1
|
Tokatly Latzer I, Adams C, Lapham G, Buchhalter J, Pearl PL. SUDEP in inherited metabolic epilepsies. Epilepsy Behav 2025; 168:110422. [PMID: 40252523 DOI: 10.1016/j.yebeh.2025.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Inherited metabolic epilepsies (IMEs) have an increased susceptibility for early mortality, including sudden unexpected death in epilepsy (SUDEP), as they often manifest with frequent drug-resistant seizures, including bilateral tonic-clonic and nocturnal seizures. The metabolic defects inherent to their etiology predispose affected individuals to an additional risk of mortality as they can lead to brain injury, which can induce and be exacerbated by seizures, and to systemic conditions that decrease seizure-cessation and auto-resuscitation processes. The increased risk for SUDEP in IMEs mandates that special emphasis should be given to identifying them early and attempting to achieve seizure control by managing acute metabolic decompensations, anti-seizure medications, and targeted therapies when available. Providing education and support to individuals with IMEs and their families about SUDEP risk factors and prevention strategies is imperative. Despite the increased risk for SUDEP in IMEs, this topic remains understudied. As a proceeding of the 2024 Partners Against Mortality in Epilepsy (PAME) meeting and aiming to increase awareness, this Review describes the pathophysiological and clinical elements related to the heightened risk of SUDEP in IMEs and provides the perspective of a parent of a child with an IME who died from SUDEP. Calling for action, future research on epilepsy-related mortality in IMEs is required. Investigating this field may also yield insights into the general pathomechanisms of SUDEP.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | | | - Gardiner Lapham
- Partners Against Mortality in Epilepsy (PAME), American Epilepsy Society (AES), USA.
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Boglietti E, Haddad D, Bezin L, Rheims S. Pathophysiology of SUDEP: How far are we from understanding? Rev Neurol (Paris) 2025:S0035-3787(25)00491-6. [PMID: 40204591 DOI: 10.1016/j.neurol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Sudden and unexpected death in epilepsy patients (SUDEP) is the leading cause of death in patients suffering from drug-resistant epilepsy. A significant number of studies have been conducted in both patients and animal models to examine the initial cascade of events that directly cause death as well as the factors that contribute to the long-term risk of SUDEP. This review aims to discuss the main pathophysiological hypotheses that are currently considered in both clinical and pre-clinical models of SUDEP. Studies have highlighted that SUDEP is typically triggered by a seizure, with central fatal apnea as the primary cause of death. Findings also suggest that chronic impairments in respiratory regulation may contribute to SUDEP risk, with serotonin dysfunction playing a key role in the associated respiratory abnormalities. These insights on SUDEP pathophysiology contribute to better risk assessment, though gaps remain in understanding the precise mechanisms linking SUDEP and transient peri-ictal respiratory dysfunction.
Collapse
Affiliation(s)
- E Boglietti
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - D Haddad
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - L Bezin
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - S Rheims
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.
| |
Collapse
|
3
|
Edwards R, Murphy G, Owens JW, Erickson C, Hopkin R, Shillington A. Dual Diagnosis of Fragile X Syndrome and DEPDC5-Related Disorder Emphasizes DEPDC5's Role Beyond Familial Epilepsy: A Case Report and Literature Review. Case Rep Genet 2025; 2025:4501466. [PMID: 40206130 PMCID: PMC11981699 DOI: 10.1155/crig/4501466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/02/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
Dep domain-containing Protein 5 (DEPDC5), encoded by the gene DEPDC5, regulates the cell cycle by inhibiting the mTORC1 pathway in response to amino acid deficiency. Loss of function DEPDC5 variants are recognized to present as focal familial epilepsy; however, associations with comorbid brain malformations and neurodevelopmental disorders have also been reported. mTOR inhibitors were found to benefit DEPDC5-knockout mice. Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder caused by loss of function of FMR1, and females are expected to have milder neurodevelopmental presentations than males. The reported individual is a 17-year-old female diagnosed with FXS at 1 year of age, but the severity of her neuropsychiatric symptoms prompted further genetic testing at age 14, revealing a likely pathogenic c.4307_4310del DEPDC5 variant. Following this diagnosis, she was started on the mTOR inhibitor sirolimus without significant clinical response. She has never been diagnosed with epilepsy; however, her DEPDC5 and FXS dual diagnosis was thought explanatory for her presentation. A review of 213 previously reported individuals with DEPDC5-related disorder demonstrated that 15.2% of individuals do not have epilepsy, 24.3% have intellectual disability, and 33.8% have brain malformations. Her lack of response to sirolimus may represent the presence of a critical treatment window for mTOR inhibitors in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rory Edwards
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Grace Murphy
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joshua W. Owens
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amelle Shillington
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Garotti R, Marino M, Riccio MP, Cappuccio G, Maffettone V, Bravaccio C. Variability in autism spectrum phenotypes linked to heterozygous missense familial ANK2 mutation. Eur J Med Genet 2025; 74:105001. [PMID: 39978592 DOI: 10.1016/j.ejmg.2025.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Autism Spectrum Disorder (ASD) is to date considered a disorder with a complex aetiology that recognizes both genetic and environmental risk factors. The role of the genetic contribution is progressively and significantly increasing, and lately thousands of genes have been linked to ASD. In this clinical report we describe a child with ASD carrying a heterozygous novel missense variant p.Arg987Trp in the ANK2 gene in heterozygous state, predicted pathogenic, and inherited from her father. The ANK2 gene has been associated with ASD but to date just few reports described the related phenotypes thus we aim at expanding behaviours endophenotypes of familial ANK2-related condition. Our patient was diagnosed with high-functioning ASD while her father showed subthreshold autistic traits such as relational difficulties and peculiar interests. We present this familial case to study genotype-phenotype correlation and highlight the huge variability of Autism spectrum phenotypes of the ANK2-related conditions. Nevertheless, future studies that can explore more of the link between the genetics of autism and associated clinical expressivity would be interesting.
Collapse
Affiliation(s)
- R Garotti
- Department of Translational Medical Sciences, University Federico II of Naples, Naples, 80131, Italy
| | - M Marino
- School of Cognitive Psychotherapy, SPC, Naples, 80122, Italy
| | - M P Riccio
- Maternal-Infantile Department, AOU Federico II of Naples, 80131, Italy.
| | - G Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - V Maffettone
- Department of Translational Medical Sciences, University Federico II of Naples, Naples, 80131, Italy
| | - C Bravaccio
- Department of Translational Medical Sciences, University Federico II of Naples, Naples, 80131, Italy
| |
Collapse
|
5
|
Shao W, Liu L, Gu J, Yang Y, Wu Y, Zhang Z, Xu Q, Wang Y, Shen Y, Gu L, Cheng Y, Zhang H. Spotlight on mechanism of sudden unexpected death in epilepsy in Dravet syndrome. Transl Psychiatry 2025; 15:84. [PMID: 40097380 PMCID: PMC11914262 DOI: 10.1038/s41398-025-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Dravet syndrome (DS) is a severe and catastrophic epilepsy with childhood onset. The incidence and prevalence of sudden unexpected death in epilepsy (SUDEP) are significantly higher in DS patients than in general epileptic populations. Although extensive research conducted, the underlying mechanisms of SUDEP occurring in DS patients remain unclear. This review focuses on the link between DS and SUDEP and analyzes the potential pathogenesis. We summarize the genetic basis of DS and SUDEP and elucidate the pathophysiological mechanisms of SUDEP in DS. Furthermore, given the drug-resistant nature of this disorder, the pharmacological approach has limited efficacy and often causes side effects, therefore, the non-pharmacological approaches and precise treatment can reduce the risk of SUDEP in this condition, open a new window to cure this disease, and provide a widened landscape of treatment options for patients.
