1
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Gonzalez-Ramos A, Berglind F, Kudláček J, Rocha ER, Melin E, Sebastião AM, Valente CA, Ledri M, Andersson M, Kokaia M. Chemogenetics with PSAM 4-GlyR decreases excitability and epileptiform activity in epileptic hippocampus. Gene Ther 2025; 32:106-120. [PMID: 39455855 PMCID: PMC11946892 DOI: 10.1038/s41434-024-00493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fredrik Berglind
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Jan Kudláček
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elza R Rocha
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Esbjörn Melin
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Shayan TK, Abdolmaleki A, Asadi A, Hassanpour H. Neuroprotective anticonvulsant and anxiolytic effects of octreotide in wistar rats. J Chem Neuroanat 2023; 132:102320. [PMID: 37499770 DOI: 10.1016/j.jchemneu.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Somatostatin interneurons exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide, a somatostatin analog, on pentylenetetrazol (PTZ)-induced seizures in male Wistar rats. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed neuronal apoptosis and attenuated oxidative stress. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.
Collapse
Affiliation(s)
- Tahereh Karimi Shayan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Hossein Hassanpour
- Department of Basic Science, Faculty of Veterinary Medicine Shahrekord University, Saman Road P.O.115, Shahrekord, Iran
| |
Collapse
|
4
|
Zheng Y, Xu C, Sun J, Ming W, Dai S, Shao Y, Qiu X, Li M, Shen C, Xu J, Fei F, Fang J, Jiang X, Zheng G, Hu W, Wang Y, Wang S, Ding M, Chen Z. Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia. Signal Transduct Target Ther 2023; 8:186. [PMID: 37193687 DOI: 10.1038/s41392-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023] Open
Abstract
Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cenglin Xu
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jinyi Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Ming
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Sijie Dai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinghong Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuhong Jiang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoqing Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhong Chen
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
7
|
Gu X, Wang J, Jiang X. miR-124- and let-7-Mediated Reprogram of Human Fibroblasts into SST Interneurons. ACS Chem Neurosci 2022; 13:2755-2765. [PMID: 36074953 DOI: 10.1021/acschemneuro.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Dysfunction of γ-aminobutyric acid (GABA)ergic interneurons may cause a variety of neurological and psychiatric disorders such as epilepsy, autism, Alzheimer's disease, and depression. Unlike other types of neurons, which can be generated relatively easily by direct reprogramming, it is difficult to generate GABAergic neurons by traditional methods. Neuronal transdifferentiation of fibroblasts mediated by nongenomic-integrated adenovirus has many advantages, but the efficiency is low, and there is a lack of studies using human cells as the initial materials. In this study, we explored the feasibility of the conversion of human fibroblasts into neurons through adenovirus-mediated gene expression and found that by introducing two microRNAs, miR-124 and let-7, together with several small chemical compounds, they can effectively generate GABAergic neuron-like cells from human neonatal fibroblasts without reverting to a progenitor cell stage. Most of these cells expressed neuronal markers and were all somatostatin (SST)-positive cells. Therefore, our study provides a relatively safe and efficient method to generate SST interneurons.
Collapse
Affiliation(s)
- Xi Gu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510500, China
| |
Collapse
|
8
|
Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. Int J Mol Sci 2022; 23:ijms23147965. [PMID: 35887307 PMCID: PMC9318753 DOI: 10.3390/ijms23147965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
Collapse
|
9
|
Seelman A, Vu K, Buckmaster P, Mackie K, Field C, Johnson S, Wyeth M. Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy Res 2022; 184:106965. [PMID: 35724601 DOI: 10.1016/j.eplepsyres.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.
Collapse
Affiliation(s)
- Amanda Seelman
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Western University of Health Sciences, East 2nd Street, Pomona, CA 91766, USA
| | - Kristina Vu
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Paul Buckmaster
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA; Gill Centre for Biomolecular Science, Indiana University, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Cara Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Shawn Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Megan Wyeth
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Lack of Hyperinhibition of Oriens Lacunosum-Moleculare Cells by Vasoactive Intestinal Peptide-Expressing Cells in a Model of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0299-21.2021. [PMID: 34819310 PMCID: PMC8721516 DOI: 10.1523/eneuro.0299-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy remains a common disorder with no cure and inadequate treatments, potentially because of an incomplete understanding of how seizures start. CA1 pyramidal cells and many inhibitory interneurons increase their firing rate in the seconds-minutes before a spontaneous seizure in epileptic rats. However, some interneurons fail to do so, including those identified as putative interneurons with somata in oriens and axons targeting lacunosum-moleculare (OLM cells). Somatostatin-containing cells, including OLM cells, are the primary target of inhibitory vasoactive intestinal polypeptide and calretinin-expressing (VIP/CR) bipolar interneuron-selective interneurons, type 3 (ISI-3). The objective of this study was to test the hypothesis that in epilepsy inhibition of OLM cells by ISI-3 is abnormally increased, potentially explaining the failure of OLM recruitment when needed most during the ramp up of activity preceding a seizure. Stereological quantification of VIP/CR cells in a model of temporal lobe epilepsy demonstrated that they survive in epileptic mice, despite a reduction in their somatostatin-expressing (Som) cell targets. Paired recordings of unitary IPSCs (uIPSCs) from ISI-3 to OLM cells did not show increased connection probability or increased connection strength, and failure rate was unchanged. When miniature postsynaptic currents in ISI-3 were compared, only mIPSC frequency was increased in epileptic hippocampi. Nevertheless, spontaneous and miniature postsynaptic potentials were unchanged in OLM cells of epileptic mice. These results are not consistent with the hypothesis of hyperinhibition from VIP/CR bipolar cells impeding recruitment of OLM cells in advance of a seizure.
Collapse
|
11
|
Gala D, Gurusamy V, Patel K, Damodar S, Swaminath G, Ullal G. Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel Therapeutic Approach. Diseases 2021; 9:diseases9040077. [PMID: 34842629 PMCID: PMC8628773 DOI: 10.3390/diseases9040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for the management of various central nervous system disorders. The ability to self-renew, differentiate into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the treatment of PTSD.
