1
|
Ren Z, Gan J, Chen Z, Shi Z, Liu S, Lu H, Zhang G, Ji Y. Cerebral microbleeds: prevalence and relationship to clinical features in cognitive impairment with lewy body disease. BMC Neurol 2025; 25:172. [PMID: 40269723 DOI: 10.1186/s12883-025-04181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The burden of cerebral microbleeds (CMBs) is greater in patients with dementia with Lewy bodies (DLB) than in those with Parkinson disease dementia (PDD), while few studies have been carried out in a large sample size, or focused on the prodromal stage. Thus, we investigated the clinical prevalence of CMBs and its relationship to clinical features in patients with DLB, PDD, mild cognitive impairment with Lewy bodies (MCI-LB) and Parkinson's disease with MCI (PD-MCI) in this study. METHODS In this retrospective multicenter cohort study, the study population consisted of 486 patients with DLB, 262 cases with PDD, 74 cases with MCI-LB and 107 cases with PD-MCI from 22 memory clinics between January 2018 and June 2022 in China. Demographic and clinical information were collected by reviewing medical records. CMBs were classified as "present" or "absent" in the Gradient Recalled-Echo or Susceptibility Weighted Imaging. RESULTS The prevalence of CMBs was significantly greater in patients with DLB with 24.69% (95% CI [20.92%, 28.78%]) than patients with PDD with 20.23% (95% CI [5.54%, 25.61%]), patients with MCI-LB with 16.22% (95% CI [8.67%, 26.61%]), and patients with PD-MCI with 12.15% (95% CI [6.63%, 19.88%]). There were sex and age differences in this prevalence. In all patients, the presence of CMBs was significantly and independently associated with the presence of visual hallucination (OR = 1.597, 95% CI [1.014, 2.517], p = 0.044) and fluctuating cognition (OR = 1.707, 95% CI [1.140, 2.556], p = 0.009); and it was associated with the severity of hallucination (B = 0.775, SE = 0.368, p = 0.036) and disinhibition (B = 0.363, SE = 0.148, p = 0.014) reflected by NPI. Moreover, CMBs in DLB were associated with the presence of parkinsonism symptoms (OR = 1.821, 95% CI [1.001, 3.314], p = 0.05), and the scores of UPDRS-III (B = 4.711, SE = 1.939, p = 0.016) and Hoehn-Yahn stage (B = 0.452, SE = 0.165, p = 0.007). CONCLUSION Patients with DLB had a higher proportion of CMBs than PDD, MCI-LB and PD-MCI. CMBs in all DLB, PDD, MCI-LB and PD-MCI cases were associated with the presence of visual hallucination and fluctuating cognition; in DLB were associated with motor function.
Collapse
Affiliation(s)
- Zhihong Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhichao Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of neurodegenerative diseases, Tianjin Huanhu Hospital, Tianjin dementia institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of neurodegenerative diseases, Tianjin Huanhu Hospital, Tianjin dementia institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Hao Lu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Guili Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of neurodegenerative diseases, Tianjin Huanhu Hospital, Tianjin dementia institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Department of Cognitive Disorder, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
| |
Collapse
|
2
|
Yang Y, Li X, Lu J, Ge J, Chen M, Yao R, Tian M, Wang J, Liu F, Zuo C. Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Neural Regen Res 2025; 20:93-106. [PMID: 38767479 PMCID: PMC11246150 DOI: 10.4103/1673-5374.391180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Abstract
Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yoo HS, Kim HK, Na HK, Kang S, Park M, Ahn SJ, Lee JH, Ryu YH, Lyoo CH. Association of Striatal Dopamine Depletion and Brain Metabolism Changes With Motor and Cognitive Deficits in Patients With Parkinson Disease. Neurology 2024; 103:e210105. [PMID: 39602663 DOI: 10.1212/wnl.0000000000210105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Parkinson disease (PD) shows degeneration of dopaminergic neurons in the substantia nigra and characteristic changes in brain metabolism. However, how they correlated and affect motor and cognitive dysfunction in PD has not yet been well elucidated. METHODS In this single-site cross-sectional study, we enrolled patients with PD who underwent N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (18F-FP-CIT) PET, 18F-fluorodeoxyglucose (18F-FDG) PET, the Movement Disorder Society-sponsored Unified PD Rating Scale examination, and detailed neuropsychological testing. General linear models and mediation analyses were implemented to investigate the association between striatal dopamine transporter availability, brain metabolism, and parkinsonian motor subscores or domain-specific cognitive scores. Healthy controls (HCs) who underwent 18F-FP-CIT and 18F-FDG PET were also enrolled. RESULTS Compared with HCs (n = 38, mean age 67.3 ± 5.9 years; 19 women), patients with PD (n = 143, mean age 69.0 ± 9.0 years; 69 women) characteristically showed relative brain hypermetabolism and hypometabolism that correlated with striatal dopamine transporter availability. As the loss of putaminal dopamine transporter availability increased, brain metabolism relatively increased from the paracentral lobule, pons, and limbic system to the cerebellum and anterior cingulate cortex, whereas brain metabolism relatively decreased from the lateral temporal and frontal cortices to the occipital and inferior parietal cortices. Reduced putaminal dopamine was associated with a higher rigidity subscore by the mediation of relative hypermetabolism in the paracentral lobule (standardized indirect effect, β = -0.070, p = 0.025) and directly associated with a higher bradykinesia subscore (β = -0.274, p = 0.011). Reduced caudate dopamine was associated with a higher axial subscore (β = -0.125, p = 0.004) and lower executive (β = 0.229, p = 0.004), visuospatial (β = 0.139, p = 0.006), and memory (β = 0.140, p = 0.004) domain scores by the mediation of relative brain hypometabolism. The tremor subscore and language and attention scores were not associated with striatal dopamine availability or brain metabolism. DISCUSSION Our findings suggest that in PD, striatal dopamine depletion and altered brain metabolism are closely linked, that changes in brain metabolism occur in specific spatial patterns depending on the degree of dopamine depletion, and that both differentially affect motor and cognitive dysfunction depending on each symptom.
