1
|
Bhidayasiri R, Aiba I, Nomoto M. The centenarian blueprint: lessons in defying Parkinson's disease. J Neural Transm (Vienna) 2025; 132:331-339. [PMID: 39729254 DOI: 10.1007/s00702-024-02875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent advancements in neurology have shifted focus from mere diagnosis to comprehensive management of movement disorders, particularly Parkinson's Disease (PD), which is rapidly increasing in prevalence due to global ageing trends. While age is a key risk factor for PD, centenarians often exhibit a remarkably low prevalence of the disease, presenting an intriguing paradox. This viewpoint explores potential reasons for this low prevalence, drawing on studies from regions with high centenarian populations, known as Blue Zones. The authors highlight the importance of genetic, lifestyle, and environmental factors in promoting healthy ageing and examines how these may contribute to the resilience against PD found in centenarians. By understanding the protective mechanisms in centenarians, particularly the concept of hormesis and factors like diet, exercise, and social connections, we may inform prevention strategies for PD. The study proposes the "EAT, MOVE, SLEEP, PROTECT, and REPEAT" approach as a framework for lifestyle interventions to counteract PD risk factors. Ultimately, centenarians offer valuable insights into delaying neurodegeneration, providing a model for potential preventive trials for PD.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand.
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Chulalongkorn University Hospital, 1873 Rama 4 Road, Bangkok, 10330, Thailand.
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization, Higashinagoya National Hospital, Aichi, 465-8620, Japan
| | - Masahiro Nomoto
- Department of Neurology, Clinical Research Centre, Saiseikai Imabari Hospital, Ehime, 799- 1592, Japan
| |
Collapse
|
2
|
Krening E, Dy Closas AMF, Yu JRT, Seto TB, Terpak L, Bruno MK. Filipinos and Parkinson's disease: A scoping review of the literature. Parkinsonism Relat Disord 2025; 132:107271. [PMID: 39880740 DOI: 10.1016/j.parkreldis.2025.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Filipinos are the third largest sub-group of Asian Americans in the United States and have greater socioeconomic and health disparities than many other Asian sub-groups [1,2,3,4,5,6,7,8]. Characteristics of Filipino patients with Parkinson's disease (PD) have not been adequately studied. OBJECTIVE To scope the extent, range and nature of current knowledge on PD in Filipino-American (FA) patients in contrast to Filipino patients in general. METHODS We undertook a scoping review including all types of research relating to PD in Filipinos. We searched the following electronic databases: MEDLINE via PubMed, Google Scholar, Cochrane Library, Herdin and Journals@OVID (searched 1944-November 2024). Criteria for inclusion were peer-reviewed empirical articles published in English that specifically included and described Filipino patients with PD. We reviewed all eligible articles and categorized them by general topical themes. RESULTS The scoping review resulted in 48 eligible papers (Fig. 1). There were 7 papers that discussed PD in FA, and 35 papers that discussed PD in the Philippines. The main themes identified from the scoping review were: epidemiology/etiology (n = 19, 39 %), clinical manifestations and management (n = 20, 42 %), and access to PD care (n = 9, 19 %). CONCLUSION There is a paucity of information on PD in the FA population, with the majority of studies from the Philippines. Further studies on FA in the US, when compared to the studies from the Philippines, may shed light on how differences in the environment and sociodemographic factors may influence the nature and course of PD.
