level tasks investigating semantic and syntactic processing. The MRI data is valuable for examining changes over time in interactive specialization due to the use of multiple imaging modalities and tasks in this longitudinal design. In addition, the extensive psycho-educational assessments and questionnaires provide opportunities to explore brain-behavior and brain-environment associations.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA.
| | - Marisa N Lytle
- Department of Psychology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Yael Weiss
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Brianna L Yamasaki
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
14
|
Zaidel DW. Memoriam in honor Of Eran Zaidel. Brain Cogn 2021. [PMID: 34624758 DOI: 10.1016/j.bandc.2021.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D W Zaidel
- Dept. of Psychology, Member, Brain Research Institute, University of California, UCLA, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
15
|
Zanaboni MP, Varesio C, Pasca L, Foti A, Totaro M, Celario M, Provenzi L, De Giorgis V. Systematic review of executive functions in children with self-limited epilepsy with centrotemporal spikes. Epilepsy Behav 2021; 123:108254. [PMID: 34428616 DOI: 10.1016/j.yebeh.2021.108254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022]
Abstract
Self-limited Epilepsy with Centrotemporal Spikes (ECTS) is a self-limiting childhood epilepsy with an overall good prognosis. The neurocognitive profile of ECTS shows various degrees of neuropsychological impairment, with speech impairment and executive dysfunction being the most prominent. This review aimed to clarify the executive function (EF) profile of children with ECTS and the clinical variables' impact on these abilities. We conducted a systematic review of the relevant literature for articles published up to January 2021. Demographic and clinical characteristics were abstracted from the original records. EF tasks used in the studies were classified according to Diamond's model, which identified four components: working memory, inhibitory control, cognitive flexibility, and higher order EFs. Twenty-three studies were included. Among the included records, 14 studies examined working memory, 15 inhibitory control, 15 flexibility, 4 higher order EFs, and 2 general EFs. Results confirmed the presence of a specific impairment in two abilities: inhibitory control and cognitive flexibility. This review confirms the need to assess each EF both in verbal and visual-spatial tasks. The early detection of children with ECTS at risk of developing neuropsychological impairment could activate interventions and prevent worse school achievement, social functioning, and a poor quality of life. Systematic review registration: PROSPERO: CRD42021245959.
Collapse
Affiliation(s)
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Annalisa Foti
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Martina Totaro
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Celario
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Provenzi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
16
|
The longitudinal relationship between BOLD signal variability changes and white matter maturation during early childhood. Neuroimage 2021; 242:118448. [PMID: 34358659 DOI: 10.1016/j.neuroimage.2021.118448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/03/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
Intra-individual transient temporal fluctuations in brain signal, as measured by fMRI blood oxygenation level dependent (BOLD) variability, is increasingly considered an important signal rather than measurement noise. Evidence from computational and cognitive neuroscience suggests that signal variability is a good proxy-measure of brain functional integrity and information processing capacity. Here, we sought to explore across-participant and longitudinal relationships between BOLD variability, age, and white matter structure in early childhood. We measured standard deviation of BOLD signal, total white matter volume, global fractional anisotropy (FA) and mean diffusivity (MD) during passive movie viewing in a sample of healthy children (aged 2-8 years; N = 83). We investigated how age and white matter development related to changes in BOLD variability both across- and within-participants. Our across-participant analyses using behavioural partial least squares (bPLS) revealed that the influence of age and white matter maturation on BOLD variability was highly interrelated. BOLD variability increased in widespread frontal, temporal and parietal regions, and decreased in the hippocampus and parahippocampal gyrus with age and white matter development. Our longitudinal analyses using linear mixed effects modelling revealed significant associations between BOLD variability, age and white matter microstructure. Analyses using artificial neural networks demonstrated that BOLD variability and white matter micro and macro-structure at earlier ages were strong predictors of BOLD variability at later ages. By characterizing the across-participant and longitudinal features of the association between BOLD variability and white matter micro- and macrostructure in early childhood, our results provide a novel perspective to understand structure-function relationships in the developing brain.
Collapse
|
17
|
Koop JI, Credille K, Wang Y, Loman M, Marashly A, Kim I, Lew SM, Maheshwari M. Determination of language dominance in pediatric patients with epilepsy for clinical decision-making: Correspondence of intracarotid amobarbitol procedure and fMRI modalities. Epilepsy Behav 2021; 121:108041. [PMID: 34082317 DOI: 10.1016/j.yebeh.2021.108041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
Identification of the language dominant hemisphere is an essential part of the evaluation of potential pediatric epilepsy surgery patients. Historically, language dominance has been determined using the intracarotid amobarbitol procedure (IAP), but use of functional Magnetic Resonance Imaging (fMRI) scanning is becoming more common. Few studies examine the correspondence between fMRI and IAP in pediatric samples. The current study examined the agreement of hemispheric lateralization as determined by fMRI and IAP in a consecutive sample of 10 pediatric patients with epilepsy evaluated for epilepsy surgery. Data showed a strong correlation between IAP and fMRI lateralilty indices (r=.91) and 70% agreement in determination of hemispheric dominance, despite increased demonstration of bilateral or atypical language representation in this pediatric sample. Clinical implications and interpretation challenges are discussed.
Collapse
Affiliation(s)
- Jennifer I Koop
- Department of Neurology (Neuropsychology), Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Kevin Credille
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelle Loman
- Department of Neurology (Neuropsychology), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ahmad Marashly
- Division of Pediatric Neurology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States
| | - Irene Kim
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohit Maheshwari
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Enge A, Abdel Rahman R, Skeide MA. A meta-analysis of fMRI studies of semantic cognition in children. Neuroimage 2021; 241:118436. [PMID: 34329724 DOI: 10.1016/j.neuroimage.2021.118436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Our capacity to derive meaning from things that we see and words that we hear is unparalleled in other animal species and current AI systems. Despite a wealth of functional magnetic resonance imaging (fMRI) studies on where different semantic features are processed in the adult brain, the development of these systems in children is poorly understood. Here we conducted an extensive database search and identified 50 fMRI experiments investigating semantic world knowledge, semantic relatedness judgments, and the differentiation of visual semantic object categories in children (total N = 1,018, mean age = 10.1 years, range 4-15 years). Synthesizing the results of these experiments, we found consistent activation in the bilateral inferior frontal gyri (IFG), fusiform gyri (FG), and supplementary motor areas (SMA), as well as in the left middle and superior temporal gyri (MTG/STG). Within this system, we found little evidence for age-related changes across childhood and high overlap with the adult semantic system. In sum, the identification of these cortical areas provides the starting point for further research on the mechanisms by which the developing brain learns to make sense of its environment.
