1
|
Goudarzi Far F, Tambrchi V, Nahid Samiei R, Nahid Samiei M, Saadati H, Moradi P, Keyvanlou Z, Advay S, Nili M, Abdi S, Jamalvandi T, Arash Letafati, Behzadpour M, Kamalpour M, Ebrahimdamavandi N, Khatami A, Kiani SJ, Ghorbani S. Association between human polyomavirus infection and brain cancer: A systematic review and meta-analysis. Microb Pathog 2022; 173:105797. [PMID: 36183958 DOI: 10.1016/j.micpath.2022.105797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
AIM The aim of this study was to investigate the prevalence and potential association between the infection with some members of the polyomaviridae family of viruses and development of the brain tumors. METHODS A systematic literature search was performed by finding relevant cross-sectional and case-control studies from a large online database. Heterogeneity, OR, and corresponding 95% CI were applied to all studies by meta-analysis and forest plots. The analysis was performed using Stata Software v.14. RESULTS Twenty-three articles (33 datasets) were included in the meta-analysis, four (four datasets) of which were case/control studies and the rest were cross-sectional. The pooled prevalence of polyomaviruses among brain cancer patients was 13% (95% CI: 8-20%; I2 = 96.91%). In subgroup analysis, the pooled prevalence of JCV, SV40, BKV and Merkel cell polyomavirus was 20%, 8%, 6%, and 16%, respectively. An association was found between polyomavirus infection and brain cancer [summary OR 7.22 (95% CI (2.36-22.05); I2 = 0%)]. The subgroup analysis, based on the virus type, demonstrated a strong association between JCV infection and brain cancer development [summary OR 10.34 (95% CI 1.10-97.42; I2 = 0%)]. CONCLUSION The present study showed a significant association between polyomavirus infection and brain tumors. Moreover, these results suggest that polyomavirus infection may be a potential risk factor for the development of brain cancer.
Collapse
Affiliation(s)
- Fariba Goudarzi Far
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Vahid Tambrchi
- Department of Microbiology, Golestan University of Medical Sciences, Golesatn, Iran
| | - Rahil Nahid Samiei
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Hassan Saadati
- Department of Epidemiology and Biostatistics, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Keyvanlou
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shoaib Advay
- Department of Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzie Nili
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Abdi
- Animal Virology Department, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Tasnim Jamalvandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Behzadpour
- Faculty of Medicine, Islamic Azad University, Tehran Medical Science Branch, Tehran, Iran
| | - Maryam Kamalpour
- Khorramshahr University of Marine Sciences and Technology, School of Marine Science and Ocean, Iran
| | | | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Marynissen H, Buntinx L, Bamps D, Depre M, Ampe E, Van Hecken A, Gabriel K, Sands S, Vargas G, de Hoon J. First-in-human development of a pharmacodynamic biomarker for PAC 1 receptor antagonists using intradermal injections of maxadilan. Clin Transl Sci 2022; 15:1968-1977. [PMID: 35621246 PMCID: PMC9372410 DOI: 10.1111/cts.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Maxadilan, a potent vasodilator peptide, selectively activates the PAC1 receptor, a promising target for migraine therapy. Therefore, maxadilan has been suggested as a tool to study the pharmacodynamics (PDs) of PAC1 receptor antagonists. The objectives of this first-in-human study were to: (1) determine the safety, tolerability, dose response, and time course of the dermal blood flow (DBF) changes after intradermal (i.d.) injections of maxadilan in the human forearm, and (2) assess the inter-arm and inter-period reproducibility of this response. This was a single-center, open-label study in healthy subjects, comprising three parts: (1) dose-response (n = 25), (2) response duration (n = 10), and (3) reproducibility (n = 15). DBF measurements were performed using laser Doppler imaging (LDI) up to 60 min postinjection, or up to 5 days for the response duration assessments. To assess reproducibility, the intraclass correlation coefficient (ICC) and sample sizes were calculated. The i.d. maxadilan (0.001, 0.01, 0.1, 0.9, 3, and 10 ng) produced a well-tolerated, dose-dependent increase in DBF, with a half-maximal effective concentration fitted at 0.0098 ng. The DBF response to 0.9 ng maxadilan was quantifiable with LDI up to 72 h postinjection. The inter-period reproducibility of the DBF response was better upon 0.9 ng (ICC > 0.6) compared to 0.01 ng (ICC < 0.4) maxadilan. However, irrespective of the study design or maxadilan dose, a sample size of 11 subjects is sufficient to detect a 30% difference in DBF response with 80% power. In conclusion, intradermal maxadilan provides a safe, well-tolerated, and reproducible PD biomarker for PAC1 receptor antagonists in vivo in humans.