Collapse
Affiliation(s)
- Emma Krening
- The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI 96813, USA.
| | - Alfand Marl F Dy Closas
- Davao Doctors Hospital, 118 Elpidio Quirino Ave, Davao City, Philippines; Metro Davao Medical and Research Center, J.P. Laurel Ave., Poblacian Ditrict, Davao del Sur, Davao City, 8000, Philippines
| | - Jeryl Ritzi T Yu
- St. Lukes Medical Center, 279 E. Rodriguez Sr. Boulevard, Quezon City, Philippines; St. Lukes Medical Center, 32(nd) St. Bonifacio, Global City, Taguig City, Philippines
| | - Todd B Seto
- The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI 96813, USA; University of Hawai'i at Manoa, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA
| | - Lauren Terpak
- The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI 96813, USA
| | - Michiko K Bruno
- The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI 96813, USA; University of Hawai'i at Manoa, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
3
|
Merghany RM, El-Sawi SA, Naser AFA, Salem MA, Ezzat SM, Moustafa SFA, Meselhy MR. Pelargonium graveolens Attenuates Rotenone-Induced Parkinson's Disease in a Rat Model: Role of MAO-B Inhibition and In Silico Study. Mol Neurobiol 2025:10.1007/s12035-025-04727-6. [PMID: 39921688 DOI: 10.1007/s12035-025-04727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative condition, is primarily characterized by motor dysfunctions due to dopaminergic neuronal loss in the Substantia Nigra (SN), with oxidative stress playing a significant role in its progression. This study investigates the neuroprotective potential of Pelargonium graveolens (Thunb.) L'Hér leaves in a rotenone-induced PD rat model. The total ethanolic extract and its fractions, obtained via Diaion HP-20 column chromatography, were evaluated for monoamine oxidase-B (MAO-B) inhibition in vitro. The 50% methanol fraction (PG50) demonstrated the highest MAO-B inhibition (IC50 5.26 ± 0.12 µg/ml) compared to the reference drug selegiline (IC50 0.021 ± 0.003 µg/ml). In a rotenone-induced PD rat model, PG50 (100 mg/kg, p.o.) alleviated motor deficits (assessed via the wire hanging test), and restored norepinephrine, dopamine, and serotonin levels. PG50 and L-dopa reduced α-synuclein levels by 367.60% and 377.48%, respectively. Oxidative balance was restored with increased glutathione (23.12%) and decreased malondialdehyde (164.19%) in brain tissues. PG50 significantly reduced serum TNF-α (572.79%) and IL-6 (70.84%) levels, and improved succinate dehydrogenase (14.47%) and lactate dehydrogenase (7.74%) activities in brain tissues. Histopathological alterations in the SN were also ceased. UPLC-MS/MS analysis identified 61 metabolites, including 32 flavonoids, 13 phenolic acids, 7 coumarins, 5 phenolic glycosides, and 4 dicarboxylic acids, with in silico docking showing strong MAO-B binding by methoxylated flavonoids like methoxyluteolin dimethyl ether (docking score: - 8.0625 kcal/mol), surpassing that of safinamide (- 8.2615 kcal/mol). These findings suggest that P. graveolens holds promise as a neuroprotective agent against rotenone-induced PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, 32511, Menoufia, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Atterling Brolin K, Schaeffer E, Kuri A, Rumrich IK, Schumacher Schuh AF, Darweesh SK, Kaasinen V, Tolppanen A, Chahine LM, Noyce AJ. Environmental Risk Factors for Parkinson's Disease: A Critical Review and Policy Implications. Mov Disord 2025; 40:204-221. [PMID: 39601461 PMCID: PMC11832802 DOI: 10.1002/mds.30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The age-standardized prevalence of Parkinson's disease (PD) has increased substantially over the years and is expected to increase further. This emphasizes the need to identify modifiable risk factors of PD, which could form a logical entry point for the prevention of PD. The World Health Organization (WHO) has recommended reducing exposure to specific environmental factors that have been reported to be associated with PD, in particular pesticides, trichloroethylene (TCE), and air pollution. In this review we critically evaluate the epidemiological and biological evidence on the associations of these factors with PD and review evidence on whether these putative associations are causal. We conclude that when considered in isolation, it is difficult to determine whether these associations are causal, in large part because of the decades-long lag between relevant exposures and the incidence of manifest PD. However, when considered in tandem with evidence from complementary research lines (such as animal models), it is increasingly likely that these associations reflect harmful causal effects. Fundamentally, whilst we highlight some evidence gaps that require further attention, we believe the current evidence base is sufficiently strong enough to support our call for stronger policy action. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical ScienceLund UniversityLundSweden