Collapse
Affiliation(s)
- Alexander Enge
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany.
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Michael A Skeide
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
20
|
Zhou W, Cui X, Shi B, Su M, Cao M. The development of brain functional connectome during text reading. Dev Cogn Neurosci 2021; 48:100927. [PMID: 33556881 PMCID: PMC7868633 DOI: 10.1016/j.dcn.2021.100927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Reading is an important skill for human beings to obtain information, whose acquisition is a major learning task for children. Especially, compared with single word reading, text reading requires an integration of multiple cognitive processes, which makes its underlying neural developmental mechanism not only extremely complicated but also remained poorly understood. Employing the graph theory analysis method, the present study explored the development of brain in the context of story reading from the perspective of connectomics. Forty-two primary school students and thirty-two adults read the stories in the functional magnetic resonance imaging (fMRI) experiment. We found that compared with children, adults had increased connectivity strength, nodal degree, and modular interactions for vision-related and semantics-related brain regions while decreased connectivity strength, nodal degree, and modular interactions for phonology-related brain regions. Brain-behavior association analysis suggested that the transmission to vision-related brain circuits would enhance the reading performance in adults, whereas phonology-related brain circuits played important roles in children’s reading before they develop into fluent readers. Collectivity, we highlight a shift from reliance on phonology-related networks to semantics-related and vision-related networks with age for text reading, which provides insights into the underlying neural signature of developmental cognitive mechanisms.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Xiaohui Cui
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Baoguo Shi
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Mengmeng Su
- College of Elementary Education, Capital Normal University, Beijing, 100037, China.
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.
| |
Collapse
|
21
|
Nora A, Renvall H, Ronimus M, Kere J, Lyytinen H, Salmelin R. Children at risk for dyslexia show deficient left-hemispheric memory representations for new spoken word forms. Neuroimage 2021; 229:117739. [PMID: 33454404 DOI: 10.1016/j.neuroimage.2021.117739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/28/2022] Open
Abstract
Developmental dyslexia is a specific learning disorder with impairments in reading and spelling acquisition. Apart from literacy problems, dyslexics show inefficient speech encoding and deficient novel word learning, with underlying problems in phonological processing and learning. These problems have been suggested to be related to deficient specialization of the left hemisphere for language processing. To examine this possibility, we tracked with magnetoencephalography (MEG) the activation of the bilateral temporal cortices during formation of neural memory traces for new spoken word forms in 7-8-year-old children with high familial dyslexia risk and in controls. The at-risk children improved equally to their peers in overt repetition of recurring new word forms, but were poorer in explicit recognition of the recurring word forms. Both groups showed reduced activation for the recurring word forms 400-1200 ms after word onset in the right auditory cortex, replicating the results of our previous study on typically developing children (Nora et al., 2017, Children show right-lateralized effects of spoken word-form learning. PLoS ONE 12(2): e0171034). However, only the control group consistently showed a similar reduction of activation for recurring word forms in the left temporal areas. The results highlight the importance of left-hemispheric phonological processing for efficient phonological representations and its disruption in dyslexia.
Collapse
Affiliation(s)
- A Nora
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - H Renvall
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland
| | - M Ronimus
- Niilo Mäki Instituutti, FI-40100 Jyväskylä, Finland
| | - J Kere
- Department of Biosciences, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H Lyytinen
- Department of Psychology, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - R Salmelin
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland
| |
Collapse
|
22
|
Krishnan S, Asaridou SS, Cler GJ, Smith HJ, Willis HE, Healy MP, Thompson PA, Bishop DVM, Watkins KE. Functional organisation for verb generation in children with developmental language disorder. Neuroimage 2020; 226:117599. [PMID: 33285329 PMCID: PMC7836232 DOI: 10.1016/j.neuroimage.2020.117599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Developmental language disorder (DLD) is characterised by difficulties in learning one's native language for no apparent reason. These language difficulties occur in 7% of children and are known to limit future academic and social achievement. Our understanding of the brain abnormalities associated with DLD is limited. Here, we used a simple four-minute verb generation task (children saw a picture of an object and were instructed to say an action that goes with that object) to test children between the ages of 10-15 years (DLD N = 50, typically developing N = 67). We also tested 26 children with poor language ability who did not meet our criteria for DLD. Contrary to our registered predictions, we found that children with DLD did not have (i) reduced activity in language relevant regions such as the left inferior frontal cortex; (ii) dysfunctional striatal activity during overt production; or (iii) a reduction in left-lateralised activity in frontal cortex. Indeed, performance of this simple language task evoked activity in children with DLD in the same regions and to a similar level as in typically developing children. Consistent with previous reports, we found sub-threshold group differences in the left inferior frontal gyrus and caudate nuclei, but only when analysis was limited to a subsample of the DLD group (N = 14) who had the poorest performance on the task. Additionally, we used a two-factor model to capture variation in all children studied (N = 143) on a range of neuropsychological tests and found that these language and verbal memory factors correlated with activity in different brain regions. Our findings indicate a lack of support for some neurological models of atypical language learning, such as the procedural deficit hypothesis or the atypical lateralization hypothesis, at least when using simple language tasks that children can perform. These results also emphasise the importance of controlling for and monitoring task performance.
