1
|
Ni MM, Sun JY, Li ZQ, Qiu JC, Wu CF. Role of voltage-gated chloride channels in epilepsy: current insights and future directions. Front Pharmacol 2025; 16:1560392. [PMID: 40223930 PMCID: PMC11985776 DOI: 10.3389/fphar.2025.1560392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Epilepsy is a prevalent chronic neurological disorder characterised by recurrent seizures caused by excessive neuronal discharge. Disruptions in chloride ion homeostasis significantly affect neuronal excitability, and play a crucial role in the pathophysiology of this disorder. This review highlights the emerging importance of chloride voltage-gated channels in epilepsy, which has been largely underappreciated compared to cation channels. Recent studies have suggested that genetic alterations in chloride channels, such as CLCN1, CLCN2, CLCN3, CLCN4, and CLCN6, contribute to neuronal excitability and seizure susceptibility, with variations in these channels acting more as susceptibility factors than direct causes. However, there is a significant gap in the research on other chloride channels, particularly ClC-Ka, ClC-Kb, ClC-5, and ClC-7, whose roles in epilepsy remain underexplored. Future research should focus on these channels to better understand their contribution to the pathophysiology of epilepsy. The incorporation of genetic tests for chloride channel variants in clinical practice could provide valuable insight into the aetiology of epilepsy, leading to improved diagnostic and therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Ming-Ming Ni
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie-Yu Sun
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng-Qian Li
- Department of Pharmacy, Qinghai Maternal and Child Health Hospital, Xining, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chun-Feng Wu
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Godlevsky LS, Pervak MP, Yehorenko OS, Marchenko SV. Effects of electrical stimulation of the lateral cerebellar nucleus on PTZ-kindled seizures. Epilepsy Behav 2025; 167:110377. [PMID: 40121731 DOI: 10.1016/j.yebeh.2025.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND In recent years, the cerebellum and its nuclei have become an essential target for understanding and suppressing the mechanisms of seizures. This study aimed to investigate the effects of electrical stimulation (ES) applied to the Lateral Cerebellar Nucleus (LCN) in rats at the early and fully developed pentylenetetrazol (PTZ) kindled seizures. METHODS The experimental groups were represented by the male Wistar rats kindled with PTZ (35.0 mg/kg, i.p.) to myoclonus (9-11 PTZ injections) and generalized tonic-clonic seizures (21 PTZ injections). Unilateral ES (100 Hz) was delivered daily for five days after the last kindled PTZ administration, with PTZ seizure testing after ES. Seizures were videotaped, and the severity score was determined in a blinded manner. RESULTS ES of LCN performed at the early stage of kindling facilitated the appearance of myoclonus, and increased seizure severity by 30.2 % points compared to the control group (H = 6.94; df = 2; p = 0.037) with the spikes frequency generation increased during the poststimulation period (H = 27.34; df = 5; p < 0.001). In fully developed kindling, ES prevented generalized seizure and reduced seizure severity by 27.5 % (H = 9.385; df = 2; p = 0.009), while myoclonuses were present with spikes generation in brain structures. CONCLUSION The data obtained showed that repeated ES of LCN at the early stage promoted myoclonic seizures, while in fully PTZ-kindled rats, it suppressed generalized seizure fits, which were substituted with myoclonus.
Collapse
Affiliation(s)
- Leonid S Godlevsky
- Department of Physiology and Biophysics, Odesa National Medical University, Odesa, Ukraine.
| | - Mykhailo P Pervak
- Department of Simulative Medical Technologies, Odesa National Medical University, Odesa, Ukraine
| | - Olha S Yehorenko
- Department of Simulative Medical Technologies, Odesa National Medical University, Odesa, Ukraine
| | - Serhii V Marchenko
- Department of Physiology and Biophysics, Odesa National Medical University, Odesa, Ukraine
| |
Collapse
|
3
|
Streng ML, Kottke BW, Wasserman EM, Zecker L, Luong L, Kodandaramaiah S, Ebner TJ, Krook-Magnuson E. Early and widespread cerebellar engagement during hippocampal seizures and interictal discharges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.593969. [PMID: 38798649 PMCID: PMC11118491 DOI: 10.1101/2024.05.14.593969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite research illustrating the cerebellum may be a critical circuit element in processes beyond motor control, and growing evidence for a role of the cerebellum in a range of neurological disorders, including the epilepsies, remarkably little is known about cerebellar engagement during seizures. We therefore implemented a novel method for repeated widefield calcium imaging of the cerebellum in awake, chronically epileptic mice. We found widespread changes in cerebellar Purkinje cell activity during temporal lobe seizures. Changes were noted in the anterior and posterior cerebellum (lobules IV-VII), along the midline (vermis), and both ipsilaterally and contralaterally (in the simplex and Crus I) to the seizure focus. This was true for both overtly behavioral seizures and for hippocampal seizures that remained electrographic only -- arguing against cerebellar modulation simply reflecting motor components. Moreover, even brief interictal spikes produced widespread alterations in cerebellar activity. Perhaps most remarkably, changes in the cerebellum also occurred prior to any noticeable change in the hippocampal electrographic recordings. Together these results underscore the relevance of the cerebellum with respect to seizure networks, warranting a more consistent consideration of the cerebellum in epilepsy.
Collapse
|
4
|
Elder C, Kerestes R, Opal P, Marchese M, Devinsky O. The cerebellum in epilepsy. Epilepsia 2025. [PMID: 40079849 DOI: 10.1111/epi.18316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
The cerebellum, a subcortical structure, is traditionally linked to sensorimotor integration and coordination, although its role in cognition and affective behavior, as well as epilepsy, is increasingly recognized. Cerebellar dysfunction in patients with epilepsy can result from genetic disorders, antiseizure medications, seizures, and seizure-related trauma. Impaired cerebellar function, regardless of cause, can cause ataxia (imbalance, impaired coordination, unsteady gait), tremor, gaze-evoked nystagmus, impaired slow gaze pursuit and saccade accuracy, as well as speech deficits (slurred, scanning, or staccato). We explore how cerebellar dysfunction can contribute to epilepsy, reviewing data on genetic, infectious, and neuroinflammatory disorders. Evidence of cerebellar dysfunction in epilepsy comes from animal studies as well as human neuropathology and structural magnetic resonance imaging (MRI), functional and diffusion tensor MRI, positron emission and single photon emission computerized tomography, and depth electrode electro-encephalography studies. Cerebellar lesions can infrequently cause epilepsy, with focal motor, autonomic, and focal to bilateral tonic-clonic seizures. Antiseizure medication-resistant epilepsy typically presents in infancy or before age 1 year with hemifacial clonic or tonic seizures ipsilateral to the cerebellar mass. Lesions are typically asymmetric benign or low-grade tumors in the floor of the fourth ventricle involving the cerebellar peduncles and extending to the cerebellar hemisphere. Electrical stimulation of the cerebellum has yielded conflicting results on efficacy, although methodological issues confound interpretation. Epilepsy-related comorbidities including cognitive and affective disorders, falls, and sudden unexpected death in epilepsy may also be impacted by cerebellar dysfunction. We discuss how cerebellar dysfunction may drive seizures and how genetic epilepsies, seizures and seizure therapies may drive cerebellar dysfunction, and how our understanding of epilepsy-related comorbidities through basic neuroscience, animals models and patient studies can advance our understanding and improve patient outcomes.