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig‐HolsteinCampus Kiel and Kiel UniversityKielGermany
| | - Ashvin Kuri
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Isabell Katharina Rumrich
- School of PharmacyUniversity of Eastern FinlandFinland
- Department of Health ProtectionFinnish Institute for Health and WelfareFinland
| | - Artur Francisco Schumacher Schuh
- Departamento de FarmacologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Serviço de NeurologiaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Sirwan K.L. Darweesh
- Radboud University Medical CenterDonders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement DisordersNijmegenThe Netherlands
| | - Valtteri Kaasinen
- Clinical NeurosciencesUniversity of TurkuTurkuFinland
- NeurocenterTurku University HospitalTurkuFinland
| | | | - Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Ali I, Adil M, Imran M, Qureshi SA, Qureshi S, Hasan N, Ahmad FJ. Nanotechnology in Parkinson's Disease: overcoming drug delivery challenges and enhancing therapeutic outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-025-01799-8. [PMID: 39878857 DOI: 10.1007/s13346-025-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development. Moreover, early and precise PD diagnosis remains elusive, relying on clinical assessments, neuroimaging techniques, and emerging biomarkers. Conventional management of PD involves dopaminergic medications and surgical interventions, but these treatments often become less effective over time and do not address disease treatment. Challenges persist due to the blood-brain barrier's (BBB) impermeability, hindering drug delivery. Recent advancements in nanotechnology offer promising novel approaches for PD management. Various drug delivery systems (DDS), including nanosized polymers, lipid-based carriers, and nanoparticles (such as metal/metal oxide, protein, and carbonaceous particles), aim to enhance drug and gene delivery. These modifications seek to improve BBB permeability, ultimately benefiting PD patients. This review underscores the critical role of ageing in PD development and explores how age-related neuronal decline contributes to substantia nigra loss and PD manifestation in susceptible individuals. The review also highlights the advancements and ongoing challenges in nanotechnology-based therapies for PD.
Collapse
Affiliation(s)
- Irfan Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, 4102, Australia
| | - Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Petit P, Berger F, Bonneterre V, Vuillerme N. Investigating Parkinson's disease risk across farming activities using data mining and large-scale administrative health data. NPJ Parkinsons Dis 2025; 11:13. [PMID: 39779703 PMCID: PMC11711245 DOI: 10.1038/s41531-024-00864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The risk of Parkinson's disease (PD) associated with farming has received considerable attention, in particular for pesticide exposure. However, data on PD risk associated with specific farming activities is lacking. We aimed to explore whether specific farming activities exhibited a higher risk of PD than others among the entire French farm manager (FM) population. A secondary analysis of real-world administrative insurance claim data and electronic health/medical records (TRACTOR project) was conducted to estimate PD risk for 26 farming activities using data mining. PD cases were identified through chronic disease declarations and antiparkinsonian drug claims. There were 8845 PD cases among 1,088,561 FMs. The highest-risk group included FMs engaged in pig farming, cattle farming, truck farming, fruit arboriculture, and crop farming, with mean hazard ratios (HRs) ranging from 1.22 to 1.67. The lowest-risk group included all activities involving horses and small animals, as well as gardening, landscaping and reforestation companies (mean HRs: 0.48-0.81). Our findings represent a preliminary work that suggests the potential involvement of occupational risk factors related to farming in PD onset and development. Future research focusing on farmers engaged in high-risk farming activities will allow to uncover potential occupational factors by better characterizing the farming exposome, which could improve PD surveillance among farmers.