Collapse
Affiliation(s)
- Saloni Krishnan
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Department of Psychology, Royal Holloway, University of London, Egham Hill, Surrey TW20 0EX, UK.
| | - Salomi S Asaridou
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Gabriel J Cler
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Harriet J Smith
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Hannah E Willis
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Máiréad P Healy
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Paul A Thompson
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Kate E Watkins
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
23
|
Palmis S, Velay JL, Habib M, Anton JL, Nazarian B, Sein J, Longcamp M. The handwriting brain in middle childhood. Dev Sci 2020; 24:e13046. [PMID: 33035404 DOI: 10.1111/desc.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
While the brain network supporting handwriting has previously been defined in adults, its organization in children has never been investigated. We compared the handwriting network of 23 adults and 42 children (8- to 11-year-old). Participants were instructed to write the alphabet, the days of the week, and to draw loops while being scanned. The handwriting network previously described in adults (five key regions: left dorsal premotor cortex, superior parietal lobule (SPL), fusiform and inferior frontal gyri, and right cerebellum) was also strongly activated in children. The right precentral gyrus and the right anterior cerebellum were more strongly activated in adults than in children, while the left fusiform gyrus (FuG) was more strongly activated in children than in adults. Finally, we found that, contrary to adults, children recruited prefrontal regions to complete the writing task. This constitutes the first comparative investigation of the neural correlates of writing in children and adults. Our results suggest that the network supporting handwriting is already established in middle childhood. They also highlight the major role of prefrontal regions in learning this complex skill and the importance of right precentral regions and cerebellum in the performance of automated handwriting.
Collapse
Affiliation(s)
- Sarah Palmis
- Aix-Marseille Univ, CNRS, LNC, Marseille, France
| | | | - Michel Habib
- Aix-Marseille Univ, CNRS, LNC, Marseille, France
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | | |
Collapse
|
24
|
Benischek A, Long X, Rohr CS, Bray S, Dewey D, Lebel C. Pre-reading language abilities and the brain’s functional reading network in young children. Neuroimage 2020; 217:116903. [DOI: 10.1016/j.neuroimage.2020.116903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
|
25
|
Villar-Rodríguez E, Palomar-García MÁ, Hernández M, Adrián-Ventura J, Olcina-Sempere G, Parcet MA, Ávila C. Left-handed musicians show a higher probability of atypical cerebral dominance for language. Hum Brain Mapp 2020; 41:2048-2058. [PMID: 32034834 PMCID: PMC7268010 DOI: 10.1002/hbm.24929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Music processing and right hemispheric language lateralization share a common network in the right auditory cortex and its frontal connections. Given that the development of hemispheric language dominance takes place over several years, this study tested whether musicianship could increase the probability of observing right language dominance in left-handers. Using a classic fMRI language paradigm, results showed that atypical lateralization was more predominant in musicians (40%) than in nonmusicians (5%). Comparison of left-handers with typical left and atypical right lateralization revealed that: (a) atypical cases presented a thicker right pars triangularis and more gyrified left Heschl's gyrus; and (b) the right pars triangularis of atypical cases showed a stronger intra-hemispheric functional connectivity with the right angular gyrus, but a weaker interhemispheric functional connectivity with part of the left Broca's area. Thus, musicianship is the first known factor related to a higher prevalence of atypical language dominance in healthy left-handed individuals. We suggest that differences in the frontal and temporal cortex might act as shared predisposing factors to both musicianship and atypical language lateralization.
Collapse
Affiliation(s)
- Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - Gustau Olcina-Sempere
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - María-Antònia Parcet
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| |
Collapse
|
26
|
Farah R, Greenwood P, Dudley J, Hutton J, Ammerman RT, Phelan K, Holland S, Horowitz-Kraus T. Maternal depression is associated with altered functional connectivity between neural circuits related to visual, auditory, and cognitive processing during stories listening in preschoolers. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2020; 16:5. [PMID: 32340619 PMCID: PMC7187503 DOI: 10.1186/s12993-020-00167-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/19/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Maternal depression can influence the early activity of a mother reading stories to a young child, as depressed mothers are less likely to read to their children. Here, maternal depression association to neurobiological circuitry of narrative comprehension, visualization, and executive functions during stories listening was examined in 21 4-year-old girls and their mothers. Maternal depression scores were collected from the mothers, and functional MRI during stories listening was collected from the children. RESULTS Increased maternal depression was related to decreased functional connectivity between visualization and auditory regions and increased connectivity between the right visual cortex and dorsolateral prefrontal cortex in the children. CONCLUSIONS This study highlights the need to monitor maternal depression and provide interventions to ensure positive linguistic outcomes in children.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Paige Greenwood
- Reading and Literacy Discovery Center, General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Johnathan Dudley
- Reading and Literacy Discovery Center, General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Hutton
- Reading and Literacy Discovery Center, General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert T Ammerman
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kieran Phelan
- The Permanente Medical Group, San Rafael Pediatrics, San Rafael, CA, USA
| | - Scott Holland
- Department of Physics, University of Cincinnati, Cincinnati, OH, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel.
- Reading and Literacy Discovery Center, General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
27
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
28
|
Singer CM, Walden TA, Jones RM. Attention, Speech-Language Dissociations, and Stuttering Chronicity. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:157-167. [PMID: 31841358 PMCID: PMC7231910 DOI: 10.1044/2019_ajslp-19-00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/29/2019] [Accepted: 08/14/2019] [Indexed: 05/13/2023]
Abstract
The purpose of this study was to investigate the singular and joint contributions of speech-language dissociations and attention (i.e., distractibility and attention span) to stuttering chronicity. Method Participants, aged 3;0-4;11 (years;months) at an initial visit, were classified as persisting (n = 10; 9 boys), recovered (n = 32; 23 boys), and nonstuttering (n = 28; 19 boys) based on multiple speech and language evaluations spread across 2 years. The evaluations included assessments of articulation, receptive and expressive vocabulary, and omnibus receptive and expressive language. These measures were used to identify speech-language dissociations using a correlation-based statistical approach. Attentional characteristics, which included measures of distractibility and attention span, were based on parent report. Analyses investigated between-group differences related to dissociations and attentional characteristics as well as the relation between these indices. Results There were no significant between-group differences for the persisting and recovered groups on measures of speech-language dissociations; however, the recovered group was found to exhibit less optimal attention span than the persisting group. In addition, children with dissociations exhibited less optimal distractibility and attention spans at the final time point than children without dissociations. Conclusions Present results indicate that attention is related to both stuttering chronicity and the presence of speech-language dissociations; however, they do not support the notion that dissociations are associated with stuttering persistence. These results provide novel insights into the complex nature of the association between developmental stuttering, speech-language dissociations, and attention.