Collapse
Affiliation(s)
- Han Soo Yoo
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Kyu Na
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungwoo Kang
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mina Park
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Woo KA, Yoon EJ, Kim S, Kim H, Kim R, Jin B, Lee S, Park H, Nam H, Kim YK, Lee JY. Cognitive Impact of β-Amyloid Load in the Rapid Eye Movement Sleep Behavior Disorder-Lewy Body Disease Continuum. Mov Disord 2024; 39:2259-2270. [PMID: 39400375 DOI: 10.1002/mds.30031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Rapid eye movement sleep behavior disorder (RBD) is linked to the diffuse-malignant subtype and higher cognitive burden in Lewy body disease (LBD). OBJECTIVE This study explores brain β-amyloid deposition and its association with cognitive decline across the RBD-LBD continuum. METHODS Patients with isolated RBD (iRBD), Parkinson's disease with probable RBD (PDRBD), and dementia with Lewy bodies with probable RBD (DLBRBD) underwent 18F-florbetaben positron emission tomography, 3T magnetic resonance imaging scans, and comprehensive neuropsychological assessments. Subjects were categorized as cognitively normal (NC), mild cognitive impairment (MCI), or dementia. Global and regional standardized uptake value ratios (SUVR) were estimated in predefined cognitive volumes of interest (VOI) derived from voxel-wise comparison analysis among the cognitive groups, namely the prefrontal, parietal, precentral cortices, lingual gyrus, and supplementary motor area. Generalized linear models assessed the relationship between 18F-florbetaben SUVRs and neuropsychological testing, adjusting for age and sex. Subgroup analysis focused on the polysomnography-confirmed iRBD-continuum subset (n = 41) encompassing phenoconverters and nonconverters in our prospective iRBD cohort. RESULTS Eighty-six subjects were classified as follows: 14 NC, 54 MCI, and 18 dementia. The proportion of positive β-amyloid scans increased with advanced cognitive stages (P = 0.038). β-Amyloid signals in cognitive VOIs were elevated in subgroups showing impairment in Trail-Making Test B (TMT-B). A linear association between TMT-B z score and global cortical β-amyloid levels was observed in the iRBD-continuum subset (P = 0.013). CONCLUSION Cortical β-amyloid accumulates with declines in executive function within the RBD-LBD continuum. TMT-B performance may be a useful marker associating with β-amyloid load, particularly in the iRBD population. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bora Jin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sung C, Oh SJ, Kim JS. Imaging Procedure and Clinical Studies of [ 18F]FP-CIT PET. Nucl Med Mol Imaging 2024; 58:185-202. [PMID: 38932763 PMCID: PMC11196481 DOI: 10.1007/s13139-024-00840-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 06/28/2024] Open
Abstract
N-3-[18F]fluoropropyl-2β-carbomethoxy-3β-4-iodophenyl nortropane ([18F]FP-CIT) is a radiopharmaceutical for dopamine transporter (DAT) imaging using positron emission tomography (PET) to detect dopaminergic neuronal degeneration in patients with parkinsonian syndrome. [18F]FP-CIT was granted approval by the Ministry of Food and Drug Safety in 2008 as the inaugural radiopharmaceutical for PET imaging, and it has found extensive utilization across numerous institutions in Korea. This review article presents an imaging procedure for [18F]FP-CIT PET to aid nuclear medicine physicians in clinical practice and systematically reviews the clinical studies associated with [18F]FP-CIT PET.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
6
|
Lee YG, Jeon S, Kang SW, Ye BS. Effects of amyloid beta and dopaminergic depletion on perfusion and clinical symptoms. Alzheimers Dement 2023; 19:5719-5729. [PMID: 37422287 DOI: 10.1002/alz.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Although mixed pathologies are common in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), the effects of amyloid beta and dopaminergic depletion on brain perfusion and clinical symptoms have not been elucidated. METHODS In 99 cognitive impairment patients due to AD and/or DLB and 32 controls, 18F-florbetaben (FBB) and dual-phase dopamine transporter (DAT) positron emission tomography (PET) were performed to measure the FBB standardized uptake value ratio (SUVR), striatal DAT uptakes, and brain perfusion. RESULTS Higher FBB-SUVR and lower ventral striatal DAT uptake were intercorrelated and, respectively, associated with left entorhinal/temporo-parietal-centered hypoperfusion and vermis/hippocampal-centered hyperperfusion, whereas regional perfusion mediated clinical symptoms and cognition. DISCUSSION Amyloid beta deposition and striatal dopaminergic depletion contribute to regional perfusion changes, clinical symptoms, and cognition in the spectrum of normal aging and cognitive impairment due to AD and/or LBD. HIGHLIGHTS Amyloid beta (Aβ) deposition was associated with ventral striatal dopaminergic depletion. Aβ deposition and dopaminergic depletion correlated with perfusion. Aβ deposition correlated with hypoperfusion centered in the left entorhinal cortex. Dopaminergic depletion correlated with hyperperfusion centered in the vermis. Perfusion mediated the Aβ deposition/dopaminergic depletion's effects on cognition.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Labrador-Espinosa MA, Silva-Rodríguez J, Reina-Castillo MI, Mir P, Grothe MJ. Basal Forebrain Atrophy, Cortical Thinning, and Amyloid-β Status in Parkinson's disease-Related Cognitive Decline. Mov Disord 2023; 38:1871-1880. [PMID: 37492892 DOI: 10.1002/mds.29564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Degeneration of the cortically-projecting cholinergic basal forebrain (cBF) is a well-established pathologic correlate of cognitive decline in Parkinson's disease (PD). In Alzheimer's disease (AD) the effect of cBF degeneration on cognitive decline was found to be mediated by parallel atrophy of denervated cortical areas. OBJECTIVES To examine whether the association between cBF degeneration and cognitive decline in PD is mediated by parallel atrophy of cortical areas and whether these associations depend on the presence of comorbid AD pathology. METHODS We studied 162 de novo PD patients who underwent serial 3 T magnetic resonance imaging scanning (follow-up: 2.33 ± 1.46 years) within the Parkinson's Progression Markers Initiative. cBF volume and regional cortical thickness were automatically calculated using established procedures. Individual slopes of structural brain changes and cognitive decline were estimated using linear-mixed models. Associations between longitudinal cBF degeneration, regional cortical thinning, and cognitive decline were assessed using regression analyses and mediation effects were assessed using nonparametric bootstrap. Complementary analyses assessed the effect of amyloid-β biomarker positivity on these associations. RESULTS After controlling for global brain atrophy, longitudinal cBF degeneration was highly correlated with faster cortical thinning (PFDR < 0.05), and thinning in cBF-associated cortical areas mediated the association between cBF degeneration and cognitive decline (rcBF-MoCA = 0.30, P < 0.001). Interestingly, both longitudinal cBF degeneration and its association with cortical thinning were largely independent of amyloid-β status. CONCLUSIONS cBF degeneration in PD is linked to parallel thinning of cortical target areas, which mediate the effect on cognitive decline. These associations are independent of amyloid-β status, indicating that they reflect proper features of PD pathophysiology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jesús Silva-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Reina-Castillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Kang S, Jeon S, Lee YG, Ye BS. Striatal dopamine transporter uptake, parkinsonism and cognition in Alzheimer's disease. Eur J Neurol 2023; 30:3105-3113. [PMID: 37493955 DOI: 10.1111/ene.