Collapse
|
12
|
Lentini C, d'Orange M, Marichal N, Trottmann MM, Vignoles R, Foucault L, Verrier C, Massera C, Raineteau O, Conzelmann KK, Rival-Gervier S, Depaulis A, Berninger B, Heinrich C. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell 2021; 28:2104-2121.e10. [PMID: 34592167 PMCID: PMC8657801 DOI: 10.1016/j.stem.2021.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 12/03/2022]
Abstract
Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy. Retroviruses target reactive hippocampal glia proliferating in a mouse model of mesial temporal lobe epilepsy Ascl1 and Dlx2 reprogram reactive glia into GABAergic interneurons in the epileptic hippocampus Induced interneurons establish GABAergic synapses onto dentate granule cells Induced interneurons reduce chronic epileptic activity in the hippocampus
Collapse
Affiliation(s)
- Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Marie-Madeleine Trottmann
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Rory Vignoles
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Charlotte Verrier
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Céline Massera
- Univ Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute Virology, Medical Faculty & Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Sylvie Rival-Gervier
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U1208, CSC USC1361, 69500 Bron, France
| | - Antoine Depaulis
- Univ Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
13
|
Erkec OE, Milanlıoğlu A, Komuroglu AU, Kara M, Huyut Z, Keskin S. Evaluation of serum ghrelin, nesfatin-1, irisin, and vasoactive intestinal peptide levels in temporal lobe epilepsy patients with and without drug resistance: a cross-sectional study. Rev Assoc Med Bras (1992) 2021; 67:207-212. [PMID: 34406243 DOI: 10.1590/1806-9282.67.02.20200521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Epilepsy is a common disorder that affects the nervous systems of 1% of worldwide population. In epilepsy, one-third of patients are unresponsive to current drug therapies and develop drug-resistant epilepsy. Alterations in ghrelin, nesfatin-1, and irisin levels with epilepsy were reported in previous studies. Vasoactive intestinal peptide is among the most common neuropeptides in the hippocampus, which is the focus of the seizures in temporal lobe epilepsy. However, there is also lack of evidence of whether these four neuropeptide levels are altered with drug resistant temporal lobe epilepsy or not. The aim herein was the evaluation of the serum levels of nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide in drug-resistant temporal lobe epilepsy patients and temporal lobe epilepsy (TLE) without drug resistance, and to compare them to healthy controls. METHODS This cross-sectional study group included 58 temporal lobe epilepsy patients (24 with drug resistant temporal lobe epilepsy and 34 with temporal lobe epilepsy who were not drug-resistant) and 28 healthy subjects. Nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide serum levels were determined using enzyme-linked immunosorbent assay. RESULTS The serum ghrelin levels of patients with drug resistant temporal lobe epilepsy were seen to have significantly decreased when compared to those of the control group (p<0.05). Serum nesfatin-1, vasoactive intestinal peptide, and irisin levels were seen to have decreased in the drug resistant temporal lobe epilepsy group when compared to those of the control and temporal lobe epilepsy groups; however, the difference was non-significant (p>0.05). CONCLUSIONS The results herein suggested that ghrelin might contribute to the pathophysiology of drug resistant temporal lobe epilepsy. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Aysel Milanlıoğlu
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Neurology - Van, Turkey
| | - Ahmet Ufuk Komuroglu
- Van Yüzüncü Yıl University, Van Vocational Higher School of Healthcare Studies - Van, Turkey
| | - Mehmet Kara
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Zubeyir Huyut
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biochemistry - Van, Turkey
| | - Sıddık Keskin
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biostatistics - Van, Turkey
| |
Collapse
|
14
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: More than a simple change in inhibition. Epilepsy Behav 2021; 121:106935. [PMID: 32035792 DOI: 10.1016/j.yebeh.2020.106935] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-900, RS, Brazil.
| |
Collapse
|
15
|
Ábrahám H, Molnár JE, Sóki N, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Etiology-related Degree of Sprouting of Parvalbumin-immunoreactive Axons in the Human Dentate Gyrus in Temporal Lobe Epilepsy. Neuroscience 2020; 448:55-70. [PMID: 32931846 DOI: 10.1016/j.neuroscience.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/22/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary.
| | - Judit E Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| |
Collapse
|
16
|
Shrestha S, Anderson NC, Grabel LB, Naegele JR, Aaron GB. Development of electrophysiological and morphological properties of human embryonic stem cell-derived GABAergic interneurons at different times after transplantation into the mouse hippocampus. PLoS One 2020; 15:e0237426. [PMID: 32813731 PMCID: PMC7444508 DOI: 10.1371/journal.pone.0237426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Transplantation of human embryonic stem cell (hESC)-derived neural progenitors is a potential treatment for neurological disorders, but relatively little is known about the time course for human neuron maturation after transplantation and the emergence of morphological and electrophysiological properties. To address this gap, we transplanted hESC-derived human GABAergic interneuron progenitors into the mouse hippocampus, and then characterized their electrophysiological properties and dendritic arborizations after transplantation by means of ex vivo whole-cell patch clamp recording, followed by biocytin staining, confocal imaging and neuron reconstruction software. We asked whether particular electrophysiological and morphological properties showed maturation-dependent changes after transplantation. We also investigated whether the emergence of particular electrophysiological properties were linked to increased complexity of the dendritic arbors. Human neurons were classified into five distinct neuronal types (Type I-V), ranging from immature to mature fast-spiking interneurons. Hierarchical clustering of the dendritic morphology and Sholl analyses suggested four morphologically distinct classes (Class A-D), ranging from simple/immature to highly complex. Incorporating all of our data regardless of neuronal classification, we investigated whether any electrophysiological and morphological features correlated with time post-transplantation. This analysis demonstrated that both dendritic arbors and electrophysiological properties matured after transplantation.