Collapse
Affiliation(s)
- Cara M. Singer
- Department of Communication Sciences and Disorders, Grand Valley State University, Grand Rapids, MI
| | - Tedra A. Walden
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN
| | - Robin M. Jones
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
29
|
Nair S, Szaflarski JP. Neuroimaging of memory in frontal lobe epilepsy. Epilepsy Behav 2020; 103:106857. [PMID: 31937510 DOI: 10.1016/j.yebeh.2019.106857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
In a large percentage of epilepsies, seizures have focal onset. These epilepsies are associated with a wide range of behavioral and cognitive deficits sometimes limited to the functions encompassed within the ictal onset zone but, more frequently, expanding beyond it. The presence of impairments associated with neuroanatomical areas outside of the ictal onset zone suggests distal propagation of epileptic activity via brain networks and interconnected whole-brain neural circuitry. In patients with frontal lobe epilepsy (FLE), using functional magnetic resonance imaging (fMRI) to identify deficits in working, semantic, and episodic memory may provide a lens through which to understand typical and atypical network organization. A network approach to focal epilepsy is relevant in these patients because of the frequently noted early age of seizure onset. Early seizure-related disruption in healthy brain development may result in a significant brain reorganization, development of compensation-related mechanisms of dealing with function abnormalities and disruptions, and the propagation of epileptic activity from the focus to widespread brain areas (functional deficit zones). Benefits of a network approach in the study of focal epilepsy are discussed along with considerations for future neuroimaging studies of patients with FLE.
Collapse
Affiliation(s)
- Sangeeta Nair
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Right-hemispheric Dominance in Self-body Recognition is Altered in Left-handed Individuals. Neuroscience 2020; 425:68-89. [DOI: 10.1016/j.neuroscience.2019.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022]
|
31
|
Tzourio-Mazoyer N, Zago L, Cochet H, Crivello F. Development of handedness, anatomical and functional brain lateralization. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:99-105. [PMID: 32958198 DOI: 10.1016/b978-0-444-64150-2.00011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present chapter offers a report on the recent literature on the neural bases of hemispheric specialization (HS), anatomical and functional developmental timecourse of HS, and on the available knowledge of their relationships with the development of handedness. Strong anatomical asymmetries can be seen located along the end of the sylvian fissure and the superior temporal sulcus (STS) as soon as the 23rd gestational week. They correspond to a leftward sulcal depth asymmetry of the Sylvian fissure coupled with a rightward asymmetry of STS. These neonatal asymmetries targeting speech processing areas do not further change with development. Different from these anatomical asymmetries, the functional asymmetries of language areas develop during childhood. Such a development is characterized at birth by a predominant interhemispheric intrinsic connectivity between homotopic areas that will evolve toward left hemisphere intrahemispheric intrinsic connectivity between anterior and posterior language poles. The development of such a typical architecture of language networks in the left hemisphere dominant for language in more than 90% of humans translates into a continuous increase in the leftward asymmetries of activation during language production throughout childhood. With regard to the rightward cerebral lateralization for visuospatial functions, neuroimaging studies tend to indicate an increase in rightward lateralization of frontal-parietal network with age during visuospatial memory and visuospatial search tasks. In addition, the spatial-attentional behavioral asymmetries emerge early (in preschool children) and, then, can be modulated by factors linked to motor asymmetry and handedness. Finally, the study of manual lateralization in relation to language development has shown the importance of considering several characteristics of manual activities. In particular, the dissociation between manipulative activities and communicative gestures in young children may open further perspectives for future research on HS.
Collapse
Affiliation(s)
| | - Laure Zago
- Institut des Maladies Neurodegeneratives, University of Bordeaux, Bordeaux, France
| | - Hélène Cochet
- Laboratoire Cognition, Langues, Langage, et Ergonomie, Toulouse University, CNRS, UT2J, Toulouse, France
| | - Fabrice Crivello
- Institut des Maladies Neurodegeneratives, University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Houston J, Allendorfer J, Nenert R, Goodman AM, Szaflarski JP. White Matter Language Pathways and Language Performance in Healthy Adults Across Ages. Front Neurosci 2019; 13:1185. [PMID: 31736704 PMCID: PMC6838008 DOI: 10.3389/fnins.2019.01185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to determine the relationship between age-related white matter changes, with a specific focus on previously identified language pathways, and language functioning in healthy aging. 228 healthy participants (126 female; 146 right-handed), ages 18 to 76, underwent 3.0 Tesla MR diffusion weighted imaging (DWI) and a battery of language assessments including the Boston Naming Test (BNT), the Peabody Picture Vocabulary Test (PPVT), the Controlled Oral Word Association Test (COWAT), Semantic Fluency Test (SFT), and a subset of the Boston Diagnostic Aphasia Examination (CI-BDAE). Using tract based spatial statistics (TBSS), we investigated measurements of fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). TBSS was used to create a white matter skeleton that was then used to analyze white matter changes (indexed by FA, AD, RD, and MD) with age and language performance. Results focused primarily on significant relationships (p < 0.05, cluster-wise FDR corrected for multiple comparisons) in the canonical language white matter pathways. We found a diffuse linear decrease with age in global white matter FA and a significant focal increase in FA with age within the bilateral superior cerebellar peduncles (SCPs). We observed that increased BNT scores were associated with increased FA within the left SLF, and within the posterior and antero-lateral portions of the right inferior frontal-occipital fasciculus (IFOF). Increased SFT and PPVT scores were associated with increased FA within the posterior portion of the right IFOF and increased FA within the left body of the corpus callosum was associated with lower COWAT scores. We found no association between FA and BDAE. MD, RD, and AD, were found to be inversely proportional to FA within the IFOF, with AD showing a negative correlation with SFT, and RD and MD showing a negative correlation with BNT. There was no association between CI-BDAE and any of the white matter measures. Significant differences between sexes included more pronounced FA decrease with age within the right SLF in males vs. females; there were no differences in language performance scores between sexes. We also found that there was no decline in language testing scores with increasing age in our cohort. Taken together, our findings of varying relationships between DTI metrics and language function within multiple regions of the non-dominant IFOF suggest that more robust language networks with bilateral structural connectivity may contribute to better overall language functioning, regardless of age.