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND PURPOSE The correlates of motor parkinsonism in Alzheimer's disease (AD) remain controversial. The effects of nigrostriatal dopaminergic degeneration on parkinsonism and cognition in biomarker-validated patients with AD were evaluated. METHODS This study recruited 116 patients with AD who underwent dual-phase 18 F-N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography, 18 F-florbetaben positron emission tomography, 3 T brain magnetic resonance imaging, and Unified Parkinson's Disease Rating Scale (UPDRS) and neuropsychological tests. The mean cortical thickness in the frontal, temporal, parietal and occipital cortices, and the dopamine transporter (DAT) uptake in the caudate, anterior/posterior putamen and substantia nigra were quantified. The relationship between DAT uptake, mean lobar cortical thickness, UPDRS motor score and cognition was investigated using general linear models (GLMs) after controlling for age, sex, education, intracranial volume, and deep and periventricular white matter hyperintensities. A path analysis was performed for the UPDRS motor score with the same covariates. RESULTS Path analysis and multivariable GLMs for UPDRS motor score showed that lower caudate DAT uptake was directly associated with a higher UPDRS motor score, whereas caudate DAT uptake confounded the association between mean frontal/parietal thickness and UPDRS motor score. Multivariable GLMs for cognitive scores showed that lower caudate DAT uptake was associated with visuospatial/executive dysfunction independent of mean frontal or parietal thickness. CONCLUSIONS Nigrostriatal dopaminergic dysfunction is associated with parkinsonism and visuospatial/executive dysfunction in patients with AD.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Gun Lee
- Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Diaz-Galvan P, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR, Min HKP, Jain M, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Ross O, Graff-Radford N, Day GS, Dickson DW, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, Kantarci K. β-Amyloid Load on PET Along the Continuum of Dementia With Lewy Bodies. Neurology 2023; 101:e178-e188. [PMID: 37202168 PMCID: PMC10351554 DOI: 10.1212/wnl.0000000000207393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES β-Amyloid (Aβ) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aβ load at prodromal stages of DLB still needs to be elucidated. We investigated Aβ load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aβ levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aβ-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (β estimate = 0.014, p = 0.02). DISCUSSION In this cross-sectional study, levels of Aβ load was higher further along the DLB continuum. Whereas Aβ levels were comparable with those in CU individuals in iRBD, a significant elevation in Aβ levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aβ levels than APOE ε4 noncarriers, and women tended to have higher Aβ levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.
Collapse
Affiliation(s)
- Patricia Diaz-Galvan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Paul Min
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Manoj Jain
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Leah K Forsberg
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David T Jones
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Erik K St Louis
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Vijay K Ramanan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Owen Ross
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Gregory S Day
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
10
|
Jeong SH, Cha J, Jung JH, Yun M, Sohn YH, Chung SJ, Lee PH. Occipital Amyloid Deposition Is Associated with Rapid Cognitive Decline in the Alzheimer's Disease Continuum. J Alzheimers Dis 2023:JAD230187. [PMID: 37355901 DOI: 10.3233/jad-230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND Clinical significance of additional occipital amyloid-β (Aβ) plaques in Alzheimer's disease (AD) remains unclear. OBJECTIVE In this study, we investigated the effect of regional Aβ deposition on cognition in patients on the AD continuum, especially in the occipital region. METHODS We retrospectively reviewed the medical record of 208 patients with AD across the cognitive continuum (non-dementia and dementia). Multivariable linear regression analyses were performed to determine the effect of regional Aβ deposition on cognitive function. A linear mixed model was used to assess the effect of regional deposition on longitudinal changes in Mini-Mental State Examination (MMSE) scores. Additionally, the patients were dichotomized according to the occipital-to-global Aβ deposition ratio (ratio ≤1, Aβ-OCC- group; ratio >1, Aβ-OCC+ group), and the same statistical analyses were applied for between-group comparisons. RESULTS Regional Aβ burden itself was not associated with baseline cognitive function. In terms of Aβ-OCC group effect, the Aβ-OCC+ group exhibited a poorer cognitive performance on language function compared to the Aβ-OCC- group. High Aβ retention in each region was associated with a rapid decline in MMSE scores, only in the dementia subgroup. Additionally, Aβ-OCC+ individuals exhibited a faster annual decline in MMSE scores than Aβ-OCC- individuals in the non-dementia subgroup (β= -0.77, standard error [SE] = 0.31, p = 0.013). CONCLUSION The present study demonstrated that additional occipital Aβ deposition was associated with poor baseline language function and rapid cognitive deterioration in patients on the AD continuum.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Ho Jung
- Department of Neurology, Inje University Busan Paik Hospital, Busan, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- YONSEI BEYOND LAB, Yongin, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Noguchi-Shinohara M, Ono K. The Mechanisms of the Roles of α-Synuclein, Amyloid-β, and Tau Protein in the Lewy Body Diseases: Pathogenesis, Early Detection, and Therapeutics. Int J Mol Sci 2023; 24:10215. [PMID: 37373401 DOI: 10.3390/ijms241210215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lewy body diseases (LBD) are pathologically defined as the accumulation of Lewy bodies composed of an aggregation of α-synuclein (αSyn). In LBD, not only the sole aggregation of αSyn but also the co-aggregation of amyloidogenic proteins, such as amyloid-β (Aβ) and tau, has been reported. In this review, the pathophysiology of co-aggregation of αSyn, Aβ, and tau protein and the advancement in imaging and fluid biomarkers that can detect αSyn and co-occurring Aβ and/or tau pathologies are discussed. Additionally, the αSyn-targeted disease-modifying therapies in clinical trials are summarized.