Collapse
Affiliation(s)
- WeiHui Shao
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuan Cheng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Jin M, Yang F, Du Y, Zhao L, Zhao X, Liu J, Zhang J, Sun S. Congenital long QT syndrome caused by a KCNH2 pathogenic variant exhibiting "motor seizures": a case report and literature review. BMC Pediatr 2025; 25:197. [PMID: 40091034 PMCID: PMC11912787 DOI: 10.1186/s12887-025-05545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
A retrospective analysis was conducted to evaluate the clinical characteristics, diagnostic challenges, and management strategies in a child with congenital long QT syndrome (cLQTS) caused by a KCNH2 gene pathogenic variant presenting as "motor seizures". The case involved a 10-year-old boy with a two-year history of recurrent loss of consciousness, which had worsened during the preceding week. Clinical manifestations included sudden episodes of unconsciousness, rightward strabismus of both eyes, cyanosis of the lips, guttural vocalizations, rigidity and shaking of the upper limbs, and urinary incontinence. These events typically lasted approximately two minutes, initially occurring semiannually but escalating to daily episodes over the past week, affecting both awake and sleep states. Video electroencephalography (VEEG) showed generalized slow waves and low voltage activity, while electrocardiography (ECG) demonstrated QTc prolongation, paired, and multi-source ventricular ectopy preceding torsades de pointes. Genetic testing identified a pathogenic c.1697G > A mutation in the KCNH2 gene corroborating the clinical diagnosis of cLQTS. Following confirmation, the patient was initiated on long-term oral therapy with propranolol and nicorandil. Under this regimen, the patient was seizure-free for 7-month. For patients with seizures or seizure-like episodes, such as extremity movement or rigidity, it is necessary to perform an ECG examination. Additionally, dynamic ECG and electrolyte assessments should be conducted when necessary to minimize the risk of misdiagnosis and inappropriate treatment. When VEEG shows a "slow-flat-slow" pattern, differentiation from A-S syndrome caused by malignant arrhythmias is critical. Once cLQTS is diagnosed, it is imperative to initiate prompt and aggressive treatment to mitigate the risks of syncope and sudden cardiac death.
Collapse
Affiliation(s)
- Mei Jin
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Fan Yang
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yakun Du
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Libo Zhao
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Xueran Zhao
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Jing Liu
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Jing Zhang
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Suzhen Sun
- Department of Pediatric Neurology, The Children Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China.
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
7
|
Dereli AS, Apaire A, El Tahry R. Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception. Int J Mol Sci 2025; 26:1598. [PMID: 40004062 PMCID: PMC11855741 DOI: 10.3390/ijms26041598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individuals suffering from epilepsy, with respiratory dysfunction playing a significant role in its pathology. Fatal seizures are often characterized by central apnea and hypercapnia (elevated CO2 levels), indicating a failure in ventilatory control. Research has shown that both human epilepsy patients and animal models exhibit a reduced hypercapnic ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability to regulate breathing in response to high CO2 levels. This review examines the role of central chemoreceptors-specifically the retrotrapezoid nucleus, raphe nuclei, nucleus tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP. Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin, somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory function, potentially exacerbating respiratory failure during seizures. Understanding the mechanisms linking central chemoreception, respiratory control, and neuropeptidergic signaling is essential to developing targeted interventions to reduce the risk of SUDEP in epilepsy patients.
Collapse
Affiliation(s)
- Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
| | - Auriane Apaire
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
| | - Riem El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Yoon S, Penzes P. Roles of ANK2/ankyrin-B in neurodevelopmental disorders: Isoform functions and implications for autism spectrum disorder and epilepsy. Curr Opin Neurobiol 2025; 90:102938. [PMID: 39631164 PMCID: PMC11839328 DOI: 10.1016/j.conb.2024.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
The ANK2 gene, encoding ankyrin-B, is a high-confidence risk factor for neurodevelopmental disorders (NDDs). Evidence from exome sequencing studies have repeatedly implicated rare variants in ANK2 in autism spectrum disorder. Recently, the functions of ankyrin-B isoforms on neuronal phenotypes have been investigated using a number of techniques including electrophysiology, proteomic screens and behavioral analysis using animal models with loss of distinct Ank2 isoforms or with targeted loss of Ank2 in different cell types and time points during brain development. ANK2 variants and their pathophysiology could provide valuable insights into the molecular mechanisms underlying NDDs. In this review, we focus on recently reported studies to help understand the pathological mechanisms of ANK2 loss and how it may facilitate the development of treatments for NDDs in the future.
Collapse
Affiliation(s)
- Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Kannan S, Kasberg W, Ernandez LR, Audhya A, Robertson GA. A privileged ER compartment for post-translational heteromeric assembly of an ion channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635714. [PMID: 39975268 PMCID: PMC11838338 DOI: 10.1101/2025.01.30.635714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mechanisms underlying heterotypic subunit assembly of ion channels and other oligomeric assemblies are poorly understood. In the human heart, heteromeric assembly of two isoforms encoded by the human ether-à-go-go related gene (hERG) is essential for the normal function of cardiac IKr in ventricular repolarization, with loss of hERG1b contributing to arrhythmias associated with long QT-syndrome. While hERG1a homomers traffic efficiently to the plasma membrane, hERG1b homomers are retained in the endoplasmic reticulum (ER). When expressed together, the two subunits avidly associate during biogenesis. Seeking rules specifying heteromeric association, we characterized the fate of hERG1b proteins using confocal and superresolution imaging in fixed and live HeLa cells. We found hERG1b sequestered in punctate intracellular structures when expressed alone in HeLa cells. These puncta, driven by an N-terminal "RXR" ER retention signal and phase separation, are distinct from other membranous compartments and proteasomal degradation pathways. The puncta represent a privileged ER sub-compartment distinct from that of ER-retained, type 2 (hERG-based) LQTS mutant proteins, which were rapidly degraded by the proteasome. Introducing hERG1a to cells with preformed hERG1b puncta dissolved these puncta by rescuing extant hERG1b. Rescue occurs by association of fully translated hERG1b with 1a, a surprising finding given previous studies demonstrating cotranslational heteromeric association. We propose that sequestration limits potentially deleterious surface expression of hERG1b homomeric channels while preserving hERG1b for an alternative mode of heteromeric hERG1a/1b channel assembly post-translationally. These findings reveal a surprising versatility of biosynthetic pathways promoting heteromeric assembly.
Collapse
Affiliation(s)
- Sudharsan Kannan
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Liliana R. Ernandez
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Gail A. Robertson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
10
|
Sharma S, Whitney R, Chowdhury SR, Ramachandrannair R. Sudden unexpected infant death, sudden unexplained death in childhood, and sudden unexpected death in epilepsy. Dev Med Child Neurol 2024. [PMID: 39709626 DOI: 10.1111/dmcn.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Sudden deaths in infants and children represent a profound and tragic event that continues to challenge researchers despite extensive investigation over several decades. The predominant phenotype, sudden infant death syndrome (SIDS), has evolved into the broader category of sudden unexpected infant death (SUID). In older children, a less understood phenomenon known as sudden unexplained death in childhood (SUDC) has garnered attention. Additionally, sudden unexpected death in epilepsy (SUDEP) constitutes a rare but recognized complication of epilepsy. Recent investigations indicate overlapping clinical, neuropathological, and genetic characteristics among SUID, SUDC, and SUDEP. Common features include death occurring during sleep, discovery in the prone position, hippocampal abnormalities, and genetic variations associated with epilepsy or cardiac arrhythmias. Notably, video recordings in certain examples of SUDC have captured 'convulsive' episodes preceding death in children without prior seizure history, suggesting that seizures may contribute more significantly to sudden paediatric deaths than previously presumed. This review explores these shared elements, underscoring their importance in formulating possible preventative measures against these devastating conditions.