Collapse
Affiliation(s)
- Swechhya Shrestha
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| | - Nickesha C. Anderson
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Laura B. Grabel
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Janice R. Naegele
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| | - Gloster B. Aaron
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
17
|
Tiraboschi E, Martina S, van der Ent W, Grzyb K, Gawel K, Cordero-Maldonado ML, Poovathingal SK, Heintz S, Satheesh SV, Brattespe J, Xu J, Suster M, Skupin A, Esguerra CV. New insights into the early mechanisms of epileptogenesis in a zebrafish model of Dravet syndrome. Epilepsia 2020; 61:549-560. [PMID: 32096222 DOI: 10.1111/epi.16456] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To pinpoint the earliest cellular defects underlying seizure onset (epileptogenic period) during perinatal brain development in a new zebrafish model of Dravet syndrome (DS) and to investigate potential disease-modifying activity of the 5HT2 receptor agonist fenfluramine. METHODS We used CRISPR/Cas9 mutagenesis to introduce a missense mutation, designed to perturb ion transport function in all channel isoforms, into scn1lab, the zebrafish orthologue of SCN1A (encoding voltage-gated sodium channel alpha subunit 1). We performed behavioral analysis and electroencephalographic recordings to measure convulsions and epileptiform discharges, followed by single-cell RNA-Seq, morphometric analysis of transgenic reporter-labeled γ-aminobutyric acidergic (GABAergic) neurons, and pharmacological profiling of mutant larvae. RESULTS Homozygous mutant (scn1labmut/mut ) larvae displayed spontaneous seizures with interictal, preictal, and ictal discharges (mean = 7.5 per 20-minute recording; P < .0001; one-way analysis of variance). Drop-Seq analysis revealed a 2:1 shift in the ratio of glutamatergic to GABAergic neurons in scn1labmut/mut larval brains versus wild type (WT), with dynamic changes in neuronal, glial, and progenitor cell populations. To explore disease pathophysiology further, we quantified dendritic arborization in GABAergic neurons and observed a 40% reduction in arbor number compared to WT (P < .001; n = 15 mutant, n = 16 WT). We postulate that the significant reduction in inhibitory arbors causes an inhibitory to excitatory neurotransmitter imbalance that contributes to seizures and enhanced electrical brain activity in scn1labmut/mut larvae (high-frequency range), with subsequent GABAergic neuronal loss and astrogliosis. Chronic fenfluramine administration completely restored dendritic arbor numbers to normal in scn1labmut/mut larvae, whereas similar treatment with the benzodiazepine diazepam attenuated seizures, but was ineffective in restoring neuronal cytoarchitecture. BrdU labeling revealed cell overproliferation in scn1labmut/mut larval brains that were rescued by fenfluramine but not diazepam. SIGNIFICANCE Our findings provide novel insights into early mechanisms of DS pathogenesis, describe dynamic cell population changes in the scn1labmut/mut brain, and present first-time evidence for potential disease modification by fenfluramine.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Silvia Martina
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Kamil Grzyb
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kinga Gawel
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway.,Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Maria Lorena Cordero-Maldonado
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Suresh Kumar Poovathingal
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Heintz
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | | | - Jarle Brattespe
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Alexander Skupin
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camila V Esguerra
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Arshad MN, Naegele JR. Induction of Temporal Lobe Epilepsy in Mice with Pilocarpine. Bio Protoc 2020; 10:e3533. [PMID: 33654757 DOI: 10.21769/bioprotoc.3533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 11/02/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy (TLE) in rodents, systemic injections of pilocarpine induce continuous, prolonged limbic seizures, a condition termed "Status Epilepticus" (SE). With appropriate doses, many inbred strains of mice show behavioral seizures within an hour after pilocarpine is injected. With the behavioral scoring system based on a modification of the original Racine scale, one can monitor the seizures behaviorally, as they develop into more prolonged seizures and SE. SE is typically associated with damage to subsets of hippocampal neurons and other structural changes in the hippocampus and generally subsides on its own. However, more precise control of the duration of SE is commonly achieved by injecting a benzodiazepine into the mouse 1 to 3 h after the onset of SE to suppress the seizures. Several days following pilocarpine-induced SE, electrographic and behavioral seizures begin to occur spontaneously. The goal of this protocol is to reliably generate mice that develop spontaneous recurrent seizures (SRS) and show the typical neuropathological changes in the brain characteristic of severe human mesial temporal lobe epilepsy (mTLE), without high mortality. To reduce mortality, multiple subthreshold injections of pilocarpine are administered, which increases the percentage of mice developing SE without concomitant mortality. Precise control of the duration of SE (1 or 3 h) is achieved by suppressing SE with the benzodiazepine Midazolam (Versed). We have found that this protocol is an efficient means for generating mice that subsequently develop characteristics of human mTLE including high-frequency interictal spike and wave activity and SRS. In addition, we and others have shown that this protocol produces mice that show excitotoxic cell death of subsets of hippocampal GABAergic interneurons, particularly in the dentate gyrus and compensatory sprouting of excitatory projections from dentate granule cells (mossy fiber sprouting). Aspects of this protocol have been described in several of our previous publications.
Collapse
Affiliation(s)
- Muhammad Nauman Arshad
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, 06459, USA
| | - Janice R Naegele
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, 06459, USA
| |
Collapse
|
19
|
Sanchez-Mejias E, Nuñez-Diaz C, Sanchez-Varo R, Gomez-Arboledas A, Garcia-Leon JA, Fernandez-Valenzuela JJ, Mejias-Ortega M, Trujillo-Estrada L, Baglietto-Vargas D, Moreno-Gonzalez I, Davila JC, Vitorica J, Gutierrez A. Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathol 2019; 30:345-363. [PMID: 31491047 PMCID: PMC7064898 DOI: 10.1111/bpa.12785] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V-VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.