Collapse
Affiliation(s)
- James Houston
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jane Allendorfer
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodolph Nenert
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Neurosurgery and Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production. eNeuro 2019; 6:ENEURO.0447-18.2019. [PMID: 31383726 PMCID: PMC6749144 DOI: 10.1523/eneuro.0447-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Brain imaging methods have contributed to shed light on the mechanisms of recovery after early brain insult. The assumption that the unaffected right hemisphere can take over language functions after left perinatal stroke is still under debate. Here, we report how patterns of brain structural and functional reorganization were associated with language outcomes in a group of four-year-old children with left perinatal arterial ischemic stroke (PAIS). Specifically, we gathered specific fine-grained developmental measures of receptive and productive aspects of language as well as standardized measures of cognitive development. We also collected structural neuroimaging data as well as functional activations during a passive listening story-telling fMRI task and a resting state session (rs-fMRI). Children with a left perinatal stroke showed larger lateralization indices of both structural and functional connectivity of the dorsal language pathway towards the right hemisphere that, in turn, were associated with better language outcomes. Importantly, the pattern of structural asymmetry was significantly more right-lateralized in children with a left perinatal brain insult than in a group of matched healthy controls. These results strongly suggest that early lesions of the left dorsal pathway and the associated perisylvian regions can induce the interhemispheric transfer of language functions to right homolog regions. This study provides combined evidence of structural and functional brain reorganization of language networks after early stroke with strong implications for neurobiological models of language development.
Collapse
|
34
|
Neural correlates of word learning in children. Dev Cogn Neurosci 2019; 37:100649. [PMID: 31100507 PMCID: PMC6969309 DOI: 10.1016/j.dcn.2019.100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/01/2022] Open
Abstract
We measured brain activity patterns for recognizing newly trained words in children. Retrieval related activation in the hippocampus decreased a week after training. Lexical integration effect was not observed even after a delay of 1 week. Younger group used right hemisphere more whereas teens used left hemisphere more.
Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8–10 and 14–16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.
Collapse
|
35
|
Farah R, Horowitz-Kraus T. Increased Functional Connectivity Within and Between Cognitive-Control Networks from Early Infancy to Nine Years During Story Listening. Brain Connect 2019; 9:285-295. [PMID: 30777454 PMCID: PMC6479241 DOI: 10.1089/brain.2018.0625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cingulo-opercular (CO) and frontoparietal (FP) networks are part of the cognitive-control system of the brain. Evidence suggests that over the course of development, brain regions supporting cognitive-control functions become more integrated within their networks (i.e., have increased within-network connectivity), more separated from other networks, and, due to increased maturation along development, are more functionally connected between the networks. The focus of this study was to characterize the developmental trajectory of the CO and FP networks from early infancy (17 months) to 9 years of age in typically developing children while listening to stories, using functional connectivity analyses. Seventy-four children underwent a functional magnetic resonance imaging session while listening to stories inside the scanner. Within- and between-network functional connectivity and graph theory measures were compared during development. Developmental increase in functional connectivity within the CO network and between the CO and FP networks, as well as global efficiency of the CO network from 17 months to 9 years of age, was observed. These findings highlight the involvement of the CO and FP networks in story listening from early infancy, which increases along development. Future studies examining failures in language acquisition to further explore the role of these networks in story listening are warranted.
Collapse
Affiliation(s)
- Rola Farah
- Faculty of Biomedical Engineering, Educational Neuroimaging Center, Technion, Haifa, Israel
- Faculty of Education in Science and Technology, Educational Neuroimaging Center, Technion, Haifa, Israel
| | - Tzipi Horowitz-Kraus
- Faculty of Biomedical Engineering, Educational Neuroimaging Center, Technion, Haifa, Israel
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
36
|
Gozdas E, Holland SK, Altaye M. Developmental changes in functional brain networks from birth through adolescence. Hum Brain Mapp 2018; 40:1434-1444. [PMID: 30582266 DOI: 10.1002/hbm.24457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023] Open
Abstract
Investigation of the brain connectome using functional magnetic resonance imaging (fMRI) and measures derived from graph theory analysis has emerged as a new approach to study brain development, cognitive function, and neurophysiological disorders. Here we use graph theory analysis to examine the influence of age, sex, and neurocognitive measures on developmental changes to the global and regional topology of functional brain networks derived from fMRI data recorded in 189 healthy subjects from the age of 0-18 years during rest. We observed that Global Efficiency and Rich-Club coefficient increased with age and Local Efficiency and Small-Worldness decreased with age, while Modularity at the global level showed an inverted U-shaped trajectory during development. Marginally significant differences were observed in Local Efficiency, Small-Worldness, and Modularity at a global level between boys and girls throughout development. We also examine the effects of neurocognitive measures in boys and girls globally and locally. Our results provide new insight to understand brain maturation of functional brain connectome and its relation to cognitive development from birth through adolescence.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Scott K Holland
- Medpace Imaging Core Laboratory, Medpace Inc, Cincinnati, Ohio
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
37
|
Language or music? Environmental influences on infants' handedness from 5 to 12 months. Brain Cogn 2018; 129:1-8. [PMID: 30545579 DOI: 10.1016/j.bandc.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022]
Abstract
The main purpose of this study was to test the influence of music environment on hand-use preference in infants from 5 to 12 months, compared to speech environment. According to hemispheric specialization, our hypothesis was that infants would reach for objects more with their right hand in a speech context (left hemisphere), and more with their left hand in a music context (right hemisphere). 61 full-term infants aged from 5 to 12 months participated in this study. A prehension task was proposed successively in two sound environments (music and speech) in a counterbalanced order. Left-, right-movement and/or bimanual movements were scored. Results show that whatever the sound context, from 8 months a lateral right bias occurs and increases strongly. However, 5- to 7-months-old infants used more their left hand when they listen to a piece of classical music that an adult speech. Bimanual movements were more frequent at 6 and 7 months than unimanual movements in the speech condition. Results are discussed in terms of manual specialization.