Collapse
Affiliation(s)
- Suvasini Sharma
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Robyn Whitney
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Sayoni Roy Chowdhury
- Department of Pediatrics, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | | |
Collapse
|
11
|
Shlobin NA, Thijs RD, Benditt DG, Zeppenfeld K, Sander JW. Sudden death in epilepsy: the overlap between cardiac and neurological factors. Brain Commun 2024; 6:fcae309. [PMID: 39355001 PMCID: PMC11443455 DOI: 10.1093/braincomms/fcae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
People with epilepsy are at risk of premature death, of which sudden unexpected death in epilepsy (SUDEP), sudden cardiac death (SCD) and sudden arrhythmic death syndrome (SADS) are the primary, partly overlapping, clinical scenarios. We discuss the epidemiologies, risk factors and pathophysiological mechanisms for these sudden death events. We reviewed the existing evidence on sudden death in epilepsy. Classification of sudden death depends on the presence of autopsy and expertise of the clinician determining aetiology. The definitions of SUDEP, SCD and SADS lead to substantial openings for overlap. Seizure-induced arrhythmias constitute a minority of SUDEP cases. Comorbid cardiovascular conditions are the primary determinants of increased SCD risk in chronic epilepsy. Genetic mutations overlap between the states, yet whether these are causative, associated or incidentally present is often unclear. Risk stratification for sudden death in people with epilepsy requires a multidisciplinary approach, including a review of clinical history, toxicological analysis and complete autopsy with histologic and, preferably, genetic examination. We recommend pursuing genetic testing of relatives of people with epilepsy who died suddenly, mainly if a post-mortem genetic test contained a Class IV/V (pathogenic/likely pathogenic) gene variant. Further research may allow more precise differentiation of SUDEP, SCD and SADS and the development of algorithms for risk stratification and preventative strategies.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
| | - David G Benditt
- Cardiac Arrhythmia and Syncope Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Meletti S, Duma GM, Burani M, Danieli A, Giovannini G, Osanni E, Micalizzi E, Mambretti F, Pugnaghi M, Vaudano AE, Bonanni P. Ictal and Postictal Central Apnea in DEPDC5-Related Epilepsy. Neurol Genet 2024; 10:e200183. [PMID: 39376210 PMCID: PMC11458130 DOI: 10.1212/nxg.0000000000200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 10/09/2024]
Abstract
Objectives DEPDC5-related epilepsy carries an increased risk of sudden unexpected death in epilepsy. We evaluated the occurrence and features of ictal central apnea (ICA) in patients with pathogenic sequence variant in DEPDC5. Methods We reviewed data of 108 patients collected in 2 independent cohorts of patients with focal epilepsy who prospectively underwent long-term video-EEG monitoring (LTVM) with cardiorespiratory polygraphy. All patients underwent (1) at least an overnight polysomnography, (2) a high-field (3T) brain MRI study, and (3) CSF analysis when clinically indicated. Genetic testing (next-generation sequencing [NGS]) was offered for diagnostic purposes to patients with focal epilepsy of unknown etiology. Results In this cohort, NGS was finally performed in 29 patients, resulting in DEPDC5 pathogenic mutations in 5 patients. According to the presence of ictal apnea events, 5 of 14 patients with ICA showed pathogenic DEPDC5 variants (35%) while none of the 15 patients without ICA showed pathogenic mutation. Notably, DEPDC5 patients showed ICA in all recorded seizures (n = 15) with apnea duration ranging from 20 seconds to more than 1 minute. All seizures were characterized by motor arrest without overt automatic behaviors during ictal apnea. Scalp EEG showed the involvement of temporal lobe leads in all events. Severe oxygen desaturation was observed in 2 cases. Discussion In our cohort, ictal central apnea was a common finding in DEPDC5. These results support (1) the need for respiratory polygraphy during LTVM in DEPDC5-related epilepsy and (2) the potential relevance of genetic testing in patients with focal epilepsy of unknown etiology and ictal apnea.
Collapse
Affiliation(s)
- Stefano Meletti
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Gian Marco Duma
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Margherita Burani
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Alberto Danieli
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Giada Giovannini
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Elisa Osanni
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Elisa Micalizzi
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Fabiana Mambretti
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Matteo Pugnaghi
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Anna E Vaudano
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Paolo Bonanni
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
13
|
Gu B. Linking Respiratory Challenges in KCNQ2 Encephalopathy to "Phox2b" Neurons in the Retrotrapezoid Nucleus. Epilepsy Curr 2024; 24:289-291. [PMID: 39309053 PMCID: PMC11412407 DOI: 10.1177/15357597241253680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 09/25/2024] Open
Abstract
Phox2b-Expressing Neurons Contribute to Breathing Problems in Kcnq2 Loss- and Gain-of-Function Encephalopathy Models Soto-Perez J, Cleary CM, Sobrinho CR, Mulkey SB, Carroll JL, Tzingounis AV, Mulkey DK. Nat Commun. 2023;14:8059. doi:10.1038/s41467-023-43834-7 Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.
Collapse
Affiliation(s)
- Bin Gu
- Department of Neuroscience, Ohio State University
| |
Collapse
|
14
|
Baltos JA, Casillas-Espinosa PM, Rollo B, Gregory KJ, White PJ, Christopoulos A, Kwan P, O'Brien TJ, May LT. The role of the adenosine system in epilepsy and its comorbidities. Br J Pharmacol 2024; 181:2143-2157. [PMID: 37076128 DOI: 10.1111/bph.16094] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Fine AL. Through the Lens: Insights Into Sudden Death. Epilepsy Curr 2024; 24:268-270. [PMID: 39309062 PMCID: PMC11412403 DOI: 10.1177/15357597241253429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Video Analyses of Sudden Unexplained Deaths in Toddlers Gould L, Reid CA, Rodriguez AJ, Devinsky O; for SUDC Video Working Group. Neurology . 2024;102(3):e208038. doi:10.1212/WNL.0000000000208038 . PMID: 38175965 Background and objectives: More than 2,900 US children aged younger than 4 years die from unknown causes each year, accounting for more than 219,000 life years lost annually. They are mostly sleep-related and unwitnessed with unremarkable autopsies, limiting our understanding of death mechanisms. We sought to understand potential mechanisms of death by evaluating videos of sudden deaths in toddlers. Methods: In our registry of 301 sudden unexplained child deaths, a series of 7 consecutively enrolled cases with home video recordings of the child’s last sleep period were independently assessed by 8 physicians for video quality, movement, and sound. Results: Four boys and 3 girls (13-27 months at death) with terminal videos shared similar demographic features to the 293 other registry cases without video recordings. Five video recordings were continuous and 2 were triggered by sound or motion; 2 lacked audio. All continuous recordings included a terminal convulsive event lasting 8-50 seconds; 4 children survived for >2.5 minutes postconvulsion. Among discontinuous videos, time lapses limited review; 1 suggested a convulsive event. Six were prone with face down, and 1 had autopsy evidence of airway obstruction. Primary cardiac arrhythmias were not supported; all 7 children had normal cardiac pathology and whole-exome sequencing identified no known cardiac disease variants. Discussion: Audio-visual recordings in 7 toddlers with unexplained sudden deaths strongly implicate that deaths were related to convulsive seizures, suggesting that many unexplained sleep-related deaths may result from seizures. Exome Analysis Focusing on Epilepsy-Related Genes in Children and Adults With Sudden Unexplained Death Buerki SE, Haas C, Neubauer J. Seizure . 2023;113:66-75. doi:10.1016/j.seizure.2023.11.002 . PMID: 37995443 Purpose: Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20% to 35% of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. Methods: Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. Results: In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. Conclusion: Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.
Collapse
|
16
|
Aschner A, Keller A, Williams A, Whitney R, Cunningham K, Hamilton RM, Pollanen M, Donner E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front Neurol 2024; 15:1386730. [PMID: 38756210 PMCID: PMC11097959 DOI: 10.3389/fneur.2024.1386730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Sudden Unexpected Death in Epilepsy (SUDEP) is the leading epilepsy-related cause of death, affecting approximately 1 per 1,000 individuals with epilepsy per year. Genetic variants that affect autonomic function, such as genes associated with cardiac arrhythmias, may predispose people with epilepsy to greater risk of both sudden cardiac death and SUDEP. Advances in next generation sequencing allow for the exploration of gene variants as potential biomarkers. Methods Genetic testing for the presence of cardiac arrhythmia and epilepsy gene variants was performed via genetic panels in 39 cases of SUDEP identified via autopsy by the Ontario Forensic Pathology Service. Variants were summarized by in-silico evidence for pathogenicity from 4 algorithms (SIFT, PolyPhen-2, PROVEAN, Mutation Taster) and allele frequencies in the general population (GnomAD). A maximum credible population allele frequency of 0.00004 was calculated based on epilepsy prevalence and SUDEP incidence to assess whether a variant was compatible with a pathogenic interpretation. Results Median age at the time of death was 33.3 years (range: 2, 60). Fifty-nine percent (n=23) were male. Gene panels detected 62 unique variants in 45 genes: 19 on the arrhythmia panel and 26 on the epilepsy panel. At least one variant was identified in 28 (72%) of decedents. Missense mutations comprised 57 (92%) of the observed variants. At least three in silico models predicted 12 (46%) cardiac arrhythmia panel missense variants and 20 (65%) epilepsy panel missense variants were pathogenic. Population allele frequencies were <0.00004 for 11 (42%) of the cardiac variants and 10 (32%) of the epilepsy variants. Together, these metrics identified 13 SUDEP variants of interest. Discussion Nearly three-quarters of decedents in this SUDEP cohort carried variants in comprehensive epilepsy or cardiac arrhythmia gene panels, with more than a third having variants in both panels. The proportion of decedents with cardiac variants aligns with recent studies of the disproportionate cardiac burden the epilepsy community faces compared to the general population and suggests a possible cardiac contribution to epilepsy mortality. These results identified 13 priority targets for future functional studies of these genes potential role in sudden death and demonstrates the necessity for further exploration of potential genetic contributions to SUDEP.