Collapse
Affiliation(s)
- Elisabeth Sanchez-Mejias
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Jose Fernandez-Valenzuela
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Mejias-Ortega
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Trujillo-Estrada
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Vico Varela E, Etter G, Williams S. Excitatory-inhibitory imbalance in Alzheimer's disease and therapeutic significance. Neurobiol Dis 2019; 127:605-615. [DOI: 10.1016/j.nbd.2019.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022] Open
|
21
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
22
|
de Curtis M, Librizzi L, Uva L, Gnatkovsky V. GABAA receptor-mediated networks during focal seizure onset and progression in vitro. Neurobiol Dis 2019; 125:190-197. [DOI: 10.1016/j.nbd.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023] Open
|
23
|
Xu K, Liu F, Xu W, Liu J, Chen S, Wu G. Transplanting GABAergic Neurons Differentiated from Neural Stem Cells into Hippocampus Inhibits Seizures and Epileptiform Discharges in Pilocarpine-Induced Temporal Lobe Epilepsy Model. World Neurosurg 2019; 128:e1-e11. [PMID: 30790741 DOI: 10.1016/j.wneu.2019.01.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to explore whether intrahippocampal transplantation of GABAergic neurons generated in vitro ameliorated seizures and epileptiform discharges via increasing γ-aminobutyric acid (GABA)-associated inhibition mediated by the addition of new GABAergic neurons. METHODS Neural stem cells (NSCs) isolated from newborn rats were induced and differentiated into GABAergic neurons. A total of 36 Pilocarpine-induced pharmacoresistant epileptic rats were divided into 3 groups: PBS (phosphate-buffered saline) group, NSCs group, and GABAergic neurons group (GABA group), with an additional 10 normal rats used (normal rat control group). The effects of grafting on spontaneous recurrent seizures (SRS) were examined and hippocampal GABA content was measured after grafting. RESULTS In the GABA group, the frequency of electroencephalography decreased significantly compared with the PBS group (P < 0.001), but there was no significant difference between the GABA group and NSCs group. Compared with the PBS group, the overall frequency and duration of SRS significantly decreased in the transplantation group, especially in the GABA group (P < 0.01). The number of GABAergic neurons was highest in the GABA group compared with the other groups (P < 0.001). Furthermore, hippocampal GABA concentrations significantly increased in the GABA group. CONCLUSIONS We show that GABAergic neurons generated in vitro from NSCs and grafted into the hippocampi of chronically epileptic rats can significantly reduce the frequency of electroencephalography and frequency and duration of SRS via increasing GABA-associated inhibition mediated by the addition of new GABAergic neurons.
Collapse
Affiliation(s)
- Kaya Xu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang City, China
| | - Feng Liu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang City, China
| | - Wei Xu
- Public Health School, Guizhou Medical University, Guizhou, Guiyang City, China
| | - Jian Liu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang City, China
| | - Shuxuan Chen
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang City, China
| | - Guofeng Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang City, China.
| |
Collapse
|
24
|
Leibowitz JA, Natarajan G, Zhou J, Carney PR, Ormerod BK. Sustained somatostatin gene expression reverses kindling-induced increases in the number of dividing Type-1 neural stem cells in the hippocampi of behaviorally responsive rats. Epilepsy Res 2019; 150:78-94. [PMID: 30735971 DOI: 10.1016/j.eplepsyres.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Neurogenesis persists throughout life in the hippocampi of all mammals, including humans. In the healthy hippocampus, relatively quiescent Type-1 neural stem cells (NSCs) can give rise to more proliferative Type-2a neural progenitor cells (NPCs), which generate neuronal-committed Type-2b NPCs that mature into Type-3 neuroblasts. Many Type-3 neuroblasts survive and mature into functionally integrated granule neurons over several weeks. In kindling models of epilepsy, neurogenesis is drastically upregulated and many new neurons form aberrant connections that could support epileptogenesis and/or seizures. We have shown that sustained vector-mediated hippocampal somatostatin (SST) expression can both block epileptogenesis and reverse seizure susceptibility in fully kindled rats. Here we test whether adeno-associated virus (AAV) vector-mediated sustained SST expression modulates hippocampal neurogenesis and microglial activation in fully kindled rats. We found significantly more dividing Type-1 NSCs and a corresponding increased number of surviving new neurons in the hippocampi of kindled versus sham-kindled rats. Increased numbers of activated microglia were found in the granule cell layer and hilus of kindled rats at both time points. After intrahippocampal injection with either eGFP or SST-eGFP vector, we found similar numbers of dividing Type-1 NSCs and -2 NPCs and surviving BrdU+ neurons and glia in the hippocampi of kindled rats. Upon observed variability in responses to SST-eGFP (2/4 rats exhibited Grade 0 seizures in the test session), we conducted an additional experiment. We found significantly fewer dividing Type-1 NSCs in the hippocampi of SST-eGFP vector-treated responder rats (5/13 rats) relative to SST-eGFP vector-treated non-responders and eGFP vector-treated controls that exhibited high-grade seizures on the test session. The number of activated microglia was upregulated in the GCL and hilus of kindled rats, regardless of vector treatment. These data support the hypothesis that sustained SST expression exerts antiepileptic effects potentially through normalization of neurogenesis and suggests that abnormally high proliferating Type-1 NSC numbers may be a cellular mechanism of epilepsy.
Collapse
Affiliation(s)
| | - Gowri Natarajan
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Junli Zhou
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Paul R Carney
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, USA; Department of Neuroscience, USA; McKnight Brain Institute, USA.
| |
Collapse
|
25
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
26
|
Cǎlin A, Stancu M, Zagrean AM, Jefferys JGR, Ilie AS, Akerman CJ. Chemogenetic Recruitment of Specific Interneurons Suppresses Seizure Activity. Front Cell Neurosci 2018; 12:293. [PMID: 30233328 PMCID: PMC6134067 DOI: 10.3389/fncel.2018.00293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Current anti-epileptic medications that boost synaptic inhibition are effective in reducing several types of epileptic seizure activity. Nevertheless, these drugs can generate significant side-effects and even paradoxical responses due to the broad nature of their action. Recently developed chemogenetic techniques provide the opportunity to pharmacologically recruit endogenous inhibitory mechanisms in a selective and circuit-specific manner. Here, we use chemogenetics to assess the potential of suppressing epileptiform activity by enhancing the synaptic output from three major interneuron populations in the rodent hippocampus: parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) expressing interneurons. To target different neuronal populations, promoter-specific cre-recombinase mice were combined with viral-mediated delivery of chemogenetic constructs. Targeted electrophysiological recordings were then conducted in an in vitro model of chronic, drug-resistant epilepsy. In addition, behavioral video-scoring was performed in an in vivo model of acutely triggered seizure activity. Pre-synaptic and post-synaptic whole cell recordings in brain slices revealed that each of the three interneuron types increase their firing rate and synaptic output following chemogenetic activation. However, the interneuron populations exhibited different effects on epileptiform discharges. Recruiting VIP interneurons did not change the total duration of epileptiform discharges. In contrast, recruiting SST or PV interneurons produced robust suppression of epileptiform synchronization. PV interneurons exhibited the strongest effect per cell, eliciting at least a fivefold greater reduction in epileptiform activity than the other cell types. Consistent with this, we found that in vivo chemogenetic recruitment of PV interneurons suppressed convulsive behaviors by more than 80%. Our findings support the idea that selective chemogenetic enhancement of inhibitory synaptic pathways offers potential as an anti-seizure strategy.