Collapse
|
38
|
Wilke M, Groeschel S, Lorenzen A, Rona S, Schuhmann MU, Ernemann U, Krägeloh‐Mann I. Clinical application of advanced MR methods in children: points to consider. Ann Clin Transl Neurol 2018; 5:1434-1455. [PMID: 30480038 PMCID: PMC6243383 DOI: 10.1002/acn3.658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The application of both functional MRI and diffusion MR tractography prior to a neurosurgical operation is well established in adults, but less so in children, for several reasons. For this review, we have identified several aspects (task design, subject preparation, actual scanning session, data processing, interpretation of results, and decision-making) where pediatric peculiarities should be taken into account. Further, we not only systematically identify common issues, but also provide solutions, based on our experience as well as a review of the pertinent literature. The aim is to provide the clinician as well as the imaging scientist with information that helps to plan, conduct, and interpret such a clinically-indicated exam in a way that maximizes benefit for, and minimizes the burden on the individual child.
Collapse
Affiliation(s)
- Marko Wilke
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Samuel Groeschel
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Anna Lorenzen
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Sabine Rona
- Department of NeurosurgeryUniversity HospitalTuebingenGermany
| | | | - Ulrike Ernemann
- Department of Diagnostic and Interventional NeuroradiologyUniversity HospitalUniversity of TübingenTuebingenGermany
| | - Ingeborg Krägeloh‐Mann
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
| |
Collapse
|
39
|
Weiss Y, Cweigenberg HG, Booth JR. Neural specialization of phonological and semantic processing in young children. Hum Brain Mapp 2018; 39:4334-4348. [PMID: 29956400 PMCID: PMC6261343 DOI: 10.1002/hbm.24274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
This study aimed to examine early specialization of brain regions for phonological and semantic processing of spoken language in young children. Thirty-five typically developing children aged from 5 to 6 years performed auditory phonological (same sound judgment) and semantic (related meaning judgment) word-level tasks. Using functional magnetic resonance imaging, we examined specialization within the language network, by conducting three levels of analysis. First, we directly compared activation between tasks and found a greater sound judgment as compared to meaning judgment activation in left superior temporal gyrus (STG) and supramarginal gyrus. In contrast, greater meaning judgment as compared to sound judgment task activation was found in left middle temporal gyrus (MTG). Second, we examined the brain-behavior correlations and found that phonological skill was correlated with the task difference in activation in left superior temporal sulcus, whereas semantic skill was correlated with the task difference in activation in left MTG. Third, we compared between two experimental conditions within each task and found a parametric effect in left STG for the sound judgment task, and a parametric effect in left MTG for the meaning judgment task. The results of this study indicate that, by the age of 5-6 years, typically developing children already show some specialization of temporo-parietal brain regions for phonological and semantic processes. However, there were no task differences in the left inferior frontal gyrus suggesting that the frontal cortex may not yet be specialized in this age range, which is consistent with the delayed maturation of the frontal cortex.
Collapse
Affiliation(s)
- Yael Weiss
- Department of Psychology, Children's Research CenterUniversity of Texas at AustinAustinTexas
| | - Hannah G. Cweigenberg
- Department of Psychology, Children's Research CenterUniversity of Texas at AustinAustinTexas
| | - James R. Booth
- Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
40
|
Nenert R, Allendorfer JB, Martin AM, Banks C, Vannest J, Holland SK, Hart KW, Lindsell CJ, Szaflarski JP. Longitudinal fMRI study of language recovery after a left hemispheric ischemic stroke. Restor Neurol Neurosci 2018; 36:359-385. [PMID: 29782329 DOI: 10.3233/rnn-170767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recovery from stroke-induced aphasia is typically protracted and involves complex functional reorganization. The relative contributions of the lesioned and non-lesioned hemispheres to this process have been examined in several cross-sectional studies but longitudinal studies involving several time-points and large numbers of subjects are scarce. OBJECTIVE The aim of this study was to address the gaps in the literature by longitudinally studying the evolution of post-stroke lateralization and localization of language-related fMRI activation in the first year after single left hemispheric ischemic stroke. METHOD Seventeen patients with stroke-induced aphasia were enrolled to undergo detailed behavioral testing and fMRI at 2, 6, 12, 26, and 52 weeks post-stroke. Matched for age, handedness and sex participants were also enrolled to visualize canonical language regions. RESULTS Behavioral results showed improvements over time for all but one of the behavioral scores (Semantic Fluency Test). FMRI results showed that the left temporal area participates in compensation for language deficits in the first year after stroke, that there is a correlation between behavioral improvement and the left cerebellar activation over time, and that there is a shift towards stronger frontal left-lateralization of the fMRI activation over the first year post-stroke. Temporary compensation observed in the initial phases of post-stroke recovery that involves the non-lesioned hemisphere may not be as important as previously postulated, since in this study the recovery was driven by activations in the left fronto-temporal regions. CONCLUSION Language recovery after left hemispheric ischemic stroke is likely driven by the previously involved in language and attention left hemispheric networks.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christi Banks
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott K Holland
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly W Hart
- Department of Emergency Medicine, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Christopher J Lindsell
- Department of Emergency Medicine, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.,currently at Department of Biostatistics, Vanderbilt University, Department of Biostatistics, Nashville, TN, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
41
|
Naito E, Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, Kosaka H, Okazawa H, Asada M. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task. Cereb Cortex 2018; 27:5385-5397. [PMID: 28968653 PMCID: PMC5939204 DOI: 10.1093/cercor/bhx223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/10/2023] Open
Abstract
Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences and Medicine, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Midori Ban
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Faculty of Psychology, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Horowitz-Kraus T, Woodburn M, Rajagopal A, Versace AL, Kowatch RA, Bertocci MA, Bebko G, Almeida JRC, Perlman SB, Travis MJ, Gill MK, Bonar L, Schirda C, Diwadkar VA, Sunshine JL, Birmaher B, Axelson D, Gerry Taylor H, Horwitz SM, Frazier T, Eugene Arnold L, Fristad MA, Youngstrom EA, Findling RL, Phillips ML, Holland SK. Decreased functional connectivity in the fronto-parietal network in children with mood disorders compared to children with dyslexia during rest: An fMRI study. NEUROIMAGE-CLINICAL 2018; 18:582-590. [PMID: 29845006 PMCID: PMC5964829 DOI: 10.1016/j.nicl.2018.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022]
Abstract
Background The DSM-5 separates the diagnostic criteria for mood and behavioral disorders. Both types of disorders share neurocognitive deficits of executive function and reading difficulties in childhood. Children with dyslexia also have executive function deficits, revealing a role of executive function circuitry in reading. The aim of the current study is to determine whether there is a significant relationship of functional connectivity within the fronto-parietal and cingulo-opercular cognitive control networks to reading measures for children with mood disorders, behavioral disorders, dyslexia, and healthy controls (HC). Method Behavioral reading measures of phonological awareness, decoding, and orthography were collected. Resting state fMRI data were collected, preprocessed, and then analyzed for functional connectivity. Differences in the reading measures were tested for significance among the groups. Global efficiency (GE) measures were also tested for correlation with reading measures in 40 children with various disorders and 17 HCs. Results Significant differences were found between the four groups on all reading measures. Relative to HCs and children with mood disorders or behavior disorders, children with dyslexia as a primary diagnosis scored significantly lower on all three reading measures. Children with mood disorders scored significantly lower than controls on a test of phonological awareness. Phonological awareness deficits correlated with reduced resting state functional connectivity MRI (rsfcMRI) in the cingulo-opercular network for children with dyslexia. A significant difference was also found in fronto-parietal global efficiency in children with mood disorders relative to the other three groups. We also found a significant difference in cingulo-opercular global efficiency in children with mood disorders relative to the Dyslexia and Control groups. However, none of these differences correlate significantly with reading measures. Conclusions/significance Reading difficulties involve abnormalities in different cognitive control networks in children with dyslexia compared to children with mood disorders. Findings of the current study suggest increased functional connectivity of one cognitive control network may compensate for reduced functional connectivity in the other network in children with mood disorders. These findings provide guidance to clinical professionals for design of interventions tailored for children suffering from reading difficulties originating from different pathologies.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, United States; Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Israel.