Collapse
Affiliation(s)
- Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
12
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
13
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
14
|
Spano M, Roytman M, Aboian M, Saboury B, Franceschi A, Chiang GC. Brain PET Imaging: Approach to Cognitive Impairment and Dementia. PET Clin 2023; 18:103-113. [PMID: 36442959 PMCID: PMC9713600 DOI: 10.1016/j.cpet.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, accounting for 50% to 60% of cases and affecting nearly 6 million people in the United States. Definitive diagnosis requires either antemortem brain biopsy or postmortem autopsy. However, clinical neuroimaging has been playing a greater role in the diagnosis and management of AD, and several PET tracers approach the sensitivity of tissue diagnosis in identifying AD pathologic condition. This review will focus on the utility of PET imaging in the setting of cognitive impairment, with an emphasis on its role in the diagnosis of AD.
Collapse
Affiliation(s)
- Matthew Spano
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA
| | - Michelle Roytman
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA
| | - Mariam Aboian
- Department of Radiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, NIH Clinical Center, 10 Center Dr, Bethesda, MD 20892, USA
| | - Ana Franceschi
- Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, 100 East 77th Street, 3rd Floor, New York, NY 10075, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA.
| |
Collapse
|
15
|
Ryoo HG, Byun JI, Choi H, Jung KY. Deep learning signature of brain [ 18F]FDG PET associated with cognitive outcome of rapid eye movement sleep behavior disorder. Sci Rep 2022; 12:19259. [PMID: 36357491 PMCID: PMC9649732 DOI: 10.1038/s41598-022-23347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022] Open
Abstract
An objective biomarker to predict the outcome of isolated rapid eye movement sleep behavior disorder (iRBD) is crucial for the management. This study aimed to investigate cognitive signature of brain [18F]FDG PET based on deep learning (DL) for evaluating patients with iRBD. Fifty iRBD patients, 19 with mild cognitive impairment (MCI) (RBD-MCI) and 31 without MCI (RBD-nonMCI), were prospectively enrolled. A DL model for the cognitive signature was trained by using Alzheimer's Disease Neuroimaging Initiative database and transferred to baseline [18F]FDG PET from the iRBD cohort. The results showed that the DL-based cognitive dysfunction score was significantly higher in RBD-MCI than in RBD-nonMCI. The AUC of ROC curve for differentiating RBD-MCI from RBD-nonMCI was 0.70 (95% CI 0.56-0.82). The baseline DL-based cognitive dysfunction score was significantly higher in iRBD patients who showed a decrease in CERAD scores during 2 years than in those who did not. Brain metabolic features related to cognitive dysfunction-related regions of individual iRBD patients mainly included posterior cortical regions. This work demonstrates that the cognitive signature based on DL could be used to objectively evaluate cognitive function in iRBD. We suggest that this approach could be extended to an objective biomarker predicting cognitive decline and neurodegeneration in iRBD.
Collapse
Affiliation(s)
- Hyun Gee Ryoo
- grid.412484.f0000 0001 0302 820XDepartment of Nuclear Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung-Ick Byun
- grid.289247.20000 0001 2171 7818Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- grid.412484.f0000 0001 0302 820XDepartment of Nuclear Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki-Young Jung
- grid.412484.f0000 0001 0302 820XDepartment of Neurology, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Implication of EEG theta/alpha and theta/beta ratio in Alzheimer's and Lewy body disease. Sci Rep 2022; 12:18706. [PMID: 36333386 PMCID: PMC9636216 DOI: 10.1038/s41598-022-21951-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the patterns of quantitative electroencephalography (EEG) in patients with Alzheimer's disease (AD), Lewy body disease (LBD), and mixed disease. Sixteen patients with AD, 38 with LBD, 20 with mixed disease, and 17 control participants were recruited and underwent EEG. The theta/alpha ratio and theta/beta ratio were measured. The relationship of the log-transformed theta/alpha ratio (TAR) and theta/beta ratio (TBR) with the disease group, the presence of AD and LBD, and clinical symptoms were evaluated. Participants in the LBD and mixed disease groups had higher TBR in all lobes except for occipital lobe than those in the control group. The presence of LBD was independently associated with higher TBR in all lobes and higher central and parietal TAR, while the presence of AD was not. Among cognitively impaired patients, higher TAR was associated with the language, memory, and visuospatial dysfunction, while higher TBR was associated with the memory and frontal/executive dysfunction. Increased TBR in all lobar regions and temporal TAR were associated with the hallucinations, while cognitive fluctuations and the severity of Parkinsonism were not. Increased TBR could be a biomarker for LBD, independent of AD, while the presence of mixed disease could be reflected as increased TAR.