Collapse
Affiliation(s)
- Alexandru Cǎlin
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Mihai Stancu
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Andrei S. Ilie
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Colin J. Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Enhanced susceptibility to stress and seizures in GAD65 deficient mice. PLoS One 2018; 13:e0191794. [PMID: 29377906 PMCID: PMC5788371 DOI: 10.1371/journal.pone.0191794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reduced gamma-aminobutyric acid (GABA) inhibition has been implicated in both anxiety and epilepsy. GAD65-/- (NOD/LtJ) mice have significantly decreased basal GABA levels in the brain and a lowered threshold for seizure generation. One fifth of GAD65 -/- mice experienced stress-induced seizures upon exposure to an open field at 4 weeks of age. In each successive week until 8 weeks of age, the latency to seizures decreased with prior seizure experience. 100% of GAD65-/- mice exhibited stress-induced seizures by the end of 8 weeks. GAD65-/- mice also exhibited marked impairment in open field exploratory behavior and deficits in spatial learning acquisition on a Barnes maze. Anxiety-like behavior in an open field was observed prior to seizure onset and was predictive of subsequent seizures. Immunohistochemical characterization of interneuron subtypes in GAD65-/- mice showed a selective decrease in GABA and neuropeptide Y (NPY) levels and no change in calbindin (CLB) or calretinin (CLR) immunoreactivity in the hippocampus. Stem cells from the medial ganglionic eminence (MGE) were injected into the hippocampal hilus to restore GABAergic interneurons. One week after transplantation, MGE-transplanted mice demonstrated significant seizure resistance compared to sham surgical controls. The percent area of GFP+ MGE graft in the hippocampus correlated significantly with the increase in seizure latency. Our data indicate that impaired GABAergic neurotransmission can cause anxiety-like behavior and stress-induced seizures that can be rescued by MGE stem cell transplantation.
Collapse
|
28
|
Chen CY, Plocik A, Anderson NC, Moakley D, Boyi T, Dundes C, Lassiter C, Graveley BR, Grabel L. Transcriptome and in Vitro Differentiation Profile of Human Embryonic Stem Cell Derived NKX2.1-Positive Neural Progenitors. Stem Cell Rev Rep 2017; 12:744-756. [PMID: 27539622 DOI: 10.1007/s12015-016-9676-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of inhibitory interneuron progenitors from human embryonic stem cells (ESCs) is of great interest due to their potential use in transplantation therapies designed to treat central nervous system disorders. The medial ganglionic eminence (MGE) is a transient embryonic structure in the ventral telencephalon that is a major source of cortical GABAergic inhibitory interneuron progenitors. These progenitors migrate tangentially to sites in the cortex and differentiate into a variety of interneuron subtypes, forming local synaptic connections with excitatory projection neurons to modulate activity of the cortical circuitry. The homeobox domain-containing transcription factor NKX2.1 is highly expressed in the MGE and pre-optic area of the ventral subpallium and is essential for specifying cortical interneuron fate. Using a combination of growth factor agonists and antagonists to specify ventral telencephalic fates, we previously optimized a protocol for the efficient generation of NKX2.1-positive MGE-like neural progenitors from human ESCs. To establish their identity, we now characterize the transcriptome of these MGE-like neural progenitors using RNA sequencing and demonstrate the capacity of these cells to differentiate into inhibitory interneurons in vitro using a neuron-astrocyte co-culture system. These data provide information on the potential origin of interneurons in the human brain.
Collapse
Affiliation(s)
- Christopher Y Chen
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA.
| | - Alex Plocik
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, 400 Farmington Avenue, UCONN Health, Farmington, CT, 06030, USA
| | - Nickesha C Anderson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Daniel Moakley
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Trinithas Boyi
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Carolyn Dundes
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Chelsea Lassiter
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, 400 Farmington Avenue, UCONN Health, Farmington, CT, 06030, USA
| | - Laura Grabel
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| |
Collapse
|
29
|
Natarajan G, Leibowitz JA, Zhou J, Zhao Y, McElroy JA, King MA, Ormerod BK, Carney PR. Adeno-associated viral vector-mediated preprosomatostatin expression suppresses induced seizures in kindled rats. Epilepsy Res 2017; 130:81-92. [PMID: 28167431 DOI: 10.1016/j.eplepsyres.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/29/2023]
Abstract
Somatostatin is expressed widely in the hippocampus and notably in hilar GABAergic neurons that are vulnerable to seizure neuropathology in chronic temporal lobe epilepsy. We previously demonstrated that sustained bilateral preprosomatostatin (preproSST) expression in the hippocampus prevents the development of generalized seizures in the amygdala kindling model of temporal lobe epilepsy. Here we tested whether sustained preproSST expression is anticonvulsant in rats already kindled to high-grade seizures. Rats were kindled until they exhibited 3 consecutive Racine Grade 5 seizures before adeno-associated virus serotype 5 (AAV5) vector driving either eGFP (AAV5-CBa-eGFP) or preproSST and eGFP (AAV5-CBa-preproSST-eGFP) expression was injected bilaterally into the hippocampal dentate gyrus and CA1 region. Retested 3 weeks later, rats that received control vector (AAV5-CBa-eGFP) continued to exhibit high-grade seizures whereas 6/13 rats that received preproSST vector (AAV5-CBa-preproSST-eGFP) were seizure-free. Of these rats, 5/6 remained seizure-free after repeated stimulation sessions and when the stimulation current was increased. These results suggest that vector-mediated expression of preproSST may be a viable therapeutic strategy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Gowri Natarajan
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey A Leibowitz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Junli Zhou
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Yang Zhao
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Jessica A McElroy
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Michael A King
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA; NF/SG VA Medical Center, University of Florida, Gainesville, FL 32611, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Paul R Carney
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
30
|
Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy. Brain Struct Funct 2015; 221:3601-15. [PMID: 26427846 DOI: 10.1007/s00429-015-1122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established.