| | - Mackenzie Woodburn
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, United States
| | - Akila Rajagopal
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Amelia L Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Robert A Kowatch
- The Research Institute at Nationwide Children's Hospital, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, United States
| | - Michele A Bertocci
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Genna Bebko
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Jorge R C Almeida
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Susan B Perlman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Michael J Travis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Mary Kay Gill
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Claudiu Schirda
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, United States
| | - Jeffrey L Sunshine
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Boris Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - David Axelson
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, United States
| | - H Gerry Taylor
- University Hospitals Cleveland Medical Center, Case Western Reserve University, United States
| | - Sarah M Horwitz
- Department of Child Psychiatry, New York University School of Medicine, United States
| | - Thomas Frazier
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, United States
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, United States
| | - Mary A Fristad
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, United States
| | - Eric A Youngstrom
- Department of Psychology, University of North Carolina at Chapel Hill, United States
| | - Robert L Findling
- University Hospitals Cleveland Medical Center, Case Western Reserve University, United States; Department of Psychiatry, Johns Hopkins University, United States
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, United States
| | - Scott K Holland
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, United States
| |
Collapse
|
43
|
Youssofzadeh V, Vannest J, Kadis DS. fMRI connectivity of expressive language in young children and adolescents. Hum Brain Mapp 2018; 39:3586-3596. [PMID: 29717539 DOI: 10.1002/hbm.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023] Open
Abstract
Studies of language representation in development have shown a bilateral distributed pattern of activation that becomes increasingly left-lateralized and focal from young childhood to adulthood. However, the level by which canonical and extra-canonical regions, including subcortical and cerebellar regions, contribute to language during development has not been well-characterized. In this study, we employed fMRI connectivity analyses (fcMRI) to characterize the distributed network supporting expressive language in a group of young children (age 4-6) and adolescents (age 16-18). We conducted an fcMRI analysis using seed-to-voxel and seed-to-ROI (region of interest) strategies to investigate interactions of left pars triangularis with other brain areas. The analyses showed significant interhemispheric connectivity in young children, with a minimal connectivity of the left pars triangularis to subcortical and cerebellar regions. In contrast, adolescents showed significant connectivity between the left IFG seed and left perisylvian cortex, left caudate and putamen, and regions of the right cerebellum. Importantly, fcMRI analyses indicated significant differences between groups at 3 anatomical clusters, including left IFG, left supramarginal gyrus, and right cerebellar crura, suggesting a role in the functional development of language.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Darren S Kadis
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
44
|
Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, Kosaka H, Okazawa H, Asada M, Naito E. Self-Face Recognition Begins to Share Active Region in Right Inferior Parietal Lobule with Proprioceptive Illusion During Adolescence. Cereb Cortex 2018; 28:1532-1548. [PMID: 29420750 PMCID: PMC6093481 DOI: 10.1093/cercor/bhy027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/15/2018] [Indexed: 01/19/2023] Open
Abstract
We recently reported that right-side dominance of the inferior parietal lobule (IPL) in self-body recognition (proprioceptive illusion) task emerges during adolescence in typical human development. Here, we extend this finding by demonstrating that functional lateralization to the right IPL also develops during adolescence in another self-body (specifically a self-face) recognition task. We collected functional magnetic resonance imaging (fMRI) data from 60 right-handed healthy children (8-11 years), adolescents (12-15 years), and adults (18-23 years; 20 per group) while they judged whether a presented face was their own (Self) or that of somebody else (Other). We also analyzed fMRI data collected while they performed proprioceptive illusion task. All participants performed self-face recognition with high accuracy. Among brain regions where self-face-related activity (Self vs. Other) developed, only right IPL activity developed predominantly for self-face processing, with no substantial involvement in other-face processing. Adult-like right-dominant use of IPL emerged during adolescence, but was not yet present in childhood. Adult-like common activation between the tasks also emerged during adolescence. Adolescents showing stronger right-lateralized IPL activity during illusion also showed this during self-face recognition. Our results suggest the importance of the right IPL in neuronal processing of information associated with one's own body in typically developing humans.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, Japan
| | - Midori Ban
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Faculty of Psychology, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences and Medicine, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
45
|
do Vale S, Escera C. Dehydroepiandrosterone and Dehydroepiandrosterone-Sulfate and Emotional Processing. VITAMINS AND HORMONES 2018; 108:413-441. [PMID: 30029737 DOI: 10.1016/bs.vh.2018.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steroid hormones are important regulators of brain development, physiological function, and behavior. Among them, dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) also do modulate emotional processing and may have mood enhancement effects. This chapter reviews the studies that bear relation to DHEA and DHEAS [DHEA(S)] and brain emotional processing and behavior. A brief introduction to the mechanisms of action and variations of DHEA(S) levels throughout life has also been forward in this chapter. Higher DHEA(S) levels may reduce activity in brain regions involved in the generation of negative emotions and modulate activity in regions involved in regulatory processes. At the electrophysiological level, higher DHEA-to-cortisol and DHEAS-to-DHEA ratios were related to shorter P300 latencies and shorter P300 amplitudes during the processing of negative stimuli, suggesting less interference of negative stimuli with the task and less processing of the negative information, which in turn may suggest a protective mechanism against negative information overload. Present knowledge indicates that DHEA(S) may play a role in cortical development and plasticity, protecting against negative affect and depression, and at the same time enhancing attention and overall working memory, possibly at the cost of a reduction in emotional processing, emotional memory, and social understanding.