Collapse
|
17
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
18
|
Effects of Alzheimer's genetic risk scores and CSF biomarkers in de novo Parkinson's Disease. NPJ Parkinsons Dis 2022; 8:57. [PMID: 35545633 PMCID: PMC9095668 DOI: 10.1038/s41531-022-00317-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Coexisting Alzheimer's disease (AD) pathology is common in Parkinson's disease (PD). However, the implications of genetic risk scores (GRS) for AD have not been elucidated in PD. In 413 de novo PD and 195 healthy controls from the Parkinson's Progression Marker Initiative database, the effects of GRS for AD (GRS-AD) and PD (GRS-PD) on the risk of PD and longitudinal CSF biomarkers and clinical outcomes were explored. Higher GRS-PD and lower baseline CSF α-synuclein were associated with an increased risk of PD. In the PD group, GRS-AD was correlated positively with CSF p-tau/Aβ and negatively with CSF α-synuclein. Higher GRS-PD was associated with faster CSF p-tau/Aβ increase, and GRS-AD and GRS-PD were interactively associated with CSF α-synuclein. In the PD group, higher GRS-AD was associated with poor visuospatial function, and baseline CSF p-tau/Aβ was associated with faster cognitive decline. Higher GRS-PD was associated with better semantic fluency and frontal-related cognition and motor function given the same levels of CSF biomarkers and dopamine transporter uptake. Taken together, our results suggest that higher GRS-AD and CSF p-tau/Aβ, reflecting AD-related pathophysiology, may be associated with cognitive decline in PD patients.
Collapse
|
19
|
Yoon EJ, Lee JY, Kim H, Yoo D, Shin JH, Nam H, Jeon B, Kim YK. Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2022; 98:e2413-e2424. [PMID: 35437260 PMCID: PMC9231839 DOI: 10.1212/wnl.0000000000200326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Mild cognitive impairment (MCI) in isolated REM sleep behavior disorder (iRBD) is a risk factor for subsequent neurodegeneration. We aimed to identify brain metabolism and functional connectivity changes related to MCI in patients with iRBD and the neuroimaging markers' predictive value for phenoconversion. Methods This is a prospective cohort study of patients with iRBD with a mean follow-up of 4.2 ± 2.6 years. At baseline, patients with iRBD and age- and sex-matched healthy controls (HCs) underwent 18F-fluorodeoxyglucose (FDG)–PET and resting-state fMRI scans and a comprehensive neuropsychological test battery. Voxel-wise group comparisons for FDG-PET data were performed using a general linear model. Seed-based connectivity maps were computed using brain regions showing significant hypometabolism associated with MCI in patients with iRBD and compared between groups. A Cox regression analysis was applied to investigate the association between brain metabolism and risk of phenoconversion. Results Forty patients with iRBD, including 21 with MCI (iRBD-MCI) and 19 with normal cognition (iRBD-NC), and 24 HCs were included in the study. The iRBD-MCI group revealed relative hypometabolism in the inferior parietal lobule, lateral and medial occipital, and middle and inferior temporal cortex bilaterally compared with HC and the iRBD-NC group. In seed-based connectivity analyses, the iRBD-MCI group exhibited decreased functional connectivity of the left angular gyrus with the occipital cortex. Of 40 patients with iRBD, 12 patients converted to Parkinson disease (PD) or dementia with Lewy bodies (DLB). Hypometabolism of the occipital pole (hazard ratio [95% CI] 6.652 [1.387–31.987]), medial occipital (4.450 [1.143–17.327]), and precuneus (3.635 [1.009–13.093]) was associated with higher phenoconversion rate to PD/DLB. Discussion MCI in iRBD is related to functional and metabolic changes in broad brain areas, particularly the occipital and parietal areas. Moreover, hypometabolism in these brain regions was a predictor of phenoconversion to PD or DLB. Evaluation of cognitive function and neuroimaging characteristics could be useful for risk stratification in patients with iRBD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Korea, Republic of.,Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea, Republic of
| | - Dallah Yoo
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea, Republic of
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
20
|
Garon M, Weis L, Fiorenzato E, Pistonesi F, Cagnin A, Bertoldo A, Anglani M, Cecchin D, Antonini A, Biundo R. Quantification of Brain β-Amyloid Load in Parkinson's Disease With Mild Cognitive Impairment: A PET/MRI Study. Front Neurol 2022; 12:760518. [PMID: 35300351 PMCID: PMC8921107 DOI: 10.3389/fneur.2021.760518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with faster cognitive decline and conversion to dementia. There is uncertainty about the role of β-amyloid (Aβ) co-pathology and its contribution to the variability in PD-MCI profile and cognitive progression. Objective To study how presence of Aβ affects clinical and cognitive manifestations as well as regional brain volumes in PD-MCI. Methods Twenty-five PD-MCI patients underwent simultaneous PET/3T-MRI with [18F]flutemetamol and a clinical and neuropsychological examination allowing level II diagnosis. We tested pairwise differences in motor, clinical, and cognitive features with Mann–Whitney U test. We calculated [18F]flutemetamol (FMM) standardized uptake value ratios (SUVR) in striatal and cortical ROIs, and we performed a univariate linear regression analysis between the affected cognitive domains and the mean SUVR. Finally, we investigated differences in cortical and subcortical brain regional volumes with magnetic resonance imaging (MRI). Results There were 8 Aβ+ and 17 Aβ- PD-MCI. They did not differ for age, disease duration, clinical, motor, behavioral, and global cognition scores. PD-MCI-Aβ+ showed worse performance in the overall executive domain (p = 0.037). Subcortical ROIs analysis showed significant Aβ deposition in PD-MCI-Aβ+ patients in the right caudal and rostral middle frontal cortex, in precuneus, in left paracentral and pars triangularis (p < 0.0001), and bilaterally in the putamen (p = 0.038). Cortical regions with higher amyloid load correlated with worse executive performances (p < 0.05). Voxel-based morphometry (VBM) analyses showed no between groups differences. Conclusions Presence of cerebral Aβ worsens executive functions, but not motor and global cognitive abilities in PD-MCI, and it is not associated with middle-temporal cortex atrophy. These findings, together with the observation of significant proportion of PD-MCI-Aβ-, suggest that Aβ may not be the main pathogenetic determinant of cognitive deterioration in PD-MCI, but it would rather aggravate deficits in domains vulnerable to Parkinson primary pathology.