Collapse
|
31
|
Yekhlef L, Breschi GL, Lagostena L, Russo G, Taverna S. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J Neurophysiol 2014; 113:1616-30. [PMID: 25505119 DOI: 10.1152/jn.00841.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GABAergic interneurons are thought to play a critical role in eliciting interictal spikes (IICs) and triggering ictal discharges in temporal lobe epilepsy, yet the contribution of different interneuronal subtypes to seizure initiation is still largely unknown. Here we took advantage of optogenetic techniques combined with patch-clamp and field recordings to selectively stimulate parvalbumin (PV)- or somatostatin (SOM)-positive interneurons expressing channelrhodopsin-2 (CHR-2) in layers II-III of adult mouse medial entorhinal cortical slices during extracellular perfusion with the proconvulsive compound 4-aminopyridine (4-AP, 100-200 μM). In control conditions, blue laser photostimulation selectively activated action potential firing in either PV or SOM interneurons and, in both cases, caused a robust GABAA-receptor-mediated inhibition in pyramidal cells (PCs). During perfusion with 4-AP, brief photostimuli (300 ms) activating either PV or SOM interneurons induced patterns of epileptiform activity that closely replicated spontaneously occurring IICs and tonic-clonic ictal discharges. Laser-induced synchronous firing in both interneuronal types elicited large compound GABAergic inhibitory postsynaptic currents (IPSCs) correlating with IICs and preictal spikes. In addition, spontaneous and laser-induced epileptic events were similarly initiated in concurrence with a large increase in extracellular potassium concentration. Finally, interneuron activation was unable to stop or significantly shorten the progression of seizurelike episodes. These results suggest that entorhinal PV and SOM interneurons are nearly equally effective in triggering interictal and ictal discharges that closely resemble human temporal lobe epileptic activity.
Collapse
Affiliation(s)
- Latefa Yekhlef
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gian Luca Breschi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Lagostena
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giovanni Russo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Stefano Taverna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
32
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
33
|
Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen YJJ, Stanley EG, Elefanty AG, Sasai Y, Alvarez-Buylla A, Rubenstein JLR, Kriegstein AR. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 2014; 12:573-86. [PMID: 23642366 DOI: 10.1016/j.stem.2013.04.005] [Citation(s) in RCA: 405] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/22/2013] [Accepted: 04/08/2013] [Indexed: 12/16/2022]
Abstract
Directed differentiation from human pluripotent stem cells (hPSCs) has seen significant progress in recent years. However, most differentiated populations exhibit immature properties of an early embryonic stage, raising concerns about their ability to model and treat disease. Here, we report the directed differentiation of hPSCs into medial ganglionic eminence (MGE)-like progenitors and their maturation into forebrain type interneurons. We find that early-stage progenitors progress via a radial glial-like stem cell enriched in the human fetal brain. Both in vitro and posttransplantation into the rodent cortex, the MGE-like cells develop into GABAergic interneuron subtypes with mature physiological properties along a prolonged intrinsic timeline of up to 7 months, mimicking endogenous human neural development. MGE-derived cortical interneuron deficiencies are implicated in a broad range of neurodevelopmental and degenerative disorders, highlighting the importance of these results for modeling human neural development and disease.
Collapse
Affiliation(s)
- Cory R Nicholas
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Houser CR. Do structural changes in GABA neurons give rise to the epileptic state? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:151-60. [PMID: 25012374 DOI: 10.1007/978-94-017-8914-1_12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Identifying the role of GABA neurons in the development of an epileptic state has been particularly difficult in acquired epilepsy, in part because of the multiple changes that occur in such conditions. Although once questioned, there is now considerable evidence for loss of GABA neurons in multiple brain regions in models of acquired epilepsy. This loss can affect several cell types, including both somatostatin- and parvalbumin-expressing interneurons, and the cell type that is most severely affected can vary among brain regions and models. Because of the diversity of GABA neurons in the hippocampus and cerebral cortex, resulting functional deficits are unlikely to be compensated fully by remaining GABA neurons of other subtypes. The fundamental importance of GABA neuron loss in epilepsy is supported by findings in genetic mouse models in which GABA neurons appear to be decreased relatively selectively, and increased seizure susceptibility and spontaneous seizures develop. Alterations in remaining GABA neurons also occur in acquired epilepsy. These include alterations in inputs or receptors that could impair function, as well as morphological reorganization of GABAergic axons and their synaptic connections. Such axonal sprouting could be compensatory if normal circuits are reestablished, but the creation of aberrant circuitry could contribute to an epileptic condition. The functional effects of GABA neuron alterations thus may include not only reductions in GABAergic inhibition but also excessive neuronal synchrony and, potentially, depolarizing GABAergic influences. The combination of GABA neuron loss and alterations in remaining GABA neurons provides likely, though still unproven, substrates for the epileptic state.
Collapse
Affiliation(s)
- Carolyn R Houser
- Department of Neurobiology and Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA,
| |
Collapse
|
35
|
Houser CR, Zhang N, Peng Z, Huang CS, Cetina Y. Neuroanatomical clues to altered neuronal activity in epilepsy: from ultrastructure to signaling pathways of dentate granule cells. Epilepsia 2012; 53 Suppl 1:67-77. [PMID: 22612811 DOI: 10.1111/j.1528-1167.2012.03477.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dynamic aspects of epilepsy, in which seizures occur sporadically and are interspersed with periods of relatively normal brain function, present special challenges for neuroanatomical studies. Although numerous morphologic changes can be identified during the chronic period, the relationship of many of these changes to seizure generation and propagation remains unclear. Mossy fiber sprouting is an example of a frequently observed morphologic change for which a functional role in epilepsy continues to be debated. This review focuses on neuroanatomically identified changes that would support high levels of activity in reorganized mossy fibers and potentially associated granule cell activation. Early ultrastructural studies of reorganized mossy fiber terminals in human temporal lobe epilepsy tissue have identified morphologic substrates for highly efficacious excitatory connections among granule cells. If similar connections in animal models contribute to seizure activity, activation of granule cells would be expected. Increased labeling with two activity-related markers, Fos and phosphorylated extracellular signal-regulated kinase, has suggested increased activity of dentate granule cells at the time of spontaneous seizures in a mouse model of epilepsy. However, neuroanatomical support for a direct link between activation of reorganized mossy fiber terminals and increased granule cell activity remains elusive. As novel activity-related markers are developed, it may yet be possible to demonstrate such functional links and allow mapping of seizure activity throughout the brain. Relating patterns of neuronal activity during seizures to the underlying morphologic changes could provide important new insights into the basic mechanisms of epilepsy and seizure generation.