Collapse
Affiliation(s)
- Amir Aschner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Keller
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrew Williams
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robyn Whitney
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - Kris Cunningham
- Department of Pathology and Molecular Medicine, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert M. Hamilton
- Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Pollanen
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Li Z, Liu X, Lin L, Jiang M, Hou J, Wang S, Chai Q, Li L, Liu Q. The grading diagnostic strategy of molecular autopsy combined with pathological autopsy in the forensic diagnosis of cardiomyopathy. Leg Med (Tokyo) 2024; 68:102380. [PMID: 38237273 DOI: 10.1016/j.legalmed.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 05/08/2024]
Abstract
The diagnosis of cardiomyopathy often relies on the subjective judgment of pathologists due to the variety of morphologic changes in the condition and its low specificity. This uncertainty can contribute to unexplained sudden cardiac deaths (USCD). To enhance the accuracy of hereditary cardiomyopathy diagnosis in forensic medicine, we proposed a combination of molecular autopsy and pathologic autopsy. By analyzing 16 deceased patients suspected of cardiomyopathy, using whole exome sequencing (WES) in molecular autopsy, and applying a combined diagnostic strategy, the study found pathogenic or likely pathogenic variants in 6 cases. Out of the 16 cases, cardiomyopathy was confirmed in 3, while 3 exhibited conditions consistent with it. Data for 4 cases was inconclusive, and cardiomyopathy was ruled out in 6. Notably, a novel variant of the TTN gene was identified. This research suggests that a grading diagnostic strategy, combining molecular and pathological evidence, can improve the accuracy of forensic cardiomyopathy diagnosis. This approach provides a practical model and strategy for precise forensic cause-of-death determination, addressing the limitations of relying solely on morphologic assessments in cardiomyopathy cases, and integrating genetic information for a more comprehensive diagnosis.
Collapse
Affiliation(s)
- Zehao Li
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, USA
| | - Xiang Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Lin
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Hou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shujuan Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Chai
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lianjie Li
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Engel C, Chevarin M, Piard J, Abad M, Thomas Q, Carmignac V, Duffourd Y, Lemesle-Martin M, Tarris G, Thauvin-Robinet C, Vabres P, Faivre L, Kuentz P. Allelic heterogeneity in a patient with postzygotic MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities. Clin Genet 2024; 105:581-583. [PMID: 38379111 DOI: 10.1111/cge.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
A case of mosaic MTOR-associated hemimegalencephaly and hypomelanosis of Ito, died at 33 probably because of sudden unexpected death in epilepsy. Assessment of the variant allele fraction (VAF) in different tissues postmortem showed high variability not correlated with clinical features, representing the most detailed assessment of VAFs in different tissues to date.
Collapse
Affiliation(s)
- Camille Engel
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
| | - Martin Chevarin
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation Diagnostique dans les Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
| | - Marine Abad
- Service d'Anatomie Pathologique, CHU Besançon, Besançon, France
| | - Quentin Thomas
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Service de Neurologie, CHU Dijon Bourgogne, Dijon, France
| | - Virginie Carmignac
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
| | - Yannis Duffourd
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation Diagnostique dans les Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Georges Tarris
- Service de Neurologie, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation Diagnostique dans les Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centres de référence Anomalies du Développement et Déficience Intellectuelle, FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Pierre Vabres
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Centre de référence MAGEC "Maladies Génétiques à Expression Cutanée", FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Centre de Génétique et Centres de référence Anomalies du Développement et Déficience Intellectuelle, FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", Université de Bourgogne Franche-Comté, Dijon, France
- Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, CHU Besançon, Besançon, France
| |
Collapse
|
19
|
Loureiro Fialho G, Miotto R, Tatsch Cavagnollo M, Murilo Melo H, Wolf P, Walz R, Lin K. The epileptic heart: Cardiac comorbidities and complications of epilepsy. Atrial and ventricular structure and function by echocardiography in individuals with epilepsy - From clinical implications to individualized assessment. Epilepsy Behav Rep 2024; 26:100668. [PMID: 38699061 PMCID: PMC11063386 DOI: 10.1016/j.ebr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Epilepsy is an increasing global neurological health issue. Recently, epidemiological and mechanistic studies have raised concern about cardiac involvement in individuals with epilepsy. This has resulted in the "epileptic heart" concept. Epidemiological data linking epilepsy to cardiovascular disease indicate an increased risk for ventricular and atrial arrhythmias, myocardial infarction, heart failure, and sudden death among individuals with epilepsy. Pathways of this interaction comprise increased prevalence of traditional cardiac risk factors, genetic abnormalities, altered brain circuitry with autonomic imbalance, and antiseizure medications with enzyme-inducing and ionic channel-blocking proprieties. Pathophysiological findings in the atria and ventricles of patients with epilepsy are discussed. Echocardiographic findings and future applications of this tool are reviewed. A risk stratification model and future studies on cardiac risk assessment in individuals with epilepsy are proposed.
Collapse
Affiliation(s)
- Guilherme Loureiro Fialho
- Cardiology Division, Department of Internal Medicine, University Hospital (HU) Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Ramsés Miotto
- Cardiology Division, Department of Internal Medicine, University Hospital (HU) Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Márcia Tatsch Cavagnollo
- Neurology Division, Department of Internal Medicine, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Hiago Murilo Melo
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Peter Wolf
- Danish Epilepsy Centre, Dianalund, Denmark
| | - Roger Walz
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Neurology Division, Department of Internal Medicine, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Epilepsy Surgery of Santa Catarina (CEPESC), University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Katia Lin
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Neurology Division, Department of Internal Medicine, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
- Center for Epilepsy Surgery of Santa Catarina (CEPESC), University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
20
|
Sridech W, Intamul K, Saengsin K, Wiwattanadittakul N, Sittiwangkul R, Katanyuwong K, Silvilairat S, Sanguansermsri C. Cardiac dysfunctions in children with drug-resistant epilepsy. Front Neurol 2024; 15:1381293. [PMID: 38689875 PMCID: PMC11058992 DOI: 10.3389/fneur.2024.1381293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Objective There were reports of cardiac dysfunction that led to sudden unexpected death in epilepsy (SUDEP) in patients with epilepsy. Early detection of cardiac dysfunction can lead to early management to prevent sudden cardiac death in these patients. The objective of our study is to assess cardiac functions in children with drug-resistant epilepsy (DRE) compared with the normal population by using a standard echocardiogram (SE), tissue Doppler imaging (TDI) and myocardial strain evaluations (MSE). Method Twenty-seven children who have been diagnosed with DRE based on the International League against Epilepsy (ILAE) were included in the study, along with 27 children whose ages match those of the normal control group. Results Seventeen children, median age 12 years old, were using more than four anti-seizure medications. Structural brain lesions were the most common cause of epilepsy, 55.6% (15). Generalized tonic-clonic seizures were the most common seizure type, 55.6% (15). Children with DRE had a lower early mitral valve E wave inflow velocity compared with the control group (p < 0.05). They also had lowered early diastolic velocities (e') and myocardial performance index (MPI) when compared with the control group (p < 0.05). There was a statistically significant difference in left ventricular myocardial strain in children with DRE, with an average of -21.1 (IQR -23.5 and -19.4) and control, -25.5 (IQR -27.3 and -24.2). Significance Children with DRE have an impairment of left ventricular diastolic function and myocardial strain, which could indicate decreased myocardial deformation and contraction compared with controls. These cardiological assessments can be used to evaluate children with DRE for early diagnosis and management of their cardiac dysfunction.
Collapse
Affiliation(s)
- Watthana Sridech
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonchanok Intamul
- Cardiology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kwannapas Saengsin
- Cardiology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Rekwan Sittiwangkul
- Cardiology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamornwan Katanyuwong
- Neurology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suchaya Silvilairat
- Cardiology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chinnuwat Sanguansermsri
- Neurology Division, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Jansen NA, Cestèle S, Marco SS, Schenke M, Stewart K, Patel J, Tolner EA, Brunklaus A, Mantegazza M, van den Maagdenberg AMJM. Brainstem depolarization-induced lethal apnea associated with gain-of-function SCN1AL263V is prevented by sodium channel blockade. Proc Natl Acad Sci U S A 2024; 121:e2309000121. [PMID: 38547067 PMCID: PMC10998578 DOI: 10.1073/pnas.2309000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.