Collapse
Affiliation(s)
- Christopher Elder
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York, USA
| | - Rebecca Kerestes
- Department of Psychology, Monash University, Clayton, Victoria, Australia
| | - Puneet Opal
- Denning Ataxia Center, Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Orrin Devinsky
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York, USA
| |
Collapse
|
5
|
Trevelyan AJ, Marks VS, Graham RT, Denison T, Jackson A, Smith EH. On brain stimulation in epilepsy. Brain 2025; 148:746-752. [PMID: 39745924 PMCID: PMC11884764 DOI: 10.1093/brain/awae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation, deep brain stimulation of the thalamus, and responsive neurostimulation. Across populations of patients, all deliver reductions in seizure load and sudden unexpected death in epilepsy risk, yet do so variably, and the improvements seem incremental rather than transformative. In contrast, within the field of experimental neuroscience, the transformational impact of optogenetic stimulation is evident; by providing a means to control subsets of neurons in isolation, it has revolutionized our ability to dissect out the functional relations within neuronal microcircuits. It is worth asking, therefore, how preclinical optogenetics research could advance clinical practice in epilepsy? Here, we review the state of the clinical field, and the recent progress in preclinical animal research. We report various breakthrough results, including the development of new models of seizure initiation, its use for seizure prediction, and for fast, closed-loop control of pathological brain rhythms, and what these experiments tell us about epileptic pathophysiology. Finally, we consider how these preclinical research advances may be translated into clinical practice.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Victoria S Marks
- Institute of Biomedical Engineering, Oxford University, Oxford, OX3 7DQ, UK
| | - Robert T Graham
- Institute of Neurology, University College London, Queens Square, London, WC1N 3BG, UK
| | - Timothy Denison
- Institute of Biomedical Engineering, Oxford University, Oxford, OX3 7DQ, UK
| | - Andrew Jackson
- Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
6
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
7
|
Cai AJ, Gao K, Zhang F, Jiang YW. Recent advances and current status of gene therapy for epilepsy. World J Pediatr 2024; 20:1115-1137. [PMID: 39395088 DOI: 10.1007/s12519-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disorder with complex pathogenic mechanisms, and refractory epilepsy often lacks effective treatments. Gene therapy is a promising therapeutic option, with various preclinical experiments achieving positive results, some of which have progressed to clinical studies. DATA SOURCES This narrative review was conducted by searching for papers published in PubMed/MEDLINE with the following single and/or combination keywords: epilepsy, children, neurodevelopmental disorders, genetics, gene therapy, vectors, transgenes, receptors, ion channels, micro RNAs (miRNAs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 (CRISPR/Cas9), expression regulation, optogenetics, chemical genetics, mitochondrial epilepsy, challenges, ethics, and disease models. RESULTS Currently, gene therapy research in epilepsy primarily focuses on symptoms attenuation mediated by viral vectors such as adeno-associated virus and other types. Advances in gene therapy technologies, such as CRISPR/Cas9, have provided a new direction for epilepsy treatment. However, the clinical application still faces several challenges, including issues related to vectors, models, expression controllability, and ethical considerations. CONCLUSIONS Here, we summarize the relevant research and clinical advances in gene therapy for epilepsy and outline the challenges facing its clinical application. In addition to the shortcomings inherent in gene therapy components, the reconfiguration of excitatory and inhibitory properties in epilepsy treatment is a delicate process. On-demand, cell-autonomous treatments and multidisciplinary collaborations may be crucial in addressing these issues. Understanding gene therapy for epilepsy will help clinicians gain a clearer perception of the research progress and challenges, guiding the design of future clinical protocols and research decisions.
Collapse
Affiliation(s)
- Ao-Jie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
8
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Ahtiainen A, Genocchi B, Subramaniyam NP, Tanskanen JMA, Rantamäki T, Hyttinen JAK. Astrocytes facilitate gabazine-evoked electrophysiological hyperactivity and distinct biochemical responses in mature neuronal cultures. J Neurochem 2024; 168:3076-3094. [PMID: 39001671 DOI: 10.1111/jnc.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barbara Genocchi
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Narayan Puthanmadam Subramaniyam
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno M A Tanskanen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari A K Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Jiang S, Wang Y, Pei H, Li H, Chen J, Yao Y, Li Q, Yao D, Luo C. Brain activation and connection across resting and motor-task states in patients with generalized tonic-clonic seizures. CNS Neurosci Ther 2024; 30:e14672. [PMID: 38644561 PMCID: PMC11033329 DOI: 10.1111/cns.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yutong Yao
- Department of NeurosurgeySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Qifu Li
- Department of NeurologyHainan Medical UniversityHainanP. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| |
Collapse
|
12
|
Streng ML. The bidirectional relationship between the cerebellum and seizure networks: a double-edged sword. Curr Opin Behav Sci 2023; 54:101327. [PMID: 38800711 PMCID: PMC11126210 DOI: 10.1016/j.cobeha.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epilepsy is highly prevalent and notoriously pharmacoresistant. New therapeutic interventions are urgently needed, both for preventing the seizures themselves as well as negative outcomes and comorbidities associated with chronic epilepsy. While the cerebellum is not traditionally associated with epilepsy or seizures, research over the past decade has outlined the cerebellum as a brain region that is uniquely suited for both therapeutic needs. This review discusses our current understanding of the cerebellum as a key node within seizure networks, capable of both attenuating seizures in several animal models, and conversely, prone to altered structure and function in chronic epilepsy. Critical next steps are to advance therapeutic modulation of the cerebellum more towards translation, and to provide a more comprehensive characterization of how the cerebellum is impacted by chronic epilepsy, in order to subvert negative outcomes.
Collapse
Affiliation(s)
- M L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Keever KM, Li Y, Womble PD, Sullens DG, Otazu GH, Lugo JN, Ramos RL. Neocortical and cerebellar malformations affect flurothyl-induced seizures in female C57BL/6J mice. Front Neurosci 2023; 17:1271744. [PMID: 38027492 PMCID: PMC10651747 DOI: 10.3389/fnins.2023.1271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Brain malformations cause cognitive disability and seizures in both human and animal models. Highly laminated structures such as the neocortex and cerebellum are vulnerable to malformation, affecting lamination and neuronal connectivity as well as causing heterotopia. The objective of the present study was to determine if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are correlated with reduced seizure threshold. The inhaled chemi-convulsant flurothyl was used to induce generalized, tonic-clonic seizures in male and female C57BL/6J mice, and the time to seizure onset was recorded as a functional correlate of brain excitability changes. Following seizures, mice were euthanized, and brains were extracted for histology. Cryosections of the neocortex and cerebellar vermis were stained and examined for the presence of molecular layer heterotopia as previously described in C57BL/6J mice. Over 60% of mice had neocortical and/or cerebellar heterotopia. No sex differences were observed in the prevalence of malformations. Significantly reduced seizure onset time was observed dependent on sex and the type of malformation present. These results raise important questions regarding the presence of malformations in C57BL/6J mice used in the study of brain development, epilepsy, and many other diseases of the nervous system.
Collapse
Affiliation(s)
- Katherine M. Keever
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Gonzalo H. Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Raddy L. Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
14
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
15
|
Campos-Rodriguez C, Palmer D, Forcelli PA. Optogenetic stimulation of the superior colliculus suppresses genetic absence seizures. Brain 2023; 146:4320-4335. [PMID: 37192344 PMCID: PMC11004938 DOI: 10.1093/brain/awad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.