Collapse
Affiliation(s)
- Pascal Petit
- Univ. Grenoble Alpes, AGEIS, 38000, Grenoble, France.
| | - François Berger
- Univ. Grenoble Alpes, INSERM, Unit 1205, Braintech Lab, 38000, Grenoble, France
| | - Vincent Bonneterre
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, 38000, Grenoble, France
| | - Nicolas Vuillerme
- Univ. Grenoble Alpes, AGEIS, 38000, Grenoble, France
- Institut Universitaire de France, 75000, Paris, France
| |
Collapse
|
7
|
Martins AC, Pinheiro JDS, Szinwelski L, Cidade ER, Santin DF, Proença LD, Araújo BA, Saraiva-Pereira ML, Jardim LB. Caffeine Consumption and Interaction with ADORA2A, CYP1A2 and NOS1 Variants Do Not Influence Age at Onset of Machado-Joseph Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2217-2225. [PMID: 38969840 DOI: 10.1007/s12311-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The age at onset (AO) of Machado-Joseph disease (SCA3/MJD), a disorder due to an expanded CAG repeat (CAGexp) in ATXN3, is quite variable and the role of environmental factors is still unknown. Caffeine was associated with protective effects against other neurodegenerative diseases, and against SCA3/MJD in transgenic mouse models. We aimed to evaluate whether caffeine consumption and its interaction with variants of caffeine signaling/metabolization genes impact the AO of this disease. METHODS a questionnaire on caffeine consumption was applied to adult patients and unrelated controls living in Rio Grande do Sul, Brazil. AO and CAGexp were previously determined. SNPs rs5751876 (ADORA2A), rs2298383 (ADORA2A), rs762551 (CYP1A2) and rs478597 (NOS1) were genotyped. AO of subgroups were compared, adjusting the CAGexp to 75 repeats (p < 0.05). RESULTS 171/179 cases and 98/100 controls consumed caffeine. Cases with high and low caffeine consumption (more or less than 314.5 mg of caffeine/day) had mean (SD) AO of 35.05 (11.44) and 35.43 (10.08) years (p = 0.40). The mean (SD) AO of the subgroups produced by the presence or absence of caffeine-enhancing alleles in ADORA2A (T allele at rs5751876 and rs2298383), CYP1A2 (C allele) and NOS1 (C allele) were all similar (p between 0.069 and 0.516). DISCUSSION Caffeine consumption was not related to changes in the AO of SCA3/MJD, either alone or in interaction with protective genotypes at ADORA2A, CYP1A2 and NOS1.
Collapse
Affiliation(s)
- Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
| | - Jordânia Dos Santos Pinheiro
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, Brazil
| | - Luciana Szinwelski
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, Brazil
| | - Eduardo Rockenbach Cidade
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil
| | - Danilo Fernando Santin
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil
| | - Laura Damke Proença
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Instituto de Biociências , Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Bruna Almeida Araújo
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Curso de Biomedicina, Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Porto Alegre, 90035-003, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Porto Alegre, 90035-003, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil.
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil.
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90.035-002, Brazil.
- DMI FAMED UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.