Collapse
Affiliation(s)
- Nico A. Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Sandrine Cestèle
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
| | - Silvia Sanchez Marco
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Kirsty Stewart
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, GlasgowG51 4TF, United Kingdom
| | - Jayesh Patel
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Else A. Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, GlasgowG51 4TF, United Kingdom
- School of Health and Wellbeing, University of Glasgow, GlasgowG12 8TB, United Kingdom
| | - Massimo Mantegazza
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- Inserm, Valbonne-Sophia Antipolis06560, France
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| |
Collapse
|
22
|
Makowski C, Wagner M, Haberlandt E. „Sudden unexpected death in epilepsy“ (SUDEP) im Kindesalter – Auftreten im Zusammenhang mit selbstlimitierender Epilepsie mit zentrotemporalen Spikes (SeLECTS). CLINICAL EPILEPTOLOGY 2024; 37:16-20. [DOI: 10.1007/s10309-023-00645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2025]
|
23
|
Smith J, Richerson G, Kouchi H, Duprat F, Mantegazza M, Bezin L, Rheims S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2024; 65:9-25. [PMID: 37914406 DOI: 10.1111/epi.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.
Collapse
Affiliation(s)
- Jonathon Smith
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - George Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Hayet Kouchi
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
24
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
Buerki SE, Haas C, Neubauer J. Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death. Seizure 2023; 113:66-75. [PMID: 37995443 DOI: 10.1016/j.seizure.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20-35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. METHODS Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. RESULTS In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. CONCLUSION Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.
Collapse
Affiliation(s)
- Sarah E Buerki
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | | |
Collapse
|
26
|
Dainelli A, Iacomino M, Rossato S, Bugin S, Traverso M, Severino M, Gustincich S, Capra V, Di Duca M, Zara F, Scala M, Striano P. Refining the electroclinical spectrum of NPRL3-related epilepsy: A novel multiplex family and literature review. Epilepsia Open 2023; 8:1314-1330. [PMID: 37491868 PMCID: PMC10690669 DOI: 10.1002/epi4.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.
Collapse
Affiliation(s)
- Alice Dainelli
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | | | - Sara Rossato
- U.O.C. Pediatria, Ospedale San BortoloVicenzaItaly
| | | | - Monica Traverso
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | | | | | - Valeria Capra
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marco Di Duca
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Federico Zara
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| |
Collapse
|
27
|
Kao HY, Yao Y, Yang T, Ziobro J, Zylinski M, Mir MY, Hu S, Cao R, Borna NN, Banerjee R, Parent JM, Wang S, Leventhal DK, Li P, Wang Y. Sudden Unexpected Death in Epilepsy and Respiratory Defects in a Mouse Model of DEPDC5-Related Epilepsy. Ann Neurol 2023; 94:812-824. [PMID: 37606181 PMCID: PMC10592102 DOI: 10.1002/ana.26773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVES DEPDC5 is a common causative gene in familial focal epilepsy with or without malformations of cortical development. Its pathogenic variants also confer a significantly higher risk for sudden unexpected death in epilepsy (SUDEP), providing opportunities to investigate the pathophysiology intersecting neurodevelopment, epilepsy, and cardiorespiratory function. There is an urgent need to gain a mechanistic understanding of DEPDC5-related epilepsy and SUDEP, identify biomarkers for patients at high risk, and develop preventive interventions. METHODS Depdc5 was specifically deleted in excitatory or inhibitory neurons in the mouse brain to determine neuronal subtypes that drive epileptogenesis and SUDEP. Electroencephalogram (EEG), cardiac, and respiratory recordings were performed to determine cardiorespiratory phenotypes associated with SUDEP. Baseline respiratory function and the response to hypoxia challenge were also studied in these mice. RESULTS Depdc5 deletion in excitatory neurons in cortical layer 5 and dentate gyrus caused frequent generalized tonic-clonic seizures and SUDEP in young adult mice, but Depdc5 deletion in cortical interneurons did not. EEG suppression immediately following ictal offset was observed in fatal and non-fatal seizures, but low amplitude rhythmic theta frequency activity was lost only in fatal seizures. In addition, these mice developed baseline respiratory dysfunction prior to SUDEP, during which ictal apnea occurred long before terminal cardiac asystole. INTERPRETATION Depdc5 deletion in excitatory neurons is sufficient to cause DEPDC5-related epilepsy and SUDEP. Ictal apnea and respiratory dysregulation play critical roles in SUDEP. Our study also provides a novel mouse model to investigate the underlying mechanisms of DEPDC5-related epilepsy and SUDEP. ANN NEUROL 2023;94:812-824.
Collapse
Affiliation(s)
- Hsin-Yi Kao
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yilong Yao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Mary Zylinski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mohd Yaqub Mir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Shuntong Hu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Rajat Banerjee
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jack M. Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Michgian Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel K. Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Peng Li
- Michgian Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Material Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Michgian Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Singer ES, Crowe J, Holliday M, Isbister JC, Lal S, Nowak N, Yeates L, Burns C, Rajagopalan S, Macciocca I, King I, Wacker J, Ingles J, Weintraub RG, Semsarian C, Bagnall RD. The burden of splice-disrupting variants in inherited heart disease and unexplained sudden cardiac death. NPJ Genom Med 2023; 8:29. [PMID: 37821546 PMCID: PMC10567745 DOI: 10.1038/s41525-023-00373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
There is an incomplete understanding of the burden of splice-disrupting variants in definitively associated inherited heart disease genes and whether these genes can amplify from blood RNA to support functional confirmation of splicing outcomes. We performed burden testing of rare splice-disrupting variants in people with inherited heart disease and sudden unexplained death compared to 125,748 population controls. ClinGen definitively disease-associated inherited heart disease genes were amplified using RNA extracted from fresh blood, derived cardiomyocytes, and myectomy tissue. Variants were functionally assessed and classified for pathogenicity. We found 88 in silico-predicted splice-disrupting variants in 128 out of 1242 (10.3%) unrelated participants. There was an excess burden of splice-disrupting variants in PKP2 (5.9%), FLNC (2.7%), TTN (2.8%), MYBPC3 (8.2%) and MYH7 (1.3%), in distinct cardiomyopathy subtypes, and KCNQ1 (3.6%) in long QT syndrome. Blood RNA supported the amplification of 21 out of 31 definitive disease-associated inherited heart disease genes. Our functional studies confirmed altered splicing in six variants. Eleven variants of uncertain significance were reclassified as likely pathogenic based on functional studies and six were used for cascade genetic testing in 12 family members. Our study highlights that splice-disrupting variants are a significant cause of inherited heart disease, and that analysis of blood RNA confirms splicing outcomes and supports variant pathogenicity classification.
Collapse
Affiliation(s)
- Emma S Singer
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Crowe
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mira Holliday
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Julia C Isbister
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Sean Lal
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natalie Nowak
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Laura Yeates
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Charlotte Burns
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Ivan Macciocca
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid King
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Julie Wacker
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jodie Ingles
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Robert G Weintraub
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Moloney PB, Kearney H, Benson KA, Costello DJ, Cavalleri GL, Gorman KM, Lynch BJ, Delanty N. Everolimus precision therapy for the GATOR1-related epilepsies: A case series. Eur J Neurol 2023; 30:3341-3346. [PMID: 37422919 DOI: 10.1111/ene.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.
Collapse
Affiliation(s)
- Patrick B Moloney
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
- Blackrock Clinic, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- FutureNeuro SFI Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Daniel J Costello
- FutureNeuro SFI Research Centre, Dublin, Ireland
- Department of Neurology, Cork University Hospital and College of Medicine and Health, University College Cork, Cork, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Bryan J Lynch
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
30
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
31
|
Singh V, Ryan JM, Auerbach DS. It is premature for a unified hypothesis of sudden unexpected death in epilepsy: A great amount of research is still needed to understand the multisystem cascade. Epilepsia 2023; 64:2006-2010. [PMID: 37129136 DOI: 10.1111/epi.17636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Justin M Ryan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
32
|
Salomone G, Comella M, Portale A, Pecora G, Costanza G, Lo Bianco M, Sciuto S, Praticò ER, Falsaperla R. The Spectrum of DEPDC5-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:248-255. [DOI: 10.1055/s-0041-1727139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDisheveled EGL-10 and pleckstrin domain-containing protein 5 (DEPDC5) is a key member of the GAP activity toward rags complex 1 complex, which inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway. DEPDC5 loss-of-function mutations lead to an aberrant activation of the mTOR signaling. At neuronal level, the increased mTOR cascade causes the generation of epileptogenic dysplastic neuronal circuits and it is often associated with malformation of cortical development. The DEPDC5 phenotypic spectrum ranges from sporadic early-onset epilepsies with poor neurodevelopmental outcomes to familial focal epilepsies and sudden unexpected death in epilepsy; a high rate of inter- and intrafamilial variability has been reported. To date, clear genotype–phenotype correlations have not been proven. More studies are required to elucidate the significance of likely pathogenic/variants of uncertain significance. The pursuit of a molecular targeted antiepileptic therapy is a future challenge.