Collapse
Affiliation(s)
| | - Devin Palmer
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
- Department of Neuroscience, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
16
|
Kessi M, Chen B, Pang N, Yang L, Peng J, He F, Yin F. The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Front Mol Neurosci 2023; 16:1222321. [PMID: 37555011 PMCID: PMC10406136 DOI: 10.3389/fnmol.2023.1222321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders such as global developmental delay (GDD)/intellectual disability (ID), epileptic encephalopathy (EE), and autism spectrum disorder (ASD) are unknown. We aimed to summarize genotype-phenotype correlations and potential treatment for CACNA1A-related neurodevelopmental disorders. METHODS Six children diagnosed with CACNA1A-related neurodevelopmental disorders at Xiangya Hospital, Central South University from April 2018 to July 2021 were enrolled. The PubMed database was systematically searched for all reported patients with CACNA1A-related neurodevelopmental disorders until February 2023. Thereafter, we divided patients into several groups for comparison. RESULTS Six patients were recruited from our hospital. Three cases presented with epilepsy, five with GDD/ID, five with ataxia, and two with ASD. The variants included p.G701R, p.R279C, p.D1644N, p.Y62C, p.L1422Sfs*8, and p. R1664Q [two gain-of-function (GOF) and four loss-of-function (LOF) variants]. About 187 individuals with GDD/ID harboring 123 variants were found (case series plus data from literature). Of those 123 variants, p.A713T and p.R1664* were recurrent, 37 were LOF, and 7 were GOF. GOF variants were linked with severe-profound GDD/ID while LOF variants were associated with mild-moderate GDD/ID (p = 0.001). The p.A713T variant correlated with severe-profound GDD/ID (p = 0.003). A total of 130 epileptic patients harboring 83 variants were identified. The epileptic manifestations included status epilepticus (n = 64), provoked seizures (n = 49), focal seizures (n = 37), EE (n = 29), absence seizures (n = 26), and myoclonic seizures (n = 10). About 49 (42.20%) patients had controlled seizures while 67 (57.80%) individuals remained with refractory seizures. Status epilepticus correlated with variants located on S4, S5, and S6 (p = 0.000). Among the 83 epilepsy-related variants, 23 were recurrent, 32 were LOF, and 11 were GOF. Status epilepticus was linked with GOF variants (p = 0.000). LOF variants were associated with absence seizures (p = 0.000). Six patients died at an early age (3 months to ≤5 years). We found 18 children with ASD. Thirteen variants including recurrent ones were identified in those 18 cases. GOF changes were more linked to ASD. CONCLUSION The p.A713T variant is linked with severe-profound GDD/ID. More than half of CACNA1A-related epilepsy is refractory. The most common epileptic manifestation is status epilepticus, which correlates with variants located on S4, S5, and S6.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Beckinghausen J, Ortiz-Guzman J, Lin T, Bachman B, Salazar Leon LE, Liu Y, Heck DH, Arenkiel BR, Sillitoe RV. The cerebellum contributes to generalized seizures by altering activity in the ventral posteromedial nucleus. Commun Biol 2023; 6:731. [PMID: 37454228 PMCID: PMC10349834 DOI: 10.1038/s42003-023-05100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Thalamo-cortical networks are central to seizures, yet it is unclear how these circuits initiate seizures. We test whether a facial region of the thalamus, the ventral posteromedial nucleus (VPM), is a source of generalized, convulsive motor seizures and if convergent VPM input drives the behavior. To address this question, we devise an in vivo optogenetic mouse model to elicit convulsive motor seizures by driving these inputs and perform single-unit recordings during awake, convulsive seizures to define the local activity of thalamic neurons before, during, and after seizure onset. We find dynamic activity with biphasic properties, raising the possibility that heterogenous activity promotes seizures. Virus tracing identifies cerebellar and cerebral cortical afferents as robust contributors to the seizures. Of these inputs, only microinfusion of lidocaine into the cerebellar nuclei blocks seizure initiation. Our data reveal the VPM as a source of generalized convulsive seizures, with cerebellar input providing critical signals.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA
| | - Joshua Ortiz-Guzman
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA
| | - Benjamin Bachman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Luis E Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, 103515 University Dr., Duluth, MN, USA
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, 103515 University Dr., Duluth, MN, USA
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
19
|
Streng ML, Froula JM, Krook-Magnuson E. The cerebellum's understated role and influences in the epilepsies. Neurobiol Dis 2023; 183:106160. [PMID: 37209926 DOI: 10.1016/j.nbd.2023.106160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Approximately 1 in 26 people will develop epilepsy in their lifetime, but current treatment options leave as many as half of all epilepsy patients with uncontrolled seizures. In addition to the burden of the seizures themselves, chronic epilepsy can be associated with cognitive deficits, structural changes, and devastating negative outcomes such as sudden unexpected death in epilepsy (SUDEP). Thus, major challenges in epilepsy research surround the need to both develop new therapeutic targets for intervention as well as shed light on the mechanisms by which chronic epilepsy can lead to comorbidities and negative outcomes. Despite not being traditionally associated with epilepsy or seizures, the cerebellum has emerged as not only a brain region that can serve as an important target for seizure control, but one that may also be profoundly impacted by chronic epilepsy. Here, we discuss targeting the cerebellum for potential therapeutic intervention and discuss pathway insights gained from recent optogenetic studies. We then review observations of cerebellar alterations during seizures and in chronic epilepsy, as well as the potential for the cerebellum to be a seizure focus. Cerebellar alterations in epilepsy may be critical to patient outcomes, highlighting the need for a more comprehensive understanding and appreciation of the cerebellum in the epilepsies.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Jessica M Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
20
|
Wan X, Wang W, Wu X, Tan Q, Su X, Zhang S, Yang X, Li S, Shao H, Yue Q, Gong Q. Progressive structural damage in sleep-related hypermotor epilepsy. J Neurosci Res 2023. [PMID: 37183389 DOI: 10.1002/jnr.25203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
This study aimed to explore the alterations in gray matter volume (GMV) based on high-resolution structural data and the temporal precedence of structural alterations in patients with sleep-related hypermotor epilepsy (SHE). After preprocessing of T1 structural images, the voxel-based morphometry and source-based morphometry (SBM) methods were applied in 60 SHE patients and 56 healthy controls to analyze the gray matter volumetric alterations. Furthermore, a causal network of structural covariance (CaSCN) was constructed using Granger causality analysis based on structural data of illness duration ordering to assess the causal impact of structural changes in abnormal gray matter regions. The GMVs of SHE patients were widely reduced, mainly in the bilateral cerebellums, fusiform gyri, the right angular gyrus, the right postcentral gyrus, and the left parahippocampal gyrus. In addition to those regions, the results of the SBM analysis also found decreased GMV in the bilateral frontal lobes, precuneus, and supramarginal gyri. The analysis of CaSCN showed that along with disease progression, the cerebellum was the prominent node that tended to affect other brain regions in SHE patients, while the frontal lobe was the transition node and the supramarginal gyrus was the prominent node that may be easily affected by other brain regions. Our study found widely affected regions of decreased GMVs in SHE patients; these regions underlie the morphological basis of epileptic networks, and there is a temporal precedence relationship between them.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weina Wang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Hanbing Shao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| |
Collapse
|
21
|
Lee HJ, Lee DA, Park KM. Altered Cerebellar Volumes and Intrinsic Cerebellar Network in Juvenile Myoclonic Epilepsy. Acta Neurol Scand 2023. [DOI: 10.1155/2023/7907887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Objectives. This study is aimed at investigating the alterations in cerebellar volumes and intrinsic cerebellar network in patients with juvenile myoclonic epilepsy (JME) in comparison with healthy controls. Methods. Patients newly diagnosed with JME and healthy controls were enrolled. Three-dimensional T1-weighted imaging was conducted, and no structural lesions were found on brain magnetic resonance imaging. Cerebellar volumes were obtained using the ACAPULCO program, while the intrinsic cerebellar network was evaluated by applying graph theory using the BRAPH program. The nodes were defined as individual cerebellar volumes and edges as partial correlations, controlling for the effects of age and sex. Cerebellar volumes and intrinsic cerebellar networks were compared between the two groups. Results. Forty-five patients with JME and 45 healthy controls were enrolled. Compared with the healthy controls, the patients with JME had significantly lower volumes of the right and left cerebellar white matter (3.33 vs. 3.48%,
; 3.35 vs. 3.49%,
), corpus medullare (0.99 vs. 1.03%,
), and left lobule V (0.19 vs. 0.22%,
). The intrinsic cerebellar networks also showed significant differences between the two groups. The small-worldness index in the patients with JME was significantly lower than that in the healthy controls (0.771 vs. 0.919,
). Conclusion. The cerebellar volumes and intrinsic cerebellar network demonstrated alterations in the patients with JME when compared with those of the healthy controls. Our study results provide evidence that the cerebellum may play a role in the pathogenesis of JME.
Collapse
|
22
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
23
|
McKavanagh A, Ridzuan-Allen A, Kreilkamp BAK, Chen Y, Manjón JV, Coupé P, Bracewell M, Das K, Taylor PN, Marson AG, Keller SS. Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy. Epilepsy Behav 2023; 140:109084. [PMID: 36702054 DOI: 10.1016/j.yebeh.2023.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.