Collapse
Affiliation(s)
- Carolyn R Houser
- Department of Neurobiology, David Geffen School of Medicine at the University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095-1763, U.S.A.
| | | | | | | | | |
Collapse
|
36
|
Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 2012; 32:46-61. [PMID: 22219269 DOI: 10.1523/jneurosci.2683-11.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell therapies for neurological disorders require an extensive knowledge of disease-associated neuropathology and procedures for generating neurons for transplantation. In many patients with severe acquired temporal lobe epilepsy (TLE), the dentate gyrus exhibits sclerosis and GABAergic interneuron degeneration. Mounting evidence suggests that therapeutic benefits can be obtained by transplanting fetal GABAergic progenitors into the dentate gyrus in rodents with TLE, but the scarcity of human fetal cells limits applicability in patient populations. In contrast, virtually limitless quantities of neural progenitors can be obtained from embryonic stem (ES) cells. ES cell-based therapies for neurological repair in TLE require evidence that the transplanted neurons integrate functionally and replace cell types that degenerate. To address these issues, we transplanted mouse ES cell-derived neural progenitors (ESNPs) with ventral forebrain identities into the hilus of the dentate gyrus of mice with TLE and evaluated graft differentiation, mossy fiber sprouting, cellular morphology, and electrophysiological properties of the transplanted neurons. In addition, we compared electrophysiological properties of the transplanted neurons with endogenous hilar interneurons in mice without TLE. The majority of transplanted ESNPs differentiated into GABAergic interneuron subtypes expressing calcium-binding proteins parvalbumin, calbindin, or calretinin. Global suppression of mossy fiber sprouting was not observed; however, ESNP-derived neurons formed dense axonal arborizations in the inner molecular layer and throughout the hilus. Whole-cell hippocampal slice electrophysiological recordings and morphological analyses of the transplanted neurons identified five basic types; most with strong after-hyperpolarizations and smooth or sparsely spiny dendritic morphologies resembling endogenous hippocampal interneurons. Moreover, intracellular recordings of spontaneous EPSCs indicated that the new cells functionally integrate into epileptic hippocampal circuitry.
Collapse
|
37
|
Shlosberg D, Buskila Y, Abu-Ghanem Y, Amitai Y. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons. Front Neural Circuits 2012; 6:3. [PMID: 22347168 PMCID: PMC3273928 DOI: 10.3389/fncir.2012.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/23/2012] [Indexed: 11/13/2022] Open
Abstract
Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.
Collapse
Affiliation(s)
- Dan Shlosberg
- Faculty of Health Sciences, Department of Physiology and Neurobiology, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | | | | | |
Collapse
|
38
|
Zafar R, King MA, Carney PR. Adeno associated viral vector-mediated expression of somatostatin in rat hippocampus suppresses seizure development. Neurosci Lett 2012; 509:87-91. [PMID: 22245439 DOI: 10.1016/j.neulet.2011.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) has been suggested to play an important role in maintaining hippocampal homeostasis by modulating excitatory neurotransmission. The putative anticonvulsant role for SST was tested in an electrical amygdala kindling model. SST was cloned into serotype 5 of the adeno-associated viral (AAV) vector and delivered bilaterally into the hippocampus of adult male Sprague Dawley rats that were subsequently electrically kindled. Behavioral severity and duration of kindled seizures was compared to uninjected and GFP-injected control rats. Results demonstrated that 70% of SST treated animals did not experience class IV or V seizures without affecting the threshold for individual stimulation-evoked seizures. This result was significantly different from control groups where 100% of animals reached class V seizures. No difference in the number of stimulations required to reach the first class I-III seizures was observed in the experimental cohort relative to age-matched controls. These preclinical results suggest a putative role for SST as an anticonvulsant therapeutic modality for epilepsy.
Collapse
Affiliation(s)
- Rabia Zafar
- Departments of Pediatrics and Neurology, University of Florida, 1600 SW Archer Road, HD 403, P.O. Box 100296, Gainesville, FL 32610-0296, USA.
| | | | | |
Collapse
|
39
|
Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012; 3:154. [PMID: 23230430 PMCID: PMC3515867 DOI: 10.3389/fendo.2012.00154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.
Collapse
Affiliation(s)
| | | | | | - Cécile Viollet
- *Correspondence: Cécile Viollet, Inserm UMR894 - Center for Psychiatry and Neuroscience, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d’Alésia, 75014 Paris, France. e-mail:
| |
Collapse
|
40
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
41
|
Briggs SW, Walker J, Asik K, Lombroso P, Naegele J, Aaron G. STEP regulation of seizure thresholds in the hippocampus. Epilepsia 2011; 52:497-506. [PMID: 21204826 DOI: 10.1111/j.1528-1167.2010.02912.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To investigate whether striatal enriched protein tyrosine phosphatase (STEP) influences ictogenesis. METHODS STEP knockout mice were compared to wild-type (WT) mice in pilocarpine-induced seizures. Hippocampal slices were also prepared from these two mouse populations, allowing the examination of ictal-like stimulation in these slices using calcium imaging and electrophysiologic recordings. KEY FINDINGS To examine seizure thresholds, increasing doses of pilocarpine were administered to adult mice and seizures were scored behaviorally. Significantly fewer STEP knockout mice developed seizures that progressed to the stage of status epilepticus compared to WT mice. To examine potential differences in neural circuits that might account for this finding, seizure-like activity was induced in hippocampal slices. Electrical stimulation of the hippocampal-entorhinal cortex pathway in STEP knockout mice resulted in less activation of the dentate gyrus granule cell layer (GCL), but greater activation of the hilus in STEP knockouts, compared with heterozygous slices. SIGNIFICANCE STEP deficiency is associated with higher seizure thresholds. The locus of these effects appears to include the dentate gyrus granule cell layer and hilus.