| |
Collapse
|
8
|
Kalia LV, Berg D, Kordower JH, Shannon KM, Taylor JP, Cardoso F, Goldman JG, Jeon B, Meissner WG, Tijssen MAJ, Burn DJ, Fung VSC. International Parkinson and Movement Disorder Society Viewpoint on Biological Frameworks of Parkinson's Disease: Current Status and Future Directions. Mov Disord 2024; 39:1710-1715. [PMID: 39250594 DOI: 10.1002/mds.30007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel, Kiel, Germany
| | - Jeffery H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kathleen M Shannon
- Department of Neurology, University of Wisconsin School of Public Health, Madison, Wisconsin, USA
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jennifer G Goldman
- Barrow Neurological Institute, Phoenix, Arizona, USA
- JPG Enterprises LLC, Chicago, Illinois, USA
| | - Beomseok Jeon
- BJ Center for Comprehensive Parkinson Care and Rare Movement Disorders, Chung-Ang University Health Care System, Hyundae Hospital, Namyangju-si, South Korea
| | - Wassilos G Meissner
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Marina A J Tijssen
- Department of Neurology, Expertise Centre Movement Disorders, University Medical Centre Groningen, Groningen, The Netherlands
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Tanner CM, Ostrem JL. Parkinson's Disease. N Engl J Med 2024; 391:442-452. [PMID: 39083773 DOI: 10.1056/nejmra2401857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Affiliation(s)
- Caroline M Tanner
- From the Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco
| | - Jill L Ostrem
- From the Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco
| |
Collapse
|
10
|
Gabbert C, Blöbaum L, Lüth T, König IR, Caliebe A, Sendel S, Laabs BH, Klein C, Trinh J. The combined effect of lifestyle factors and polygenic scores on age at onset in Parkinson's disease. Sci Rep 2024; 14:14670. [PMID: 38918550 PMCID: PMC11199580 DOI: 10.1038/s41598-024-65640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this study was to investigate the association between a Parkinson's disease (PD)-specific polygenic score (PGS) and protective lifestyle factors on age at onset (AAO) in PD. We included data from 4367 patients with idiopathic PD, 159 patients with GBA1-PD, and 3090 healthy controls of European ancestry from AMP-PD, PPMI, and Fox Insight cohorts. The association between PGS and lifestyle factors on AAO was assessed with linear and Cox proportional hazards models. The PGS showed a negative association with AAO (β = - 1.07, p = 6 × 10-7) in patients with idiopathic PD. The use of one, two, or three of the protective lifestyle factors showed a reduction in the hazard ratio by 21% (p = 0.0001), 44% (p < 2 × 10-16), and 55% (p < 2 × 10-16), compared to no use. An additive effect of aspirin (β = 7.62, p = 9 × 10-7) and PGS (β = - 1.58, p = 0.0149) was found for AAO without an interaction (p = 0.9993) in the linear regressions, and similar effects were seen for tobacco. In contrast, no association between aspirin intake and AAO was found in GBA1-PD (p > 0.05). In our cohort, coffee, tobacco, aspirin, and PGS are independent predictors of PD AAO. Additionally, lifestyle factors seem to have a greater influence on AAO than common genetic risk variants with aspirin presenting the largest effect.
Collapse
Affiliation(s)
- Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Leonie Blöbaum
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sebastian Sendel
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
11
|
Bhidayasiri R, Sringean J, Phumphid S, Anan C, Thanawattano C, Deoisres S, Panyakaew P, Phokaewvarangkul O, Maytharakcheep S, Buranasrikul V, Prasertpan T, Khontong R, Jagota P, Chaisongkram A, Jankate W, Meesri J, Chantadunga A, Rattanajun P, Sutaphan P, Jitpugdee W, Chokpatcharavate M, Avihingsanon Y, Sittipunt C, Sittitrai W, Boonrach G, Phonsrithong A, Suvanprakorn P, Vichitcholchai J, Bunnag T. The rise of Parkinson's disease is a global challenge, but efforts to tackle this must begin at a national level: a protocol for national digital screening and "eat, move, sleep" lifestyle interventions to prevent or slow the rise of non-communicable diseases in Thailand. Front Neurol 2024; 15:1386608. [PMID: 38803644 PMCID: PMC11129688 DOI: 10.3389/fneur.2024.1386608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The rising prevalence of Parkinson's disease (PD) globally presents a significant public health challenge for national healthcare systems, particularly in low-to-middle income countries, such as Thailand, which may have insufficient resources to meet these escalating healthcare needs. There are also many undiagnosed cases of early-stage PD, a period when therapeutic interventions would have the most value and least cost. The traditional "passive" approach, whereby clinicians wait for patients with symptomatic PD to seek treatment, is inadequate. Proactive, early identification of PD will allow timely therapeutic interventions, and digital health technologies can be scaled up in the identification and early diagnosis of cases. The Parkinson's disease risk survey (TCTR20231025005) aims to evaluate a digital population screening platform to identify undiagnosed PD cases in the Thai population. Recognizing the long prodromal phase of PD, the target demographic for screening is people aged ≥ 40 