Collapse
Affiliation(s)
- Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - Adam Ridzuan-Allen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yachin Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital', United States
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France
| | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
24
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
25
|
Hyder SK, Ghosh A, Forcelli PA. Optogenetic activation of the superior colliculus attenuates spontaneous seizures in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2023; 64:524-535. [PMID: 36448878 PMCID: PMC10907897 DOI: 10.1111/epi.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Decades of studies have indicated that activation of the deep and intermediate layers of the superior colliculus can suppress seizures in a wide range of experimental models of epilepsy. However, prior studies have not examined efficacy against spontaneous limbic seizures. The present study aimed to address this gap through chronic optogenetic activation of the superior colliculus in the pilocarpine model of temporal lobe epilepsy. METHODS Sprague Dawley rats underwent pilocarpine-induced status epilepticus and were maintained until the onset of spontaneous seizures. Virus coding for channelrhodopsin-2 was injected into the deep and intermediate layers of the superior colliculus, and animals were implanted with head-mounted light-emitting diodes at the same site. Rats were stimulated with either 5- or 100-Hz light delivery. Seizure number, seizure duration, 24-h seizure burden, and behavioral seizure severity were monitored. RESULTS Both 5- and 100-Hz optogenetic stimulation of the deep and intermediate layers of the superior colliculus reduced daily seizure number and total seizure burden in all animals in the active vector group. Stimulation did not affect either seizure duration or behavioral seizure severity. Stimulation was without effect in opsin-negative control animals. SIGNIFICANCE Activation of the deep and intermediate layers of the superior colliculus reduces both the number of seizures and total daily seizure burden in the pilocarpine model of temporal lobe epilepsy. These novel data demonstrating an effect against chronic experimental seizures complement a long history of studies documenting the antiseizure efficacy of superior colliculus activation in a range of acute seizure models.
Collapse
Affiliation(s)
- Safwan K. Hyder
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
- Department of Neuroscience, Georgetown University, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| |
Collapse
|
26
|
Stieve BJ, Richner TJ, Krook-Magnuson C, Netoff TI, Krook-Magnuson E. Optimization of closed-loop electrical stimulation enables robust cerebellar-directed seizure control. Brain 2023; 146:91-108. [PMID: 35136942 DOI: 10.1093/brain/awac051] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023] Open
Abstract
Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.
Collapse
Affiliation(s)
- Bethany J Stieve
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | | | - Theoden I Netoff
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| | - Esther Krook-Magnuson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
27
|
Ma L, Liu G, Zhang P, Wang J, Huang W, Jiang Y, Zheng Y, Han N, Zhang Z, Zhang J. Altered Cerebro-Cerebellar Effective Connectivity in New-Onset Juvenile Myoclonic Epilepsy. Brain Sci 2022; 12:brainsci12121658. [PMID: 36552118 PMCID: PMC9775154 DOI: 10.3390/brainsci12121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: Resting-state fMRI studies have indicated that juvenile myoclonic epilepsy (JME) could cause widespread functional connectivity disruptions between the cerebrum and cerebellum. However, the directed influences or effective connectivities (ECs) between these brain regions are poorly understood. In the current study, we aimed to evaluate the ECs between the cerebrum and cerebellum in patients with new-onset JME. (2) Methods: Thirty-four new-onset JME patients and thirty-four age-, sex-, and education-matched healthy controls (HCs) were included in this study. We compared the degree centrality (DC) between the two groups to identify intergroup differences in whole-brain functional connectivity. Then, we used a Granger causality analysis (GCA) to explore JME-caused changes in EC between cerebrum regions and cerebellum regions. Furthermore, we applied a correlation analysis to identify associations between aberrant EC and disease severity in patients with JME. (3) Results: Compared to HCs, patients with JME showed significantly increased DC in the left cerebellum posterior lobe (CePL.L), the right inferior temporal gyrus (ITG.R) and the right superior frontal gyrus (SFG.R), and decreased DC in the left inferior frontal gyrus (IFG.L) and the left superior temporal gyrus (STG.L). The patients also showed unidirectionally increased ECs from cerebellum regions to the cerebrum regions, including from the CePL.L to the right precuneus (PreCU.R), from the left cerebellum anterior lobe (CeAL.L) to the ITG.R, from the right cerebellum posterior lobe (CePL.R) to the IFG.L, and from the left inferior semi-lunar lobule of the cerebellum (CeISL.L) to the SFG.R. Additionally, the EC from the CeISL.L to the SFG.R was negatively correlated with the disease severity. (4) Conclusions: JME patients showed unidirectional EC disruptions from the cerebellum to the cerebrum, and the negative correlation between EC and disease severity provides a new perspective for understanding the cerebro-cerebellar neural circuit mechanisms in JME.
Collapse
Affiliation(s)
- Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| |
Collapse
|
28
|
van Hoogstraten WS, Lute MCC, Nusselder H, Kros L, van den Maagdenberg AMJM, De Zeeuw CI. cATR Tracing Approach to Identify Individual Intermediary Neurons Based on Their Input and Output: A Proof-of-Concept Study Connecting Cerebellum and Central Hubs Implicated in Developmental Disorders. Cells 2022; 11:cells11192978. [PMID: 36230940 PMCID: PMC9562212 DOI: 10.3390/cells11192978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past decades, it has become increasingly clear that many neurodevelopmental disorders can be characterized by aberrations in the neuro-anatomical connectome of intermediary hubs. Yet, despite the advent in unidirectional transsynaptic tracing technologies, we are still lacking an efficient approach to identify individual neurons based on both their precise input and output relations, hampering our ability to elucidate the precise connectome in both the healthy and diseased condition. Here, we bridge this gap by combining anterograde transsynaptic- and retrograde (cATR) tracing in Ai14 reporter mice, using adeno-associated virus serotype 1 expressing Cre and cholera toxin subunit B as the anterograde and retrograde tracer, respectively. We have applied this innovative approach to selectively identify individual neurons in the brainstem that do not only receive input from one or more of the cerebellar nuclei (CN), but also project to the primary motor cortex (M1), the amygdala or the ventral tegmental area (VTA). Cells directly connecting CN to M1 were found mainly in the thalamus, while a large diversity of midbrain and brainstem areas connected the CN to the amygdala or VTA. Our data highlight that cATR allows for specific, yet brain-wide, identification of individual neurons that mediate information from a cerebellar nucleus to the cerebral cortex, amygdala or VTA via a disynaptic pathway. Given that the identified neurons in healthy subjects can be readily quantified, our data also form a solid foundation to make numerical comparisons with mouse mutants suffering from aberrations in their connectome due to a neurodevelopmental disorder.
Collapse
Affiliation(s)
| | - Marit C. C. Lute
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Hugo Nusselder
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, NIN-KNAW, 1105 BA Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
29
|
Snell HD, Vitenzon A, Tara E, Chen C, Tindi J, Jordan BA, Khodakhah K. Mechanism of stress-induced attacks in an episodic neurologic disorder. SCIENCE ADVANCES 2022; 8:eabh2675. [PMID: 35442745 PMCID: PMC9020779 DOI: 10.1126/sciadv.abh2675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2022] [Indexed: 05/21/2023]
Abstract
Stress is the most common trigger among episodic neurologic disorders. In episodic ataxia type 2 (EA2), physical or emotional stress causes episodes of severe motor dysfunction that manifest as ataxia and dystonia. We used the tottering (tg/tg) mouse, a faithful animal model of EA2, to dissect the mechanisms underlying stress-induced motor attacks. We find that in response to acute stress, activation of α1-adrenergic receptors (α1-Rs) on Purkinje cells by norepinephrine leads to their erratic firing and consequently motor attacks. We show that norepinephrine induces erratic firing of Purkinje cells by disrupting their spontaneous intrinsic pacemaking via a casein kinase 2 (CK2)-dependent signaling pathway, which likely reduces the activity of calcium-dependent potassium channels. Moreover, we report that disruption of this signaling cascade at a number of nodes prevents stress-induced attacks in the tottering mouse. Together, our results suggest that norepinephrine and CK2 are required for the initiation of stress-induced attacks in EA2 and provide previously unidentified targets for therapeutic intervention.