Collapse
Affiliation(s)
- Heleen Marynissen
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marleen Depre
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Els Ampe
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Anne Van Hecken
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kristin Gabriel
- Spark Therapeutics, Member of the Roche Group, Philadelphia, Pennsylvania, USA
| | | | | | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Cruz ED, Rahim F, Lemmon M, Mikati MA. US Food and Drug Administration Facilitated Pediatric Approval Programs: Application to Pediatric Neurological Disorders. J Child Neurol 2022; 37:222-231. [PMID: 35135372 DOI: 10.1177/08830738211037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crucial time is often lost while waiting for approval of therapies for pediatric neurological disorders, many of which have aggressive manifestations with devastating effects. There are logistical, ethical, and financial impediments that face the studies needed to determine efficacy and safety of therapies in children. In this article, the authors present the Food and Drug Administration's programs aimed at facilitating the development of pediatric drugs, focusing on their application to pediatric neurological disorders. They also provide examples of drugs that received, or are currently enrolled in, these programs. Reflecting upon the commonalities of drugs receiving these designations, the authors highlight underlying ethical issues related to pediatric drug development and emphasize the need for structured incentives to stimulate approval and production of drug therapies for pediatric neurology patients. By consolidating information that applies to drug approval of pediatric neurological disorders, stakeholders in drug development can enhance treatment development for these disorders.
Collapse
Affiliation(s)
- Emily Da Cruz
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Faraan Rahim
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Monica Lemmon
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S. New horizons of biomaterials in treatment of nerve damage in diabetes mellitus: A translational prospective review. Front Endocrinol (Lausanne) 2022; 13:1036220. [PMID: 36387914 PMCID: PMC9647066 DOI: 10.3389/fendo.2022.1036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a serious concern that leads to loss of neuronal communication that impairs the quality of life and, in adverse conditions, causes permanent disability. The limited availability of autografts with associated demerits shifts the paradigm of researchers to use biomaterials as an alternative treatment approach to recover nerve damage. PURPOSE The purpose of this study is to explore the role of biomaterials in translational treatment approaches in diabetic neuropathy. STUDY DESIGN The present study is a prospective review study. METHODS Published literature on the role of biomaterials in therapeutics was searched for. RESULTS Biomaterials can be implemented with desired characteristics to overcome the problem of nerve regeneration. Biomaterials can be further exploited in the treatment of nerve damage especially associated with PDN. These can be modified, customized, and engineered as scaffolds with the potential of mimicking the extracellular matrix of nerve tissue along with axonal regeneration. Due to their beneficial biological deeds, they can expedite tissue repair and serve as carriers of cellular and pharmacological treatments. Therefore, the emerging research area of biomaterials-mediated treatment of nerve damage provides opportunities to explore them as translational biomedical treatment approaches. CONCLUSIONS Pre-clinical and clinical trials in this direction are needed to establish the effective role of several biomaterials in the treatment of other human diseases.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- *Correspondence: Alok Raghav,
| | - Manish Singh
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Department of Neurosurgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Richa Giri
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Saurabh Agarwal
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Sanjay Kala
- Department of Surgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| |
Collapse
|
5
|
Cummings JL, Goldman DP, Simmons-Stern NR, Ponton E. The costs of developing treatments for Alzheimer's disease: A retrospective exploration. Alzheimers Dement 2021; 18:469-477. [PMID: 34581499 PMCID: PMC8940715 DOI: 10.1002/alz.12450] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022]
Abstract
Introduction With the exception of the recent accelerated approval of aducanumab, in over 26 years of research and development (R&D) investment in Alzheimer's disease (AD), only five novel drugs—all for symptomatic treatment only—have reached FDA approval. Here, we estimate the costs of AD drug development during this period in the private sector. Methods To estimate private R&D funding, we collected information on AD clinical trials (n = 1099; phases 1–4) conducted between January 1, 1995 and June 21, 2021 from various databases. Costs were derived using previously published methodologies and adjusted for inflation. Results Since 1995, cumulative private expenditures on clinical stage AD R&D were estimated at $42.5 billion, with the greatest costs (57%; $24,065 million) incurred during phase 3; approximately 184,000 participants were registered or are currently enrolled in clinical trials. Discussion Measures to reduce expenditures while moving toward disease‐modifying therapies that alleviate the rising burden of AD require continued investment from industry, government, and academia.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Dana P Goldman
- University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
6
|