Collapse
Affiliation(s)
- Michela Garon
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Department of Information Engineering, University of Padua, Padua, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Nuclear Medicine Unit, Department of Medicine - DIMED, Padua University Hospital, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy.,Study Center for Neurodegeneration, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Yoo HS, Jeon S, Cavedo E, Ko M, Yun M, Lee PH, Sohn YH, Grothe MJ, Teipel S, Hampel H, Evans AC, Ye BS. Association of β-Amyloid and Basal Forebrain With Cortical Thickness and Cognition in Alzheimer and Lewy Body Disease Spectra. Neurology 2022; 98:e947-e957. [PMID: 34969939 PMCID: PMC8901177 DOI: 10.1212/wnl.0000000000013277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cholinergic degeneration and β-amyloid contribute to brain atrophy and cognitive dysfunction in Alzheimer disease (AD) and Lewy body disease (LBD), but their relationship has not been comparatively evaluated. METHODS In this cross-sectional study, we recruited 28 normal controls (NC), 55 patients with AD mild cognitive impairment (MCI), 34 patients with AD dementia, 28 patients with LBD MCI, and 51 patients with LBD dementia. Participants underwent cognitive evaluation, brain MRI to measure the basal forebrain (BF) volume and global cortical thickness (CTh), and 18F-florbetaben (FBB) PET to measure the standardized uptake value ratio (SUVR). Using general linear models and path analyses, we evaluated the association of FBB-SUVR and BF volume with CTh or cognitive dysfunction in the AD spectrum (AD and NC) and LBD spectrum (LBD and NC), respectively. Covariates included age, sex, education, deep and periventricular white matter hyperintensities, intracranial volume, hypertension, diabetes, and hyperlipidemia. RESULTS BF volume mediated the association between FBB-SUVR and CTh in both the AD and LBD spectra, while FBB-SUVR was associated with CTh independently of BF volume only in the LBD spectrum. Significant correlation between voxel-wise FBB-SUVR and CTh was observed only in the LBD group. FBB-SUVR was independently associated with widespread cognitive dysfunction in both the AD and LBD spectra, especially in the memory domain (standardized beta [B] for AD spectrum = -0.60, B for LBD spectrum = -0.33). In the AD spectrum, BF volume was associated with memory dysfunction (B = 0.18), and CTh was associated with language (B = 0.21) and executive (B = 0.23) dysfunction. In the LBD spectrum, however, BF volume and CTh were independently associated with widespread cognitive dysfunction. CONCLUSIONS There is a common β-amyloid-related degenerative mechanism with or without the mediation of BF in the AD and LBD spectra, while the association of BF atrophy with cognitive dysfunction is more profound and there is localized β-amyloid-cortical atrophy interaction in the LBD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Byoung Seok Ye
- From the Department of Neurology (H.S.Y., S.J., P.H.L., Y.H.S., B.S.Y.), Brain Research Institute (S.J.), Severance Biomedical Science Institute (M.J.K.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Sorbonne University (E.C., H.H.), GRC N0. 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital; Qynapse (E.C.), Paris, France; German Center for Neurodegenerative Diseases (DZNE)-Rostock/Greifswald (M.J.G., S.T.), Rostock, Germany; Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychosomatic Medicine (S.T.), University Medicine Rostock, Germany; and McGill Center for Integrative Neuroscience (A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada.
| |
Collapse
|
22
|
Kim JS, Son HJ, Oh M, Lee DY, Kim HW, Oh J. 60 Years of Achievements by KSNM in Neuroimaging Research. Nucl Med Mol Imaging 2022; 56:3-16. [PMID: 35186156 PMCID: PMC8828843 DOI: 10.1007/s13139-021-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Nuclear medicine neuroimaging is able to show functional and molecular biologic abnormalities in various neuropsychiatric diseases. Therefore, it has played important roles in the clinical diagnosis and in research on the normal and pathological states of the brain. More than 400 outstanding studies have been conducted by Korean researchers over the past 60 years. In the 1990s, when multiheaded single-photon emission computed tomography (SPECT) scanners were first introduced in South Korea, stroke research using brain perfusion SPECT was conducted. With the spread of positron emission tomography (PET) scanners in the 2000s, research on the clinical usefulness of PET and the evaluation of pathophysiology in various diseases such as epilepsy, brain tumors, degenerative brain diseases, and other neuropsychiatric diseases were actively conducted using [18F]FDG and various neuroreceptor tracers. In the 2010s, with the clinical application of new radiopharmaceuticals for amyloid and tau imaging, research demonstrating the clinical usefulness of PET imaging and the pathophysiology of dementia has increased rapidly. It is expected that the role of nuclear medicine will expand with the development of new radiopharmaceuticals and analysis technologies, along with the application of artificial intelligence for early and differential diagnosis, and the development of therapeutic agents for degenerative brain diseases.