Collapse
Affiliation(s)
- Heather D. Snell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel Vitenzon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esra Tara
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chris Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jaafar Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Schwitalla JC, Pakusch J, Mücher B, Brückner A, Depke DA, Fenzl T, De Zeeuw CI, Kros L, Hoebeek FE, Mark MD. Controlling absence seizures from the cerebellar nuclei via activation of the G q signaling pathway. Cell Mol Life Sci 2022; 79:197. [PMID: 35305155 PMCID: PMC8934336 DOI: 10.1007/s00018-022-04221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.
Collapse
Affiliation(s)
| | - Johanna Pakusch
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alexander Brückner
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Dominic Alexej Depke
- European Institute of Molecular Imaging, University of Münster, 48149, Münster, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA, Amsterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands
| | - Freek E Hoebeek
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
31
|
Hsieh H, Xu Q, Yang F, Zhang Q, Hao J, Liu G, Liu R, Yu Q, Zhang Z, Xing W, Bernhardt BC, Lu G, Zhang Z. Distinct Functional Cortico-Striato-Thalamo-Cerebellar Networks in Genetic Generalized and Focal Epilepsies with Generalized Tonic-Clonic Seizures. J Clin Med 2022; 11:jcm11061612. [PMID: 35329938 PMCID: PMC8951449 DOI: 10.3390/jcm11061612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to delineate cortico-striato-thalamo-cerebellar network profiles based on static and dynamic connectivity analysis in genetic generalized and focal epilepsies with generalized tonic-clonic seizures, and to evaluate its potential for distinguishing these two epilepsy syndromes. A total of 342 individuals participated in the study (114 patients with genetic generalized epilepsy with generalized tonic-clonic seizures (GE-GTCS), and 114 age- and sex-matched patients with focal epilepsy with focal to bilateral tonic-clonic seizure (FE-FBTS), 114 healthy controls). Resting-state fMRI data were examined through static and dynamic functional connectivity (dFC) analyses, constructing cortico-striato-thalamo-cerebellar networks. Network patterns were compared between groups, and were correlated to epilepsy duration. A pattern-learning algorithm was applied to network features for classifying both epilepsy syndromes. FE-FBTS and GE-GTCS both presented with altered functional connectivity in subregions of the motor/premotor and somatosensory networks. Among these two groups, the connectivity within the cerebellum increased in the static, while the dFC variability decreased; conversely, the connectivity of the thalamus decreased in FE-FBTS and increased in GE-GTCS in the static state. Connectivity differences between patient groups were mainly located in the thalamus and cerebellum, and correlated with epilepsy duration. Support vector machine (SVM) classification had accuracies of 66.67%, 68.42%, and 77.19% when using static, dynamic, and combined approaches to categorize GE-GTCS and FE-GTCS. Network features with high discriminative ability predominated in the thalamic and cerebellar connectivities. The network embedding of the thalamus and cerebellum likely plays an important differential role in GE-GTCS and FE-FBTS, and could serve as an imaging biomarker for differential diagnosis.
Collapse
Affiliation(s)
- Hsinyu Hsieh
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qiang Xu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Fang Yang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qirui Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Jingru Hao
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Gaoping Liu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Ruoting Liu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qianqian Yu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Zixuan Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University/Changzhou First People’s Hospital, Changzhou 213004, China;
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada;
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
- Correspondence:
| |
Collapse
|
32
|
Szabó CÁ, Akopian M, Papanastassiou AM, Salinas FS. Cerebral blood flow differences between high- vs low-frequency VNS therapy in the epileptic baboon. Epilepsy Res 2022; 180:106862. [PMID: 35114431 DOI: 10.1016/j.eplepsyres.2022.106862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Cerebral blood flow (CBF) tracks physiological effects of ictal or interictal epileptic discharges (IEDs) and neurostimulation. This study compared CBF changes between high-frequency (HF; 300 Hz) microburst, and standard, low-frequency (LF; 30 Hz) vagal nerve stimulation (VNS) Therapy in 2 baboons with genetic generalized epilepsy (GGE), including one with photosensitivity. METHODS The baboons were selected based on video recordings and scalp EEG studies. They were both implanted with Sentiva™ 1000 devices capable of stimulating at standard and microburst frequencies. Nine H215O (10-20 mCi) positron emission tomographic (PET) scans were performed each session (two PET sessions acquired for each animal). The baboons were sedated with ketamine, paralyzed, and monitored with scalp EEG. CBF changes were compared between the two modes of stimulation and resting scans in the first study, while in the second, VNS Therapy trials were combined with intermittent light stimulation (ILS) at 25 Hz and compared to CBF changes induced by ILS alone. RESULTS ILS-associated IED rates were slightly reduced by HF- and LF-VNS Therapies in B1, while spontaneous IEDs were completely suppressed by HF-VNS Therapy in B2. Regional CBF changes were consistent between the two modes of therapy in each baboon, in particular with respect to the activation of the superior colliculus and cerebellum. Neither VNS mode suppressed the photoepileptic response in B1. In B2, IED suppression was associated with bilateral deactivations of the frontal and temporal cortices, cingulate and anterior striatum, as well as bilateral cerebellar activations. CONCLUSIONS This pilot study reveals similar activation/deactivation patterns between LF- and HF-VNS Therapies, but the most pronounced CBF differences between the two baboons and the two modes of stimulation may have been driven by the suppression of the epileptic network by HF-VNS Therapy in B2. Some therapeutic targets appear to be subcortical, including the putamen, superior colliculus, brainstem nuclei, as well as the cerebellum, all of which modulate corticothalamic networks, which is particularly reflected by CBF changes associated with HF-VNS Therapy. These findings need to be replicated in larger samples and correlated with long-term clinical outcomes.
Collapse
Affiliation(s)
- C Ákos Szabó
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Margarita Akopian
- Neurodiagnostic Center, University Health System, San Antonio, TX, USA
| | | | - Felipe S Salinas
- Research Imaging Institute, USA; Department of Radiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
33
|
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe Seizures. J Neurosci 2021; 41:10091-10107. [PMID: 34716233 DOI: 10.1523/jneurosci.0683-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.
Collapse
|
34
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
35
|
Abstract
Epilepsy is the fourth most common neurological disorder, but current treatment options provide limited efficacy and carry the potential for problematic adverse effects. There is an immense need to develop new therapeutic interventions in epilepsy, and targeting areas outside the seizure focus for neuromodulation has shown therapeutic value. While not traditionally associated with epilepsy, anatomical, clinical, and electrophysiological studies suggest the cerebellum can play a role in seizure networks, and importantly, may be a potential therapeutic target for seizure control. However, previous interventions targeting the cerebellum in both preclinical and clinical studies have produced mixed effects on seizures. These inconsistent results may be due in part to the lack of specificity inherent with open-loop electrical stimulation interventions. More recent studies, using more targeted closed-loop optogenetic approaches, suggest the possibility of robust seizure inhibition via cerebellar modulation for a range of seizure types. Therefore, while the mechanisms of cerebellar inhibition of seizures have yet to be fully elucidated, the cerebellum should be thoroughly revisited as a potential target for therapeutic intervention in epilepsy. This article is part of the Special Issue "NEWroscience 2018.