Collapse
Affiliation(s)
- Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Giulia Pecora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sarah Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | |
Collapse
|
33
|
Yin K, Lei X, Yan Z, Yang Y, Deng Q, Lu Q, Zhang X, Wang M, Liu Q. Clinical and genetic features of GATOR1 complex-associated epilepsy. J Med Genet 2023; 60:784-790. [PMID: 36604176 DOI: 10.1136/jmg-2021-108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To analyse the prevalence of pathogenic variants in DEPDC5, NPRL2 and NPRL3 that encode the GATOR1 (GTPase-activating protein towards the Rags 1) complex, a modulator in the mammalian target of rapamycin (mTOR) pathway, and to define the characteristics of GATOR1-associated epilepsy. METHODS Clinical details and whole-exome sequencing data of 170 novel probands with lesional or non-lesional epilepsy were retrieved. Candidate variants in GATOR1 genes were verified by Sanger sequencing, and cosegregate analysis was performed. The pathogenicity of variants and their effect on mTOR signalling were investigated. RESULTS Two novel frameshift variants and one recurrent nonsense variant were detected in DEPDC5, with a prevalence of 1.8% (3 out of 170) in the whole cohort and 3.1% (3 out of 97) in focal epilepsies. These variants cosegregated in pedigrees with epilepsy, respectively. Rare missense variants in NPRL2 and NPRL3 did not segregate with epilepsy in families, respectively. Epileptic phenotypes of 21 patients with DEPDC5 variants showed focal seizures with non-lesional variable foci that were predominantly sleep-related, with a median onset age of 10 years (range 1-30). Seizure outcome was variable. About 24% of patients were drug-resistant, and seizure attacks were absent in 33% of variant carriers. Of 13 patients who experienced seizures, 54% tended to resolve spontaneously. Functional assessments showed that the three variants affected DEPDC5 expression. These loss-of-function (LoF) variants affected the DEPDC5-dependent inhibition of mTOR. CONCLUSIONS Patients carrying DEPDC5-LoF variants might show a high prevalence of focal seizures with a dynamic phenotype, indicating reduced penetrance and self-resolving features. The associated epilepsy was caused by loss of inhibition of the mTOR pathway. The pathogenicity of missense variants in GATOR1 genes should be cautiously evaluated.
Collapse
Affiliation(s)
- Kaili Yin
- McKusick-Zhang Center for Genetic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingxing Lei
- McKusick-Zhang Center for Genetic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaofen Yan
- Epilepsy Center and Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Key Laboratory of Epilepsy, Beijing Institute for Brain Disorders, 50 Xiang-shan-xi-song, Beijing, China
| | - Yujiao Yang
- Epilepsy Center and Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Key Laboratory of Epilepsy, Beijing Institute for Brain Disorders, 50 Xiang-shan-xi-song, Beijing, China
| | - Qinqin Deng
- Epilepsy Center and Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Key Laboratory of Epilepsy, Beijing Institute for Brain Disorders, 50 Xiang-shan-xi-song, Beijing, China
| | - Qiang Lu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyang Wang
- Epilepsy Center and Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Key Laboratory of Epilepsy, Beijing Institute for Brain Disorders, 50 Xiang-shan-xi-song, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Bagnall RD, Perucca P. ILAE Genetic Literacy Series: Postmortem Genetic Testing in Sudden Unexpected Death in Epilepsy. Epileptic Disord 2023; 25:472-479. [PMID: 37340991 DOI: 10.1002/epd2.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023]
Abstract
A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic-clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic-clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as "sudden unexpected death in epilepsy" (SUDEP), and it would qualify as "definite SUDEP" using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Zhou Y, Hao N, Sander JW, Lin X, Xiong W, Zhou D. KCNH2 variants in a family with epilepsy and long QT syndrome: A case report and literature review. Epileptic Disord 2023; 25:492-499. [PMID: 36946251 DOI: 10.1002/epd2.20046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Genes associated with Long QT syndromes (LQTS), such as KCNQ1, KCNH2, and SCN5A, are common causes of epilepsy. The Arg 744* variant of KCNH2 has been previously reported in people with epilepsy or LQTS, but none of these patients were reported to simultaneously suffer from epilepsy and LQTS. Herein, we report the case of a family with epilepsy and cardiac disorders. METHOD The proband, a 25-year-old woman, with a family history of epilepsy and LQTS was followed at West China Hospital. The proband experienced her first seizure at the age of seven. Video electroencephalograms (vEEGs) showed epileptic discharges. Her 24-h dynamic electrocardiograms 2 (ECGs) showed QTc prolongation. The proband's mother, who is 50 years old, had her first generalized tonic-clonic seizure (GTCS) at the age of 18 years old. After she gave birth at the age of 25, the frequency of seizures increased, so antiepileptic therapy was initiated. When she was 28 years old, she complained of palpitations and syncope for the first time, and QTc prolongation was detected on her 24-h dynamic ECGs. The proband's grandmother also had complaints of palpitations and syncope at the age of 73. Her 24-h dynamic ECGs indicated supraventricular arrhythmia, with the lowest heart rate being 41 bpm, so she agreed to a pacemaker. Considering the young patient's family history, blood samples of the patient and her parents were collected for genetic analysis. RESULTS A heterozygous variant of KCNH2 [c.2230 (exon9) C>T, p. Arg744Ter, 416, NM_000238, rs189014161] was found in the proband and her mother. According to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, we classified the KCNH2 variant as pathogenic. SIGNIFICANCE This study expands the clinical phenotype of the Arg 744* KCNH2 pathogenic variant. In the context of channelopathies, because of the genetic susceptibility of the brain and the heart, the risk of comorbidity should be considered. This also indicates the importance of precise antiepileptic drug (AED) management and regular ECG monitoring for patients with channelopathies.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Nanya Hao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Josemir W Sander
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Xu Lin
- Department of Neurology, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Weixi Xiong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Whitney R, Sharma S, Jones KC, RamachandranNair R. Genetics and SUDEP: Challenges and Future Directions. Seizure 2023; 110:188-193. [PMID: 37413779 DOI: 10.1016/j.seizure.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related deaths in children and adults with epilepsy. The incidence of SUDEP in children and adults is equal, approximately 1.2 per 1000-person years. Although inroads have been made in our understanding of SUDEP, its pathophysiology remains unknown. The most important risk factor for SUDEP is the presence of tonic-clonic seizures. Recently there has been growing interest in the contribution of genetic risk factors to SUDEP deaths. Pathogenic variants in epilepsy-related and cardiac genes have been found in some cases of SUDEP post-mortem. Pleiotropy may occur in which a single gene when altered may cause multiple phenotypes (i.e., epilepsy and cardiac arrhythmia). Recently it has been shown that some developmental and epileptic encephalopathies (DEEs) may also be at heightened risk of SUDEP. In addition, polygenic risk has been postulated to effect SUDEP risk with current models evaluating the additive effect of variants in multiple genes. However, the mechanisms underpinning polygenic risk in SUDEP are likely more complex than this. Some preliminary studies also highlight the feasibility of detecting genetic variants in brain tissue post-mortem. Despite the advances in the field of SUDEP genetics, the use of molecular autopsy remains underutilized in SUDEP cases. Several challenges exist concerning genetic testing post-mortem in SUDEP cases, such as interpretation, cost of testing, and availability. In this focused review, we highlight the current landscape of genetic testing in SUDEP cases, its challenges, and future directions.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and associated Kalawati Saran Children Hospital, New Delhi, India
| | - Kevin C Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Vincent A, Chu NT, Shah A, Avanthika C, Jhaveri S, Singh K, Limaye OM, Boddu H. Sudden Infant Death Syndrome: Risk Factors and Newer Risk Reduction Strategies. Cureus 2023; 15:e40572. [PMID: 37465778 PMCID: PMC10351748 DOI: 10.7759/cureus.40572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
Sudden infant death syndrome (SIDS) continues to be one of the top causes of infant death in the U.S. Despite significant public health initiatives focused on high-risk populations to enhance sleep environments and techniques. The SIDS rate has remained stable in recent years. Risk factors and newer risk reduction strategies for SIDS are the focus of this review article. We conducted a comprehensive literature search on Medline, Cochrane, Embase, and Google Scholar until July 2022. The following search strings and Medical Subject Heading (MeSH) terms were used: "SIDS," "Sudden Infant Death" and "SUID". We explored the literature on SIDS for its epidemiology, pathophysiology, the role of various etiologies and their influence, associated complications leading to SIDS, and preventive and treatment modalities. Despite a more than 50% drop-in rates since the start of the "Back to Sleep" campaign in 1994, sudden infant death syndrome (SIDS) continues to be the top cause of post-neonatal mortality in the United States, despite continued educational initiatives that support safe sleep and other risk reduction strategies. The new American Academy of Pediatrics guidelines for lowering the risk of SIDS include a lot of emphasis on sleeping habits, bedding, and environment but also include elements that are frequently ignored (i.e., prenatal care, smoking, alcohol and drug use, and childhood vaccinations). This study highlights these less-frequently discussed aspects and identifies treatments that have produced beneficial behavioral shifts that benefit newborns as well as their mothers' health and wellbeing.