Collapse
Affiliation(s)
- Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jungsu Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Lee YH, Jeon S, Yoo HS, Chung SJ, Jung JH, Baik K, Sohn YH, Lee PH, Yun M, Evans AC, Ye BS. Effect of Alzheimer's Disease and Lewy Body Disease on Metabolic Changes. J Alzheimers Dis 2021; 79:1471-1487. [PMID: 33459638 DOI: 10.3233/jad-201094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship among amyloid-β (Aβ) deposition on amyloid positron emission tomography (PET), cortical metabolism on 18F-fluoro-2-deoxy-D-glucose (FDG)-PET, and clinical diagnosis has not been elucidated for both Alzheimer's disease (AD) and Lewy body disease (LBD). OBJECTIVE We investigated the patterns of cerebral metabolism according to the presence of AD and LBD. METHODS A total of 178 subjects were enrolled including 42 pure AD, 32 pure LBD, 34 Lewy body variant AD (LBVAD), 15 LBD with amyloid, 26 AD with dementia with Lewy bodies (DLB), and 29 control subjects. Pure AD, LBVAD, and AD with DLB groups had biomarker-supported diagnoses of typical AD, while pure LBD, LBD with amyloid, and AD with DLB groups had biomarker-supported diagnoses of typical LBD. Typical AD and LBD with amyloid showed amyloid-positivity on 18F-florbetaben (FBB) PET, while typical LBD and LBVAD had abnormalities on dopamine transporter PET. We measured regional patterns of glucose metabolism using FDG-PET and evaluated their relationship with AD and LBD. RESULTS Compared with control group, typical AD and typical LBD commonly exhibited hypometabolism in the bilateral temporo-parietal junction, precuneus, and posterior cingulate cortex. Typical AD showed an additional hypometabolism in the entorhinal cortex, while patients with dopamine transporter abnormality-supported diagnosis of LBD showed diffuse hypometabolism that spared the sensory-motor cortex. Although the diffuse hypometabolism in LBD also involved the occipital cortex, prominent occipital hypometabolism was only seen in LBD with amyloid group. CONCLUSION Combining clinical and metabolic evaluations may enhance the diagnostic accuracy of AD, LBD, and mixed disease cases.
Collapse
Affiliation(s)
- Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seun Jeon
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Alan C Evans
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Biundo R, Weis L, Fiorenzato E, Pistonesi F, Cagnin A, Bertoldo A, Anglani M, Cecchin D, Antonini A. The contribution of beta-amyloid to dementia in Lewy body diseases: a 1-year follow-up study. Brain Commun 2021; 3:fcab180. [PMID: 34458730 PMCID: PMC8390473 DOI: 10.1093/braincomms/fcab180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia in Lewy Body Diseases (Parkinson’s disease and dementia with Lewy Bodies) affects progression of disabilities, quality of life and well-being. Understanding its pathogenetic mechanisms is critical to properly implement disease-modifying strategies. It has been hypothesized that synuclein- and amyloid-pathology act synergistically aggravating cognitive decline in elderly patients but their precise contribution to dementia is debated. In this study, we aimed at exploring if presence of amyloid deposits influences clinical, cognitive and neuroanatomical correlates of mental decline in a cohort of 40 Parkinson’s disease patients with normal cognition (n = 5), mild cognitive impairment (n = 22), and dementia (n = 13) as well as in Dementia with Lewy Bodies (n = 10). Patients underwent simultaneous 3 T PET/MRI with [18F]-flutemetamol and were assessed with an extensive baseline motor and neuropsychological examination, which allowed level II diagnosis of mild cognitive impairment and dementia. The role of amyloid positivity on each cognitive domain, and on the rate of conversion to dementia at 1-year follow-up was explored. A Kaplan Meier and the Log Rank (Mantel–Cox) test were used to assess the pairwise differences in time-to-develop dementia in Parkinson’s disease patients with and without significant amyloidosis. Furthermore, the presence of an Alzheimer’s dementia-like morphological pattern was evaluated using visual and automated assessment of T1-weighted and T2-weighted MRI images. We observed similar percentage of amyloid deposits in Parkinson’s disease dementia and dementia with Lewy Bodies cohorts (50% in each group) with an overall prevalence of 34% of significant amyloid depositions in Lewy Body Diseases. PET amyloid positivity was associated with worse global cognition (Montreal Cognitive Assessment and Mini Mental State Examination), executive and language difficulties. At 12-month follow-up, amyloid positive Parkinson’s disease patients were more likely to have become demented than those without amyloidosis. Moreover, there was no difference in the presence of an Alzheimer’s disease-like atrophy pattern and in vascular load (at Fazekas scale) between Lewy Body Diseases with and without significant amyloid deposits. Our findings suggest that in Lewy Body Diseases, amyloid deposition enhances cognitive deficits, particularly attention-executive and language dysfunctions. However, the large number of patients without significant amyloid deposits among our cognitively impaired patients indicates that synuclein pathology itself plays a critical role in the development of dementia in Lewy Body Diseases.
Collapse
Affiliation(s)
- Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy.,Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | | | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padua, Padua, Italy.,Nuclear Medicine Unit, Department of Medicine-DIMED, Padua University Hospital, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
26
|
Lee Y, Jeon S, Kang SW, Park M, Baik K, Yoo HS, Chung SJ, Jeong SH, Jung JH, Lee PH, Sohn YH, Evans AC, Ye BS. Interaction of CSF α-synuclein and amyloid beta in cognition and cortical atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12177. [PMID: 34046519 PMCID: PMC8140203 DOI: 10.1002/dad2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lewy body-related pathology is commonly observed at autopsy in individuals with dementia, but in vivo biomarkers for α-synucleinopathy are lacking. METHODS Baseline cerebrospinal fluid (CSF) biomarkers, polygenic risk score (PRS) for Parkinson's disease (PRS-PD) and Alzheimer's disease (PRS-AD), longitudinal cognitive scores, and magnetic resonance imaging were measured in 217 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear mixed models were used to find the relationship of CSF biomarkers and the PRS with cognition and cortical atrophy. RESULTS Higher PRS-PD and PRS-AD were associated with lower CSF α-synuclein and amyloid beta (Aβ), respectively. Lower CSF α-synuclein and the interaction of CSF α-synuclein and Aβ were associated with lower cognitive scores and global cortical atrophy most prominently in the occipital cortex. DISCUSSION Lower CSF α-synuclein could be a biomarker for α-synucleinopathy, and the simultaneous evaluation of CSF biomarkers for AD and CSF α-synuclein could reveal the independent and interactive effects on cognition and cortical atrophy.