Collapse
|
36
|
Karapinar R, Schwitalla JC, Eickelbeck D, Pakusch J, Mücher B, Grömmke M, Surdin T, Knöpfel T, Mark MD, Siveke I, Herlitze S. Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks. Nat Commun 2021; 12:4488. [PMID: 34301944 PMCID: PMC8302595 DOI: 10.1038/s41467-021-24718-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023] Open
Abstract
Opn7b is a non-visual G protein-coupled receptor expressed in zebrafish. Here we find that Opn7b expressed in HEK cells constitutively activates the Gi/o pathway and illumination with blue/green light inactivates G protein-coupled inwardly rectifying potassium channels. This suggests that light acts as an inverse agonist for Opn7b and can be used as an optogenetic tool to inhibit neuronal networks in the dark and interrupt constitutive inhibition in the light. Consistent with this prediction, illumination of recombinant expressed Opn7b in cortical pyramidal cells results in increased neuronal activity. In awake mice, light stimulation of Opn7b expressed in pyramidal cells of somatosensory cortex reliably induces generalized epileptiform activity within a short (<10 s) delay after onset of stimulation. Our study demonstrates a reversed mechanism for G protein-coupled receptor control and Opn7b as a tool for controlling neural circuit properties.
Collapse
Affiliation(s)
- Raziye Karapinar
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | | | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Knöpfel
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany.
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- German Cancer Consortium (DKTK/DKFZ), West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
37
|
Akyuz E, Ozenen C, Pinyazhko OR, Poshyvak OB, Godlevsky LS. Cerebellar contribution to absence epilepsy. Neurosci Lett 2021; 761:136110. [PMID: 34256107 DOI: 10.1016/j.neulet.2021.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The new aggregate data analyses revealed the earlier missing role of cerebellum long-term electrical stimulation in the absence epilepsy. Neurophysiologic data gained by authors favor that cerebellar serial deep brain stimulation (DBS) (100 Hz) causes the transformation of penicillin-induced cortical focal discharges into prolonged 3,5-3,75 sec oscillations resembling spike-wave discharges (SWD) in cats. Such SWDs were not organized in the form of bursts and persisted continuously after stimulation. Therefore, the appearance of prolonged periods of SWD is regarded as a tonic cerebellar influence upon pacemaker of SWD and might be caused by the long-lasting DBS-induced increase of GABA-ergic extrasynaptic inhibition in the forebrain networks. The absence seizure facilitation caused by cerebellar DBS was discussed with the reviewed data on optogenetic stimulation, neuronal activity of cerebellar structures, and imaging data.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Cansu Ozenen
- Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Oleh R Pinyazhko
- Pharmacology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine; Department of Civilization Diseases and Regenerative Medicine, WSIiZ, Rzeszow, Poland
| | - Olesya B Poshyvak
- Pharmacology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Leonid S Godlevsky
- Department of Biophysics, Informatics and Medical Devices, Odesa National Medical University, 2, Valikhovsky Lane, Odesa 65082, Ukraine.
| |
Collapse
|
38
|
Nie L, Jiang Y, Lv Z, Pang X, Liang X, Chang W, Li J, Zheng J. Deep Cerebellar Nuclei Functional Connectivity with Cerebral Cortex in Temporal Lobe Epilepsy With and Without Focal to Bilateral Tonic-Clonic Seizures: a Resting-State fMRI Study. THE CEREBELLUM 2021; 21:253-263. [PMID: 34164777 DOI: 10.1007/s12311-021-01266-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
We aimed to explore the altered functional connectivity patterns within cerebello-cerebral circuits in temporal lobe epilepsy (TLE) patients with and without focal to bilateral tonic-clonic seizures (FBTCS). Forty-two patients with unilateral TLE (21 with and 21 without FBTCS) and 22 healthy controls were recruited. We chose deep cerebellar nuclei as seed regions, calculated static and dynamic functional connectivity (sFC and dFC) in the patients with and without FBTCS and healthy controls, and compared sFC and dFC among the three groups. Correlation analyses were used to assess relationships between the significantly altered imaging features and patient clinical parameters. Compared to the group without FBTCS, the FBTCS group showed decreased sFC between the right dentate nuclei and left hemisphere regions including the middle frontal gyrus, superior temporal gyrus, superior medial frontal gyrus and posterior cingulate gyrus, and significantly increased dFC between the right interposed nuclei and contralateral precuneus. Relative to HCs, the FBTCS group demonstrated prominently decreased sFC between the right dentate nuclei and left middle frontal gyrus. No significant correlations between the altered imaging features and patient clinical parameters were observed. Our results suggest that the disrupted cerebello-cerebral FC might be related to cognitive impairment, epileptogenesis, and propagation of epileptic activities in patients with FBTCS.
Collapse
Affiliation(s)
- Liluo Nie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanchun Jiang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongxia Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiulin Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Chang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
39
|
de Oliveira TVHF, Cukiert A. Deep Brain Stimulation for Treatment of Refractory Epilepsy. Neurol India 2021; 68:S268-S277. [PMID: 33318361 DOI: 10.4103/0028-3886.302454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep brain stimulation (DBS) has been used in the treatment of motor diseases with remarkable safety and efficacy, which abet the interest of its application in the management of other neurologic and psychiatric disorders such as epilepsy. Experimental data demonstrated that electric current could modulate distinct brain circuits and decrease the neuronal hypersynchronization seen in epileptic activity. The ability to carefully choose the most suitable anatomical target as well as to define the most reasonable stimulation parameters is highly dependable on the comprehension of the underlying mechanisms of action, which remain unclear. This review aimed to explore the relevant clinical data regarding the use of DBS in the treatment of refractory epilepsy.
Collapse
Affiliation(s)
| | - Arthur Cukiert
- Department of Neurosurgery, Epilepsy Surgery Program, Clínica Cukiert, São Paulo, Brazil
| |
Collapse
|
40
|
Pulvirenti G, Caccamo M, Lo Bianco M, Mazzurco M, Praticò ER, Giallongo A, Gangi G, Zanghì A, Falsaperla R. Calcium Channels Genes and Their Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractCalcium (Ca2+) channel gene mutations play an important role in the pathogenesis of neurological episodic disorders like epilepsy. CACNA1A and CACNA1H genes are involved in the synthesis of calcium channels. Mutations in the α1A subunit of the P/Q type voltage-gated calcium channel gene (CACNA1A) located in 19p13.13, which encodes for the transmembrane pore-forming subunit of CAV2.1 voltage-dependent calcium channel, have been correlated to a large clinical spectrum of epilepsy such as idiopathic genetic epilepsy, early infantile epilepsy, and febrile seizures. Moreover, CACNA1A mutations have been demonstrated to be involved in spinocerebellar ataxia type 6, familiar hemiplegic migraine, episodic ataxia type 2, early-onset encephalopathy, and hemiconvulsion–hemiplegia epilepsy syndrome. This wide phenotype heterogeneity associated with CACNA1A mutations is correlated to different clinical and electrophysiological manifestations. CACNA1H gene, located in 16p13.3, encodes the α1H subunit of T-type calcium channel, expressing the transmembrane pore-forming subunit Cav3.2. Despite data still remain controversial, it has been identified as an important gene whose mutations seem strictly related to the pathogenesis of childhood absence epilepsy and other generalized epilepsies. The studied variants are mainly gain-of-function, hence responsible for an increase in neuronal susceptibility to seizures. CACNA1H mutations have also been associated with autism spectrum disorder and other behavior disorders. More recently, also amyotrophic lateral sclerosis has been related to CACNA1H alterations. The aim of this review, other than describe the CACNA1A and CACNA1H gene functions, is to identify mutations reported in literature and to analyze their possible correlations with specific epileptic disorders, purposing to guide an appropriate medical treatment recommendation.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gloria Gangi
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
41
|
Eelkman Rooda OHJ, Kros L, Faneyte SJ, Holland PJ, Gornati SV, Poelman HJ, Jansen NA, Tolner EA, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE. Single-pulse stimulation of cerebellar nuclei stops epileptic thalamic activity. Brain Stimul 2021; 14:861-872. [PMID: 34022430 DOI: 10.1016/j.brs.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Epileptic (absence) seizures in the cerebral cortex can be stopped by pharmacological and optogenetic stimulation of the cerebellar nuclei (CN) neurons that innervate the thalamus. However, it is unclear how such stimulation can modify underlying thalamo-cortical oscillations. HYPOTHESIS Here we tested whether rhythmic synchronized thalamo-cortical activity during absence seizures can be desynchronized by single-pulse optogenetic stimulation of CN neurons to stop seizure activity. METHODS We performed simultaneous thalamic single-cell and electrocorticographical recordings in awake tottering mice, a genetic model of absence epilepsy, to investigate the rhythmicity and synchronicity. Furthermore, we tested interictally the impact of single-pulse optogenetic CN stimulation on thalamic and cortical recordings. RESULTS We show that thalamic firing is highly rhythmic and synchronized with cortical spike-and-wave discharges during absence seizures and that this phase-locked activity can be desynchronized upon single-pulse optogenetic stimulation of CN neurons. Notably, this stimulation of CN neurons was more effective in stopping seizures than direct, focal stimulation of groups of afferents innervating the thalamus. During interictal periods, CN stimulation evoked reliable but heterogeneous responses in thalamic cells in that they could show an increase or decrease in firing rate at various latencies, bi-phasic responses with an initial excitatory and subsequent inhibitory response, or no response at all. CONCLUSION Our data indicate that stimulation of CN neurons and their fibers in thalamus evokes differential effects in its downstream pathways and desynchronizes phase-locked thalamic neuronal firing during seizures, revealing a neurobiological mechanism that may explain how cerebellar stimulation can stop seizures.