Collapse
Affiliation(s)
- Sónia do Vale
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Carles Escera
- Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain; Brainlab-Cognitive Neuroscience Research Group, University of Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
46
|
Baumer FM, Cardon AL, Porter BE. Language Dysfunction in Pediatric Epilepsy. J Pediatr 2018; 194:13-21. [PMID: 29241678 PMCID: PMC5826845 DOI: 10.1016/j.jpeds.2017.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Fiona M Baumer
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| | - Aaron L Cardon
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA
| | - Brenda E Porter
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
47
|
Nguyen TV. Developmental effects of androgens in the human brain. J Neuroendocrinol 2018; 30. [PMID: 28489322 DOI: 10.1111/jne.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022]
Abstract
Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions.
Collapse
Affiliation(s)
- T-V Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
48
|
fMRI as a Preimplant Objective Tool to Predict Postimplant Oral Language Outcomes in Children with Cochlear Implants. Ear Hear 2018; 37:e263-72. [PMID: 26689275 DOI: 10.1097/aud.0000000000000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Despite the positive effects of cochlear implantation, postimplant variability in speech perception and oral language outcomes is still difficult to predict. The aim of this study was to identify neuroimaging biomarkers of postimplant speech perception and oral language performance in children with hearing loss who receive a cochlear implant. The authors hypothesized positive correlations between blood oxygen level-dependent functional magnetic resonance imaging (fMRI) activation in brain regions related to auditory language processing and attention and scores on the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2) and the Early Speech Perception Test for Profoundly Hearing-Impaired Children (ESP), in children with congenital hearing loss. DESIGN Eleven children with congenital hearing loss were recruited for the present study based on referral for clinical MRI and other inclusion criteria. All participants were <24 months at fMRI scanning and <36 months at first implantation. A silent background fMRI acquisition method was performed to acquire fMRI during auditory stimulation. A voxel-based analysis technique was utilized to generate z maps showing significant contrast in brain activation between auditory stimulation conditions (spoken narratives and narrow band noise). CELF-P2 and ESP were administered 2 years after implantation. Because most participants reached a ceiling on ESP, a voxel-wise regression analysis was performed between preimplant fMRI activation and postimplant CELF-P2 scores alone. Age at implantation and preimplant hearing thresholds were controlled in this regression analysis. RESULTS Four brain regions were found to be significantly correlated with CELF-P2 scores. These clusters of positive correlation encompassed the temporo-parieto-occipital junction, areas in the prefrontal cortex and the cingulate gyrus. For the story versus silence contrast, CELF-P2 core language score demonstrated significant positive correlation with activation in the right angular gyrus (r = 0.95), left medial frontal gyrus (r = 0.94), and left cingulate gyrus (r = 0.96). For the narrow band noise versus silence contrast, the CELF-P2 core language score exhibited significant positive correlation with activation in the left angular gyrus (r = 0.89; for all clusters, corrected p < 0.05). CONCLUSIONS Four brain regions related to language function and attention were identified that correlated with CELF-P2. Children with better oral language performance postimplant displayed greater activation in these regions preimplant. The results suggest that despite auditory deprivation, these regions are more receptive to gains in oral language development performance of children with hearing loss who receive early intervention via cochlear implantation. The present study suggests that oral language outcome following cochlear implant may be predicted by preimplant fMRI with auditory stimulation using natural speech.
Collapse
|
49
|
Chou N, Serafini S, Muh CR. Cortical Language Areas and Plasticity in Pediatric Patients With Epilepsy: A Review. Pediatr Neurol 2018; 78:3-12. [PMID: 29191650 DOI: 10.1016/j.pediatrneurol.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
Chronic injury to the brain from seizure activity is associated with decreased language skills in pediatric patients, as measured on neuropsychological tests for language function and academic achievement. This makes the study of language in patients with epilepsy clinically necessary. Functional magnetic resonance imaging and direct electrical cortical stimulation have been used to evaluate aspects of cortical language processing in healthy adults and in adults with epilepsy or other neurological insults. Results of these studies help to locate cortical language areas that are involved with modality-specific language processing (visual naming, auditory naming, sentence-completion, and repetition) and the neuroplasticity of language areas in the setting of neurological injury and reorganization. A better understanding of language processing contributes to a more efficient and efficacious electrical cortical stimulation mapping of language areas for patients with intractable epilepsy who are undergoing preresection evaluation. Most of the current literature on localization and reorganization of cortical language areas in the setting of epilepsy concerns the adult patient population, whereas the literature on pediatric patients is substantially lacking in comparison. This article reviews the conclusions drawn thus far from Wada, magnetoencephalography, functional magnetic resonance imaging, and electrical cortical stimulation language studies on types of language reorganization seen in pediatric patients with intractable temporal lobe epilepsy and the clinical factors associated with reorganization, and proposes future directions of research to further the academic and clinical understanding of language processing in pediatric patients.
Collapse
Affiliation(s)
- Naomi Chou
- Duke University School of Medicine, Durham, North Carolina
| | - Sandra Serafini
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Carrie R Muh
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
50
|
Liu X, Gao Y, Di Q, Hu J, Lu C, Nan Y, Booth JR, Liu L. Differences between child and adult large-scale functional brain networks for reading tasks. Hum Brain Mapp 2017; 39:662-679. [PMID: 29124823 DOI: 10.1002/hbm.23871] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/19/2023] Open
Abstract
Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain.
Collapse
Affiliation(s)
- Xin Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yue Gao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiqi Di
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Hu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yun Nan
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, 37203
| | - Li Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|