Collapse
Affiliation(s)
- Young‐gun Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seun Jeon
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Sung Woo Kang
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Mincheol Park
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Kyoungwon Baik
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Han Soo Yoo
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seok Jong Chung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seong Ho Jeong
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Jin Ho Jung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Phil Hyu Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Young Ho Sohn
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Alan C. Evans
- Brain Research InstituteYonsei University College of MedicineSeoulKorea
| | - Byoung Seok Ye
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | | |
Collapse
|
27
|
Jellinger KA. Significance of cerebral amyloid angiopathy and other co-morbidities in Lewy body diseases. J Neural Transm (Vienna) 2021; 128:687-699. [PMID: 33928445 DOI: 10.1007/s00702-021-02345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Lewy body dementia (LBD) and Parkinson's disease-dementia (PDD) are two major neurocognitive disorders with Lewy bodies (LB) of unknown etiology. There is considerable clinical and pathological overlap between these two conditions that are clinically distinguished based on the duration of Parkinsonism prior to development of dementia. Their morphology is characterized by a variable combination of LB and Alzheimer's disease (AD) pathologies. Cerebral amyloid angiopathy (CAA), very common in aged persons and particularly in AD, is increasingly recognized for its association with both pathologies and dementia. To investigate neuropathological differences between LB diseases with and without dementia, 110 PDD and 60 LBD cases were compared with 60 Parkinson's disease (PD) cases without dementia (PDND). The major demographic and neuropathological data were assessed retrospectively. PDD patients were significantly older than PDND ones (83.9 vs 77.8 years; p < 0.05); the age of LB patients was in between both groups (mean 80.2 years), while the duration of disease was LBD < PDD < PDND (mean 6.7 vs 12.5 and 14.3 years). LBD patients had higher neuritic Braak stages (mean 5.1 vs 4.5 and 4.0, respectively), LB scores (mean 5.3 vs 4.2 and 4.0, respectively), and Thal amyloid phases (mean 4.1 vs 3.0 and 2.3, respectively) than the two other groups. CAA was more common in LBD than in the PDD and PDND groups (93 vs 50 and 21.7%, respectively). Its severity was significantly greater in LBD than in PDD and PDND (p < 0.01), involving mainly the occipital lobes. Moreover, striatal Aβ deposition highly differentiated LBD brains from PDD. Braak neurofibrillary tangle (NFT) stages, CAA, and less Thal Aβ phases were positively correlated with LB pathology (p < 0.05), which was significantly higher in LBD than in PDD < PDND. Survival analysis showed worse prognosis in LBD than in PDD (and PDND), which was linked to both increased Braak tau stages and more severe CAA. These and other recent studies imply the association of CAA-and both tau and LB pathologies-with cognitive decline and more rapid disease progression that distinguishes LBD from PDD (and PDND).
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
28
|
Chung SJ, Lee S, Yoo HS, Baik K, Lee HS, Jung JH, Choi Y, Hong JM, Kim YJ, Ye BS, Sohn YH, Yun M, Lee PH. Different patterns of β-amyloid deposition in patients with Alzheimer's disease according to the presence of mild parkinsonism. Neurobiol Aging 2021; 101:199-206. [PMID: 33631471 DOI: 10.1016/j.neurobiolaging.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to compare the patterns of β-amyloid deposition between patients with early-stage Alzheimer's disease (AD) with mild parkinsonism and those without parkinsonism. Sixty-one patients with early-stage AD (Clinical Dementia Rating [CDR], 0.5 or 1) who underwent 18F-florbetaben (18F-FBB) PET scans were enrolled. We performed comparative analyses of regional FBB uptake in the frontal, parietal, lateral temporal, medial temporal, occipital, anterior cingulate, and posterior cingulate cortices and in the precuneus, striatum, and thalamus between AD patients with mild parkinsonism (AD-p+; n = 23) and those without parkinsonism (AD-p-; n = 38). There was no significant difference in age, sex, years of education, Mini-Mental State Examination score, and white matter hyperintensity severity between groups. The AD-p+ group had lower composite scores in frontal/executive function domain than the AD-p- group. The AD-p+ group had a higher FBB uptake in the occipital cortex, but not in other cortical regions, than the AD-p- group. Our findings suggest that additional β-amyloid deposition in the occipital region is associated with mild parkinsonism in early-stage AD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yonghoon Choi
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
Hemminghyth MS, Chwiszczuk LJ, Rongve A, Breitve MH. The Cognitive Profile of Mild Cognitive Impairment Due to Dementia With Lewy Bodies-An Updated Review. Front Aging Neurosci 2020; 12:597579. [PMID: 33424578 PMCID: PMC7785712 DOI: 10.3389/fnagi.2020.597579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023] Open
Abstract
Objective: Dementia with Lewy Bodies (DLB) is the second most common type of neurodegenerative dementia. Yet, the domain-specific cognitive impairment of the mild cognitive impairment (MCI) phase of this disease (DLB-MCI) is still not been established. This article gives an updated review on the neuropsychological profile of DLB-MCI, building on the findings from a previous review. Methods: We performed systematic review and searched five different electronic databases (Scopus, Cochrane, EMBASE, MEDLINE, and PsycINFO) in May 2020 based on a PICO scheme. Our search was then restricted to articles published in 2019 and 2020. Ending up with a total of 90 articles to be reviewed by abstract and/or full text. Results: In total four papers were included, whereof only one met our full inclusion criteria. Despite a substantial heterogeneity, our findings indicate that DLB-MCI patients have a pattern of executive, visuospatial, and attentional deficits. Conclusion: The findings indicate that the neuropsychological profile of DLB-MCI is characterized by executive, visuospatial, and attentional deficits. Furthermore, the shortage of studies clearly underlines the paucity of published research into DLB-MCI and emphasizes the need for well-controlled studies.
Collapse
Affiliation(s)
| | | | - Arvid Rongve
- Research Group for Age-Related Medicine, Haugesund Hospital, Haugesund, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | | |
Collapse
|