Collapse
Affiliation(s)
- Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Sade J Faneyte
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Peter J Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Huub J Poelman
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Nico A Jansen
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA Amsterdam, the Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht Medical Center, 3508, AB Utrecht, the Netherlands.
| |
Collapse
|
42
|
Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. Proc Natl Acad Sci U S A 2021; 118:2015292118. [PMID: 33443203 PMCID: PMC7812746 DOI: 10.1073/pnas.2015292118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.
Collapse
|
43
|
Jobst BC, Conner KR, Coulter D, Fried I, Guilfoyle S, Hirsch LJ, Hogan RE, Hopp JL, Naritoku D, Plueger M, Schevon C, Smith G, Valencia I, Gaillard WD. Highlights From AES2020, a Virtual American Epilepsy Society Experience. Epilepsy Curr 2021; 21:15357597211018219. [PMID: 33998298 PMCID: PMC8512915 DOI: 10.1177/15357597211018219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to COVID-19 a live, in-person meeting was not possible for the American Epilepsy Society in 2020. An alternative, virtual event, the AES2020, was held instead. AES2020 was a great success with 4679 attendees from 70 countries. The educational content was outstanding and spanned the causes, treatments, and outcomes from epileptic encephalopathy to the iatrogenicity of epilepsy interventions to neurocognitive disabilities to the approach to neocortical epilepsies. New gene therapy approaches such as antisense oligonucleotide treatment for Dravet syndrome were introduced and neuromodulation devices were discussed. There were many other topics discussed in special interest groups and investigators' workshops. A highlight was having a Nobel prize winner speak about memory processing. Human intracranial electrophysiology contributes insights into memory processing and complements animal work. In a special COVID symposium, the impact of COVID on patients with epilepsy was reviewed. Telehealth has been expanded rapidly and may be well suited for some parts of epilepsy care. In summary, the epilepsy community was alive and engaged despite being limited to a virtual platform.
Collapse
Affiliation(s)
| | | | | | | | - Shanna Guilfoyle
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Possible contribution of cerebellar disinhibition in epilepsy. Epilepsy Behav 2021; 118:107944. [PMID: 33887658 DOI: 10.1016/j.yebeh.2021.107944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We hypothesize that loss of inhibition from the cerebellum can lead to cortical activation and seizures. BACKGROUND The traditional model for development of seizures purports that the source of seizures is increased electrical activity originating from cerebral cortical neurons. Studies have shown a decrease in inhibition results in a shift of cortical activity to a hyperexcitable state, which may lead to seizures. Interestingly, a 1978 study suggested the term "disorder of disinhibition" as a way to describe epilepsy from studies of chronic cerebellar stimulation. DESIGN/METHODS Cases and experimental studies in which cerebellar lesions have been implicated in the development of seizures were reviewed. Cases in which cerebellar inhibition has been targeted in the treatment of seizures were also included. Twenty-six studies and case reports are presented for this report. RESULTS The cases show cerebellar lesions can lead to cortical epileptiform activity. Purkinje cell loss is linked to the occurrence of seizures in animals. The majority of patients with cerebellar lesions were seizure free after complete resection, while less than half of patients were seizure free after partial resection. Novel treatments using deep-brain stimulation targeting cerebellar structures demonstrated therapeutic benefits for seizures. CONCLUSIONS Although pathophysiology is not well-understood, the cerebellum likely plays an inherent role in inhibiting aberrant cortical epileptogenesis. Cerebellar lesions may cause seizures due to loss of the inhibition of cortical areas or through intrinsic epileptic activity. Treatments enhancing cerebellar stimulation have shown therapeutic benefits in treating seizures, which could potentially provide another avenue for treatment.
Collapse
|
45
|
Seese RR, Cummings DD. Epilepsy-Related Outcomes in Children With Neonatal Cerebellar Injury. J Child Neurol 2021; 36:482-490. [PMID: 33356784 DOI: 10.1177/0883073820981261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Acute brain injury is a frequent perinatal neurologic complication that can involve the cerebellum. Although short-term outcomes of infants with neonatal cerebellar injury are well described, neurologic sequelae in older children are underreported. Here, we describe epilepsy-related outcomes in young children who suffered from neonatal cerebellar injuries. METHODS In-house automated software identified patients with neonatal brain injuries who were evaluated at our institution both as neonates (≤28 days) and as children (≥1 year). Neonatal hospital course, neuroimaging, and outcomes related to epilepsy were reviewed from the medical record. Patients were stratified into 2 groups based on neonatal brain injuries: those with cerebellar injury and those without cerebellar involvement. RESULTS Of the 282 neonates followed through childhood over the decade-long study period, 33 (12%) experienced neonatal brain injury. All 33 cases involved supratentorial injury, and 5 (15%) also included cerebellar injury. The development of epilepsy was significantly less likely in the group with cerebellar involvement (40%) compared to that with cerebellar sparing (82%; P = 0.043). In some cases, children with cerebellum-sparing injuries required admission for seizure control and developed drug-resistant epilepsy as well as status epilepticus. These outcomes occurred less frequently in the group with cerebellar involvement. CONCLUSIONS Epilepsy-related sequelae may occur less frequently when the cerebellum is involved in neonatal brain injury. Larger prospective studies are needed to clarify how cerebellocortical networks impact functional brain connectivity and epilepsy longitudinally.
Collapse
Affiliation(s)
- Ronald R Seese
- Division of Child Neurology, Department of Pediatrics, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dana D Cummings
- Division of Child Neurology, Department of Pediatrics, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Denison T, Koubeissi M, Krook-Magnuson E, Mogul D, Worrell G, Schevon C. Stimulating Solutions for Intractable Epilepsy. Epilepsy Curr 2021; 21:15357597211012466. [PMID: 33926248 PMCID: PMC8655249 DOI: 10.1177/15357597211012466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Implantable devices for controlling medically intractable seizures nondestructively are rapidly advancing. These offer reversible, potentially, restorative options beyond traditional, surgical procedures, which rely, largely on resection or ablation of selected brain sites. Several lines of, investigation aimed at improving efficacy of these devices are discussed, ranging from identifying novel subcortical, white matter, or cell-type specific targets to engineering advances for adaptive techniques based- on continuous, dynamic system analysis.