Collapse
Affiliation(s)
- Anita Vincent
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Ngan Thy Chu
- Paediatrics, City Children's Hospital, Ho Chi Minh city, VNM
| | - Aashka Shah
- Paediatrics and Child Health, Pramukhswami Medical College, Karamsad, Anand, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York City, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College (NHLMMC), Ahmedabad, IND
| | - Kunika Singh
- Paediatrics, Xinjiang Medical University, Xinjiang, CHN
| | - Om M Limaye
- Paediatrics, Lokmanya Tilak Municipal Medical College and Sion Hospital, Mumbai, IND
| | - Himasaila Boddu
- Paediatrics, Dr. Pinnamaneni Siddartha Institute of Medical Sciences and Research Foundation, Krishna, IND
| |
Collapse
|
39
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
40
|
Central control of cardiac activity as assessed by intra-cerebral recordings and stimulations. Neurophysiol Clin 2023; 53:102849. [PMID: 36867969 DOI: 10.1016/j.neucli.2023.102849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
Some of the most important integrative control centers for the autonomic nervous system are located in the brainstem and the hypothalamus. However, growing recent neuroimaging evidence support that a set of cortical regions, named the central autonomic network (CAN), is involved in autonomic control and seems to play a major role in continuous autonomic cardiac adjustments to high-level emotional, cognitive or sensorimotor cortical activities. Intracranial explorations during stereo-electroencephalography (SEEG) offer a unique opportunity to address the question of the brain regions involved in heart-brain interaction, by studying: (i) direct cardiac effects produced by the electrical stimulation of specific brain areas; (ii) epileptic seizures inducing cardiac modifications; (iii) cortical regions involved in cardiac interoception and source of cardiac evoked potentials. In this review, we detail the available data assessing cardiac central autonomic regulation using SEEG, address the strengths and also the limitations of this technique in this context, and discuss perspectives. The main cortical regions that emerge from SEEG studies as being involved in cardiac autonomic control are the insula and regions belonging to the limbic system: the amygdala, the hippocampus, and the anterior and mid-cingulate. Although many questions remain, SEEG studies have already demonstrated afferent and efferent interactions between the CAN and the heart. Future studies in SEEG should integrate these afferent and efferent dimensions as well as their interaction with other cortical networks to better understand the functional heart-brain interaction.
Collapse
|
41
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
42
|
Kovačević M, Janković M, Branković M, Milićević O, Novaković I, Sokić D, Ristić A, Shamsani J, Vojvodić N. Novel GATOR1 variants in focal epilepsy. Epilepsy Behav 2023; 141:109139. [PMID: 36848747 DOI: 10.1016/j.yebeh.2023.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
INTRODUCTION Variants in GATOR1 genes are well established in focal epilepsy syndromes. A strong association of GATOR1 variants with drug-resistant epilepsy as well as an increased risk of sudden unexplained death in epilepsy warrants developing strategies to facilitate the identification of patients who could potentially benefit from genetic testing and precision medicine. We aimed to determine the yield of GATOR1 gene sequencing in patients with focal epilepsy typically referred for genetic testing, establish novel GATOR1 variants and determine clinical, electroencephalographic, and radiological characteristics of variant carriers. PATIENTS AND METHODS Ninety-six patients with clinical suspicion of genetic focal epilepsy with previous comprehensive diagnostic epilepsy evaluation in The Neurology Clinic, University Clinical Center of Serbia, were included in the study. Sequencing was performed using a custom gene panel encompassing DEPDC5, NPRL2, and NPRL3. Variants of interest (VOI) were classified according to criteria proposed by the American College of Medical Genetics and the Association for Molecular Pathology. RESULTS Four previously unreported VOI in 4/96 (4.2%) patients were found in our cohort. Three likely pathogenic variants were determined in 3/96 (3.1%) patients, one frameshift variant in DEPDC5 in a patient with nonlesional frontal lobe epilepsy, one splicogenic DEPDC5 variant in a patient with nonlesional posterior quadrant epilepsy, and one frameshift variant in NPRL2 in a patient with temporal lobe epilepsy associated with hippocampal sclerosis. Only one VOI, a missense variant in NPRL3, found in 1/96 (1.1%) patients, was classified as a variant of unknown significance. CONCLUSION GATOR1 gene sequencing was diagnostic in 3.1% of our cohort and revealed three novel likely pathogenic variants, including a previously unreported association of temporal lobe epilepsy with hippocampal sclerosis with an NPRL2 variant. Further research is essential for a better understanding of the clinical scope of GATOR1 gene-associated epilepsy.
Collapse
Affiliation(s)
- Maša Kovačević
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia.
| | - Milena Janković
- Neurology Clinic, University Clinical Center of Serbia, Serbia
| | | | | | | | - Dragoslav Sokić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | - Aleksandar Ristić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| | | | - Nikola Vojvodić
- Neurology Clinic, University Clinical Center of Serbia, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
43
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
44
|
Whitney R, Sharma S, Ramachandrannair R. Sudden unexpected death in epilepsy in children. Dev Med Child Neurol 2023. [PMID: 36802063 DOI: 10.1111/dmcn.15553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/20/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality in children and adults living with epilepsy. The incidence of SUDEP is comparable in both children and adults; it is approximately 1.2 per 1000 person years. The pathophysiology of SUDEP is not well understood but may involve mechanisms such as cerebral shutdown, autonomic dysfunction, altered brainstem function, and cardiorespiratory demise. Risk factors for SUDEP include the presence of generalized tonic-clonic seizures, nocturnal seizures, possible genetic predisposition, and non-adherence to antiseizure medications. Pediatric-specific risk factors are not fully elucidated. Despite recommendations from consensus guidelines, many clinicians still do not follow the practice of counseling their patients about SUDEP. SUDEP prevention has been an area of important research focus and includes several strategies, such as obtaining seizure control, optimizing treatment regimens, nocturnal supervision, and seizure detection devices. This review discusses what is currently known about SUDEP risk factors and reviews current and future preventive strategies for SUDEP.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Harding Medical College and Kalawati Saran Children Hospital, New Delhi, India
| | - Rajesh Ramachandrannair
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Zhang X, Zhang J, Wang J, Zou D, Li Z. Analysis of forensic autopsy cases associated with epilepsy: Comparison between sudden unexpected death in epilepsy (SUDEP) and not-SUDEP groups. Front Neurol 2022; 13:1077624. [PMID: 36570468 PMCID: PMC9780386 DOI: 10.3389/fneur.2022.1077624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background and aims Epilepsy is a common and chronic neurological disorder characterized by seizures that increase the risk of mortality. SUDEP is the most common seizure-related category of death. The study aimed to evaluate the key characteristics between SUDEP and not-SUDEP death cases. Methods A retrospective study of forensic autopsy cases from 2002 to 2021, performed by the Academy of Forensic Science (Ministry of Justice, China), identified a total of 31 deaths associated with epilepsy. We compared the different characteristics between individuals who died of SUDEP (SUDEP group) and individuals with epilepsy died suddenly due to unrelated causes (not-SUDEP group). Results and conclusions 13 cases met the general accepted definition of SUDEP; and 18 cases were classified as not-SUDEP. The mean age of the not-SUDEP group was significantly higher than that of the SUDEP groups (p < 0.05) and there were more cases without a clear cause of epilepsy in the SUDEP group than in the not-SUDEP group (p < 0.05). Death position differed significantly between the two groups, with more cases dying in the prone position in the SUDEP group (p < 0.05). Complete autopsies were performed in 24 of the 31 cases. There were no significant differences in heart, lungs and brain weights, or in ventricular thickness (p > 0.05) between the SUDEP and not-SUDEP groups. In addition, compared to the not-SUDEP group, the SUDEP group featured a significantly more cases with coronary lesions (grades 1-3, p < 0.05). Neuropathological lesions were identified in 12 of the 13 SUDEP cases (92.3%), cardiac lesions were present in 10 cases (76.9%) and pulmonary edema and pulmonary congestion were present in all cases. The primary cause of death in 13 of the 31 cases was seizure disorder or epilepsy. The primary mechanism of death in SUDEP group was mainly asphyxia while that in the not-SUDEP group was cardiopulmonary failure (p < 0.05). Patients in the prone position had a significantly higher risk of asphyxia than those who were not. Here, we investigated the key characteristics between SUDEP and not-SUDEP death cases, which may help to facilitate forensic diagnosis in presumed SUDEP cases.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Cardiology, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Jiangsu, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China,*Correspondence: Jianhua Zhang