years, approximately 20 years before the usual emergence of motor symptoms. Thailand has a highly rated healthcare system with an established universal healthcare program for citizens, making it ideal for deploying a national screening program using digital technology. Designed by a multidisciplinary group of PD experts, the digital platform comprises a 20-item questionnaire about PD symptoms along with objective tests of eight digital markers: voice vowel, voice sentences, resting and postural tremor, alternate finger tapping, a "pinch-to-size" test, gait and balance, with performance recorded using a mobile application and smartphone's sensors. Machine learning tools use the collected data to identify subjects at risk of developing, or with early signs of, PD. This article describes the selection and validation of questionnaire items and digital markers, with results showing the chosen parameters and data analysis methods to be robust, reliable, and reproducible. This digital platform could serve as a model for similar screening strategies for other non-communicable diseases in Thailand.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jirada Sringean
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chanawat Anan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Suwijak Deoisres
- National Electronics and Computer Technology Centre, Pathum Thani, Thailand
| | - Pattamon Panyakaew
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Suppata Maytharakcheep
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Vijittra Buranasrikul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Tittaya Prasertpan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Sawanpracharak Hospital, Nakhon Sawan, Thailand
| | | | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Araya Chaisongkram
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Worawit Jankate
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jeeranun Meesri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Araya Chantadunga
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Piyaporn Rattanajun
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Phantakarn Sutaphan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Weerachai Jitpugdee
- Department of Rehabilitation Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Marisa Chokpatcharavate
- Chulalongkorn Parkinson's Disease Support Group, Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Society, Bangkok, Thailand
| | - Chanchai Sittipunt
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Society, Bangkok, Thailand
| | | | | | | | | | | | - Tej Bunnag
- Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
12
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Brown EG, Goldman SM, Coffey CS, Siderowf A, Simuni T, Meng C, Brumm MC, Caspell-Garcia C, Marek K, Tanner CM. Occupational Pesticide Exposure in Parkinson's Disease Related to GBA and LRRK2 Variants. JOURNAL OF PARKINSON'S DISEASE 2024; 14:737-746. [PMID: 38820021 PMCID: PMC11191498 DOI: 10.3233/jpd-240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Background The penetrance of common genetic risk variants for Parkinson's disease (PD) is low. Pesticide exposure increases PD risk, but how exposure affects penetrance is not well understood. Objective To determine the relationship between occupational pesticide exposure and PD in people with LRRK2 and GBA risk variants. Methods Participants of the Parkinson's Progression Markers Initiative (PPMI) with a LRRK2-G2019 S or GBA risk variant provided information about occupational pesticide exposure. We compared exposure in carriers with and without PD. Among carriers with PD, we used Cox proportional hazard models to compare time-to impairment in balance, cognition, and activities of daily living (ADLs) between participants with and without prior occupational pesticide exposure. Results 378 participants with a risk variant provided exposure information; 176 with LRRK2-G2019 S (54 with and 122 without PD) and 202 with GBA variants (47 with and 155 without PD). Twenty-six participants reported pesticide exposure. People with a GBA variant and occupational pesticide exposure had much higher odds of PD (aOR: 5.4, 95% CI 1.7-18.5, p < 0.01). People with a LRRK2 variant and a history of occupational pesticide exposure had non-significantly elevated odds of PD (aOR 1.3, 95% CI 0.4-4.6, p = 0.7). Among those with PD, pesticide exposure was associated with a higher risk of balance problems and cognitive impairment in LRRK2-PD and functional impairment in GBA-PD, although associations were not statistically significant. Conclusions Occupational pesticide exposure may increase penetrance of GBA-PD and may be associated with faster symptom progression. Further studies in larger cohorts are necessary.
Collapse
Affiliation(s)
- Ethan G. Brown
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel M. Goldman
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Cheryl Meng
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Michael C. Brumm
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - The Parkinson’s Progression Markers Initiative
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
14
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 PMCID: PMC11091652 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|