Collapse
Affiliation(s)
- Timothy Denison
- Institute of Biomedical Engineering and MRC
Brain Network Dynamics Unit, University of Oxford, Northern Ireland, United Kingdom
| | - Mohamad Koubeissi
- Department of Neurology, George Washington
University, Washington, DC, USA
| | | | - David Mogul
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Catherine Schevon
- Department of Neurology, Columbia University, New York City, NY, USA
| |
Collapse
|
47
|
Li R, Hu C, Wang L, Liu D, Liu D, Liao W, Xiao B, Chen H, Feng L. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy. Brain Imaging Behav 2021; 14:762-771. [PMID: 30617780 DOI: 10.1007/s11682-018-0014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growing evidence has demonstrated widespread brain network alterations in temporal lobe epilepsy (TLE). However, the relatively accurate portrait of the subcortical-cortical relationship for impaired consciousness in TLE remains unclear. We proposed that consciousness-impairing seizures may invade subcortical arousal system and corresponding cortical regions, resulting in functional abnormalities and information flow disturbances between subcortical and cortical networks. We performed resting-state fMRI in 26 patients with TLE and 30 matched healthy controls. All included patients were diagnosed with impaired awareness during focal temporal lobe seizures. Functional connectivity density was adopted to determine whether local or distant network alterations occurred in TLE, and Granger causality analysis (GCA) was utilized to assess the direction and magnitude of causal influence among these altered brain networks further. Patients showed increased local functional connectivity in several arousal structures, such as the midbrain, thalamus, and cortical regions including bilateral prefrontal cortex (PFC), left superior temporal pole, left posterior insula, and cerebellum (P < 0.05, FDR corrected). GCA analysis revealed that the casual effects among these regions in patients were significantly sparser than those in controls (P < 0.05, uncorrected), including decreased excitatory and inhibitory effects among the midbrain, thalamus and PFC, and decreased inhibitory effect from the cerebellum to PFC. These findings suggested that consciousness-impairing seizures in TLE are associated with functional alterations and disruption of information process between the subcortical arousal system and cortical network. Understanding the functional networks and innervation pathway involved in TLE can provide insights into the mechanism underlying seizure-related loss of consciousness.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Chongyu Hu
- Department of Neurology, Hunan Provincial People's Hospital, Changsha, 410005, People's Republic of China
| | - Liangcheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
48
|
Gong J, Jiang S, Li Z, Pei H, Li Q, Yao D, Luo C. Distinct effects of the basal ganglia and cerebellum on the thalamocortical pathway in idiopathic generalized epilepsy. Hum Brain Mapp 2021; 42:3440-3449. [PMID: 33830581 PMCID: PMC8249897 DOI: 10.1002/hbm.25444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
The aberrant thalamocortical pathways of epilepsy have been detected recently, while its underlying effects on epilepsy are still not well understood. Exploring pathoglytic changes in two important thalamocortical pathways, that is, the basal ganglia (BG)-thalamocortical and the cerebellum-thalamocortical pathways, in people with idiopathic generalized epilepsy (IGE), could deepen our understanding on the pathological mechanism of this disease. These two pathways were reconstructed and investigated in this study by combining diffusion and functional MRI. Both pathways showed connectivity changes with the perception and cognition systems in patients. Consistent functional connectivity (FC) changes were observed mainly in perception regions, revealing the aberrant integration of sensorimotor and visual information in IGE. The pathway-specific FC alterations in high-order regions give neuroimaging evidence of the neural mechanisms of cognitive impairment and epileptic activities in IGE. Abnormal functional and structural integration of cerebellum, basal ganglia and thalamus could result in an imbalance of inhibition and excitability in brain systems of IGE. This study located the regulated cortical regions of BG and cerebellum which been affected in IGE, established possible links between the neuroimaging findings and epileptic symptoms, and enriched the understanding of the regulatory effects of BG and cerebellum on epilepsy.
Collapse
Affiliation(s)
- Jinnan Gong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qifu Li
- Department of Neurology, Hainan Medical University, Haikou, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, Hainan Medical University, Haikou, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences 2019RU035, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, Hainan Medical University, Haikou, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences 2019RU035, Chengdu, China
| |
Collapse
|
49
|
Zhang Y, Huang G, Liu M, Li M, Wang Z, Wang R, Yang D. Functional and structural connective disturbance of the primary and default network in patients with generalized tonic-clonic seizures. Epilepsy Res 2021; 174:106595. [PMID: 33993017 DOI: 10.1016/j.eplepsyres.2021.106595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The present study aims to investigate the disturbance of functional and structural profiles of patients with generalized tonic-clonic seizures (GTCS). METHODS Resting-state fMRI and diffusion tensor imaging (DTI) data was collected from fifty-six patients and sixty-two healthy controls. Degree centrality (DC) of functional connectivity was first calculated and compared between groups using a two-sample t-test. Furthermore, the regions with significant alteration of DC in patients with GTCS were used as nodes to construct the brain network. Functional connectivity (FC) network was constructed using the Person's correlation analysis and structural connectivity (SC) network was obtained using deterministic tractography technology. Gray matter volume (GMV) and cortical thickness (CT) were computed and correlated with connective profiles. RESULTS The patients with GTCS showed increased DC in the primary network (PN), including bilateral precentral gyrus, supplementary motor areas (SMA), and visual cortex, and decreased DC in core regions of default mode network (DMN), bilateral anterior insular, and supramarginal gyrus. In the present study, 14 regions were identified to construct networks. In patients, the FC and SC were increased within the sensorimotor network (mainly linking with SMA) and decreased within DMN (mainly linking with the posterior cingulate cortex (PCC)). Except for the decreased FC and SC between cerebellum and SMA, patients demonstrated increased connectivity between DMN and PN. Besides, the insula demonstrated decreased FC with DMN and increased FC with PN, without significant SC alterations in patients with GTCS. Decreased GMV in bilateral thalamus and increased GMV in frontoparietal regions were found in patients. The decreased GMV of thalamus and increased GMV of SMA positively and negatively correlated with the FC between PCC and left superior frontal cortex, the FC between SMA and left precuneus respectively. CONCLUSION Hyper-connectivity within PN helps to understand the disturbance of primary functions, especially the motor abnormality in GTCS. The hypo-connectivity within DMN suggested abnormal network organization possibly related to epileptogenesis. Moreover, over-interaction between DMN and PN and unbalanced connectivity between them and insula provided potential evidence reflecting abnormal interactions between primary and high-order function systems.
Collapse
Affiliation(s)
- Yaodan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine Affiliated Fifth People's Hospital, Chengdu, PR China
| | - Gengzhen Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Meijun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Mao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhiqiang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Rongyu Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
50
|
Li R, Wang H, Wang L, Zhang L, Zou T, Wang X, Liao W, Zhang Z, Lu G, Chen H. Shared and distinct global signal topography disturbances in subcortical and cortical networks in human epilepsy. Hum Brain Mapp 2021; 42:412-426. [PMID: 33073893 PMCID: PMC7776006 DOI: 10.1002/hbm.25231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/08/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a common brain network disorder associated with disrupted large-scale excitatory and inhibitory neural interactions. Recent resting-state fMRI evidence indicates that global signal (GS) fluctuations that have commonly been ignored are linked to neural activity. However, the mechanisms underlying the altered global pattern of fMRI spontaneous fluctuations in epilepsy remain unclear. Here, we quantified GS topography using beta weights obtained from a multiple regression model in a large group of epilepsy with different subtypes (98 focal temporal epilepsy; 116 generalized epilepsy) and healthy population (n = 151). We revealed that the nonuniformly distributed GS topography across association and sensory areas in healthy controls was significantly shifted in patients. Particularly, such shifts of GS topography disturbances were more widespread and bilaterally distributed in the midbrain, cerebellum, visual cortex, and medial and orbital cortex in generalized epilepsy, whereas in focal temporal epilepsy, these networks spread beyond the temporal areas but mainly remain lateralized. Moreover, we found that these abnormal GS topography patterns were likely to evolve over the course of a longer epilepsy disease. Our study demonstrates that epileptic processes can potentially affect global excitation/inhibition balance and shift the normal GS topological distribution. These progressive topographical GS disturbances in subcortical-cortical networks may underlie pathophysiological mechanisms of global fluctuations in human epilepsy.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liangcheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Leiyao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhiqiang Zhang
- Department of Medical ImagingJinling Hospital, Nanjing University School of MedicineNanjingChina
| | - Guangming Lu
- Department of Medical ImagingJinling Hospital, Nanjing University School of MedicineNanjingChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|