| | - Jinming Wang
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Donghua Zou
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China,Donghua Zou
| | - Zhengdong Li
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China,Zhengdong Li
| |
Collapse
|
46
|
Zhu Z, Bolt E, Newmaster K, Osei-Bonsu W, Cohen S, Cuddapah VA, Gupta S, Paudel S, Samanta D, Dang LT, Carney PR, Naik S. SCN1B Genetic Variants: A Review of the Spectrum of Clinical Phenotypes and a Report of Early Myoclonic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1507. [PMID: 36291443 PMCID: PMC9600564 DOI: 10.3390/children9101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Background: Pathogenic variants in SCN1B, the gene encoding voltage-gated sodium channel b1/b1B subunits are associated with a spectrum of epileptic disorders. This study describes a child with early myoclonic encephalopathy and a compound heterozygous variant in the SCN1B gene (p.Arg85Cys and c.3G>C/p.Met1), along with the child’s clinical response to anti-seizure medications (ASMs) and the ketogenic diet. We reviewed the current clinical literature pertinent to SCN1B-related epilepsy. Methods: We described the evaluation and management of a patient with SCN1B-related developmental and epileptic encephalopathy (DEE). We used the Medline and Pubmed databases to review the various neurological manifestations associated with SCN1B genetic variants, and summarize the functional studies performed on SCN1B variants. Results: We identified 20 families and six individuals (including the index case described herein) reported to have SCN1B-related epilepsy. Individuals with monoallelic pathogenic variants in SCN1B often present with genetic epilepsy with febrile seizures plus (GEFS+), while those with biallelic pathogenic variants may present with developmental and epileptic encephalopathy (DEE). Individuals with DEE present with seizures of various semiologies (commonly myoclonic seizures) and status epilepticus at early infancy and are treated with various antiseizure medications. In our index case, adjunctive fenfluramine was started at 8 months of age at 0.2 mg/kg/day with gradual incremental increases to the final dose of 0.7 mg/kg/day over 5 weeks. Fenfluramine was effective in the treatment of seizures, resulting in a 50% reduction in myoclonic seizures, status epilepticus, and generalized tonic-clonic seizures, as well as a 70−90% reduction in focal seizures, with no significant adverse effects. Following the initiation of fenfluramine at eight months of age, there was also a 50% reduction in the rate of hospitalizations. Conclusions: SCN1B pathogenic variants cause epilepsy and neurodevelopmental impairment with variable expressivity and incomplete penetrance. The severity of disease is associated with the zygosity of the pathogenic variants. Biallelic variants in SCN1B can result in early myoclonic encephalopathy, and adjunctive treatment with fenfluramine may be an effective treatment for SCN1B-related DEE. Further research on the efficacy and safety of using newer ASMs, such as fenfluramine in patients under the age of 2 years is needed.
Collapse
Affiliation(s)
- Zahra Zhu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Elizabeth Bolt
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Kyra Newmaster
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Wendy Osei-Bonsu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Stacey Cohen
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vishnu Anand Cuddapah
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sita Paudel
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| | - Debopam Samanta
- Division of Pediatric Neurology, Arkansas Children’s Hospital, Little Rock, AR 72202, USA
| | - Louis T. Dang
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul R. Carney
- Pediatric Neurology Division, University of Missouri Health Care, Columbia, MO 65212, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
47
|
He Z, Li Y, Zhao X, Li B. Dravet Syndrome: Advances in Etiology, Clinical Presentation, and Treatment. Epilepsy Res 2022; 188:107041. [DOI: 10.1016/j.eplepsyres.2022.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
|
48
|
Haridas B, Chuang DT, Nei M, Kang JY. Sudden Unexpected Death in Epilepsy: Pathogenesis, Risk Factors, and Prevention. Semin Neurol 2022; 42:658-664. [PMID: 36223819 DOI: 10.1055/a-1960-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a tragic and unexpected cause of death in patients with a known diagnosis of epilepsy. It occurs in up to 6.3 to 9.3/1,000 patients with drug-resistant epilepsy. The main three risk factors associated with SUDEP are the presence of generalized tonic-clonic seizures, the presence of a seizure in the past year, and an intellectual disability. There are several mechanisms that can result in SUDEP. The most likely sequence of events appears to be a convulsive seizure, overactivation of the autonomic nervous system, cardiorespiratory dysfunction, and death. While the risk of SUDEP is relatively high in patients with drug-resistant epilepsy, studies indicate that more than 50% of patients and caregivers are unaware of the diagnosis. Counseling about the diagnosis and preventative measures at the time of diagnosis is important. There are numerous interventions that may reduce the risk of SUDEP, including conservative measures such as nocturnal surveillance with a bed partner (where applicable) and automated devices. Optimizing seizure control with antiseizure medications and surgical interventions can result in a reduced risk of SUDEP.
Collapse
Affiliation(s)
- Babitha Haridas
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David T Chuang
- Department of Neurology, Weill Cornell School of Medicine, New York, New York
| | - Maromi Nei
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Zhang Q, Suller-Marti A, Ding JJ, Deng G, He W, Burneo JG, Hammond RR, Ang LC. Epilepsy-associated death in the Southwestern Ontario: A clinicopathological correlation study. Brain Pathol 2022; 33:e13121. [PMID: 36180818 PMCID: PMC10041075 DOI: 10.1111/bpa.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with epilepsy are at elevated risk for premature mortality, of which sudden unexpected death in epilepsy (SUDEP) is one of the leading causes. SUDEP incidence varies significantly depending on the population and the methods used to document the cause of death. We performed retrospective case review at the London Health Sciences Centre for the period of 2000 to 2018. Clinical information, scene investigations, general pathology findings, toxicology, and neuropathology findings were obtained, examined, and confirmed by two neuropathologists and one epileptologist. The characteristics were compared and summarized. We also evaluated the impact of 2010 revision of Ontario Coroner Act Regulation, which significantly limited whole brain examination. Among the 12,206 cases reviewed, we identified 152 cases with a known history of epilepsy. Ninety-seven cases (64%) were classified as SUDEP. There were significantly more SUDEP decedents found dead unwitnessed at night in prone position, than non-SUDEP. Generalized seizures were strongly associated with SUDEP. A male predominance was observed in SUDEP group between 15 and 35 years old. Near half of the brains examined were "unremarkable." There was no difference in neuropathology findings between SUDEP and non-SUDEP groups. After implementation of the 2010 revision of Ontario Coroner Act Regulation, fixed whole brain examination was reduced from 88% to 7% of the epilepsy-related death investigation. Except a lower diagnosis rate of "inflammatory/infectious changes," there were no significant differences in neuropathology findings. This is the first detailed clinical-pathological study on epilepsy-related death based on a Canadian cohort. This study reinforces the previously reported findings in SUDEP and highlights the importance of clinicopathological correlation for accurate classification of epilepsy-related death.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathology and Lab Medicine, London Health Sciences Centre, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller-Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jane Jian Ding
- Department of Pathology and Lab Medicine, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Gansen Deng
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Wenqing He
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Neuroepidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert R Hammond
- Department of Pathology and Lab Medicine, London Health Sciences Centre, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lee-Cyn Ang
- Department of Pathology and Lab Medicine, London Health Sciences Centre, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
50
|
Kløvgaard M, Sabers A, Ryvlin P. Update on Sudden Unexpected Death in Epilepsy. Neurol Clin 2022; 40:741-754. [DOI: 10.1016/j.ncl.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|