Cummings J, Bauzon J, Lee G. Who funds Alzheimer's disease drug development? ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12185. [PMID: 34095442 PMCID: PMC8145442 DOI: 10.1002/trc2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Despite the increase in Alzheimer's disease (AD) cases in the United States, no new treatments have been approved in the United States since 2003. The costs associated with drug development programs are high and serve as a significant deterrent to AD therapeutic investigations. In this study, we analyze the sponsorship data for AD clinical trials conducted since 2016 to assess the fiscal support for AD clinical trials. METHODS We analyzed the funding sources of all AD trials over the past 5 years as reported on ClinicalTrials.gov. RESULTS There were 136 trials being conducted for treatments in the US AD therapeutic pipeline on the index date of this study. Among non-prevention trials, disease-modifying therapies (DMT) in Phase 3 were almost entirely sponsored by the biopharmaceutical industry; Phase 2 DMT trials were split between the biopharmaceutical industry and funding from the National Institutes of Health (NIH) to academic medical centers (AMCs). The majority of prevention trials received sponsorship from public-private partnerships (PPP). Trials of symptomatic agents are equally likely to have biopharmaceutical or NIH/AMC sponsorship. Most trials with repurposed agents had NIH/AMC funding (89%). Since 2016, there has been consistent growth in the number of trials sponsored both in part and fully by NIH/AMC sources and in PPP, and there has been a reduction in biopharmaceutical company-sponsored trials. DISCUSSION The number of trials supported by the biopharmaceutical industry has decreased over the past 5 years; trials supported from federal sources and PPP have increased. Repurposed compounds are mostly in Phase 2 trials and provide critical mechanistic information.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas Vegas (UNLV)Las VegasNevadaUSA
| | - Justin Bauzon
- University of NevadaLas Vegas (UNLV)School of MedicineLas VegasNevadaUSA
| | - Garam Lee
- Biogen, Medical AffairsWestonMassachusettsUSA
| |
Collapse
|
7
|
Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y, Liao A, Liu G, Chun C, Li J. Therapeutic Potential of Diosgenin and Its Major Derivatives against Neurological Diseases: Recent Advances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3153082. [PMID: 32215172 PMCID: PMC7079249 DOI: 10.1155/2020/3153082] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson's disease, Alzheimer's disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.
Collapse
Affiliation(s)
- Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy JiangXi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaizhi Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - ChangJu Chun
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiansheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| |
Collapse
|
8
|
Ni CM, Sun HP, Xu X, Ling BY, Jin H, Zhang YQ, Zhao ZQ, Cao H, Xu L. Spinal P2X7R contributes to streptozotocin-induced mechanical allodynia in mice. J Zhejiang Univ Sci B 2020; 21:155-165. [PMID: 32115912 PMCID: PMC7076344 DOI: 10.1631/jzus.b1900456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/25/2019] [Indexed: 01/14/2023]
Abstract
Painful diabetic neuropathy (PDN) is a diabetes mellitus complication. Unfortunately, the mechanisms underlying PDN are still poorly understood. Adenosine triphosphate (ATP)-gated P2X7 receptor (P2X7R) plays a pivotal role in non-diabetic neuropathic pain, but little is known about its effects on streptozotocin (STZ)-induced peripheral neuropathy. Here, we explored whether spinal cord P2X7R was correlated with the generation of mechanical allodynia (MA) in STZ-induced type 1 diabetic neuropathy in mice. MA was assessed by measuring paw withdrawal thresholds and western blotting. Immunohistochemistry was applied to analyze the protein expression levels and localization of P2X7R. STZ-induced mice expressed increased P2X7R in the dorsal horn of the lumbar spinal cord during MA. Mice injected intrathecally with a selective antagonist of P2X7R and P2X7R knockout (KO) mice both presented attenuated progression of MA. Double-immunofluorescent labeling demonstrated that P2X7R-positive cells were mostly co-expressed with Iba1 (a microglia marker). Our results suggest that P2X7R plays an important role in the development of MA and could be used as a cellular target for treating PDN.
Collapse
Affiliation(s)
- Cheng-ming Ni
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - He-ping Sun
- Department of Endocrinology, the Affiliated Kunshan First People’s Hospital of Jiangsu University, Kunshan 215300, China
| | - Xiang Xu
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Bing-yu Ling
- Department of Emergency, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225001, China
| | - Hui Jin
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Yu-qiu Zhang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-qi Zhao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lan Xu
- Department of Endocrinology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
9
|
Wang Y, Moussian B, Schaeffeler E, Schwab M, Nies AT. The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy. Drug Discov Today 2018; 23:1746-1760. [PMID: 29890226 DOI: 10.1016/j.drudis.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/13/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development.
Collapse
Affiliation(s)
- Yiwen Wang
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Animal Genetics, University of Tübingen, Germany
| | - Bernard Moussian
- Animal Genetics, University of Tübingen, Germany; Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France; Applied Zoology, TU Dresden, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany; Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
11
|
Kumar A, Sharma A. Computational Modeling of Multi-target-Directed Inhibitors Against Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7404-7_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93:1296-1313. [PMID: 28334605 PMCID: PMC5400015 DOI: 10.1016/j.neuron.2017.02.005] [Citation(s) in RCA: 606] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Troels S Jensen
- Department of Neurology and Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
13
|
Piel M, Vernaleken I, Rösch F. Positron Emission Tomography in CNS Drug Discovery and Drug Monitoring. J Med Chem 2014; 57:9232-58. [DOI: 10.1021/jm5001858] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Markus Piel
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Ingo Vernaleken
- Department
of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Frank Rösch
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| |
Collapse
|