Collapse
Affiliation(s)
- Stephen W Briggs
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Halabisky B, Parada I, Buckmaster PS, Prince DA. Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. J Neurophysiol 2010; 104:2214-23. [PMID: 20631216 DOI: 10.1152/jn.00147.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The density of somatostatin (SOM)-containing GABAergic interneurons in the hilus of the dentate gyrus is significantly decreased in both human and experimental temporal lobe epilepsy. We used the pilocarpine model of status epilepticus and temporal lobe epilepsy in mice to study anatomical and electrophysiological properties of surviving somatostatin interneurons and determine whether compensatory functional changes occur that might offset loss of other inhibitory neurons. Using standard patch-clamp techniques and pipettes containing biocytin, whole cell recordings were obtained in hippocampal slices maintained in vitro. Hilar SOM cells containing enhanced green fluorescent protein (EGFP) were identified with fluorescent and infrared differential interference contrast video microscopy in epileptic and control GIN (EGFP-expressing Inhibitory Neurons) mice. Results showed that SOM cells from epileptic mice had 1) significant increases in somatic area and dendritic length; 2) changes in membrane properties, including a small but significant decrease in resting membrane potential, and increases in time constant and whole cell capacitance; 3) increased frequency of slowly rising spontaneous excitatory postsynaptic currents (sEPSCs) due primarily to increased mEPSC frequency, without changes in the probability of release; 4) increased evoked EPSC amplitude; and 5) increased spontaneous action potential generation in cell-attached recordings. Results suggest an increase in excitatory innervation, perhaps on distal dendrites, considering the slower rising EPSCs and increased output of hilar SOM cells in this model of epilepsy. In sum, these changes would be expected to increase the inhibitory output of surviving SOM interneurons and in part compensate for interneuronal loss in the epileptogenic hippocampus.
Collapse
Affiliation(s)
- Brian Halabisky
- Stanford University School of Medicine, Department of Neurology, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
44
|
Tanaka DH, Mikami S, Nagasawa T, Miyazaki JI, Nakajima K, Murakami F. CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide Y-expressing GABAergic interneurons. ACTA ACUST UNITED AC 2010; 20:2810-7. [PMID: 20200107 DOI: 10.1093/cercor/bhq027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cortical GABAergic interneurons are divided into various subtypes, with each subtype contributing to rich variety and fine details of inhibition. Despite the functional importance of each interneuron subtype, the molecular mechanisms that contribute to sorting them to their appropriate positions within the cortex remain unclear. Here, we show that the chemokine receptor CXCR4 regulates the regional and layer-specific distribution of interneuron subtypes. We removed Cxcr4 specifically in a subset of interneurons at a specific mouse embryonic developmental stage and analyzed the number of interneurons and their laminar distribution in 9 representative cortical regions comprehensively in adults. We found that the number of Cxcr4-deleted calretinin- and that of neuropeptide Y-expressing interneurons were reduced in most caudomedial and lateral cortical regions, respectively, and also in superficial layers. In addition, Cxcr4-deleted somatostatin-expressing interneurons showed a reduction in the number of superficial layers in certain cortical regions but of deep layers in others. These findings suggest that CXCR4 is required for proper regional and laminar distribution in a wider interneuron subpopulation than previously thought and may regulate the establishment of functional cortical circuitry in certain cortical regions and layers.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Avramescu S, Nita DA, Timofeev I. Neocortical post-traumatic epileptogenesis is associated with loss of GABAergic neurons. J Neurotrauma 2009; 26:799-812. [PMID: 19422294 DOI: 10.1089/neu.2008.0739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The subtle mechanisms of post-traumatic epileptogenesis remain unknown, although the incidence of chronic epilepsy after penetrating cortical wounds is high. Here, we investigated whether the increased frequency of seizures occurring within 6 weeks following partial deafferentation of the suprasylvian gyrus in cats is accompanied with a change in the ratio between the number of excitatory and inhibitory neurons. Immuno-histochemical labeling of all neurons with neuronal-specific nuclear protein (NeuN) antibody, and of the GABAergic inhibitory neurons with either gamma-aminobutyric acid (GABA) or glutamic acid decarboxylase (GAD 65&67) antibodies, was performed on sections obtained from control and epileptic animals with chronically deafferented suprasylvian gyrus. Quantification of the labeled neurons was performed in control animals and at 2, 4, and 6 weeks following cortical deafferentation, in the suprasylvian and marginal gyri, both ipsi- and contra-lateral to the cortical trauma. In all epileptic animals, the neuronal loss was circumscribed to the deafferented suprasylvian gyrus. Inhibitory GABAergic neurons were particularly more sensitive to cortical deafferentation than excitatory ones, leading to a progressively increasing ratio between excitation and inhibition towards excitation, potentially explaining the increased propensity to seizures in chronic undercut cortex.
Collapse
Affiliation(s)
- Sinziana Avramescu
- Laval University Medical School, Centre de Recherche Université Laval Robert-Giffard, Québec, QC G1J 2G3, Canada
| | | | | |
Collapse
|
46
|
Han JW, Nakamura M, Choi IS, Cho JH, Park HM, Lee MG, Choi BJ, Jang HJ, Jang IS. Differential pharmacological properties of GABAAreceptors in axon terminals and soma of dentate gyrus granule cells. J Neurochem 2009; 109:995-1007. [DOI: 10.1111/j.1471-4159.2009.06018.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proc Natl Acad Sci U S A 2009; 106:7595-600. [PMID: 19383784 DOI: 10.1073/pnas.0811343106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand-receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with alpha3beta1 integrin to promote interneuronal migration. In vivo analysis of interneuron-specific alpha3beta1 integrin, netrin-1-deficient mice (alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-)) reveals specific deficits in the patterns of interneuronal migration along the top of the developing cortical plate, resulting in aberrant interneuronal positioning throughout the cerebral cortex and hippocampus of conditional alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-) mice. These results indicate that specific guidance mechanisms, such as netrin-1-alpha3beta1 integrin interactions, modulate distinct routes of interneuronal migration and the consequent positioning of groups of cortical interneurons in the developing cerebral cortex.
Collapse
|
48
|
Yushkevich PA, Avants BB, Pluta J, Das S, Minkoff D, Mechanic-Hamilton D, Glynn S, Pickup S, Liu W, Gee JC, Grossman M, Detre JA. A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. Neuroimage 2008; 44:385-98. [PMID: 18840532 DOI: 10.1016/j.neuroimage.2008.08.042] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/12/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022] Open
Abstract
This paper describes the construction of a computational anatomical atlas of the human hippocampus. The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields of the hippocampus (cornu ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image features and geometrical features. A synthetic average image is derived from the MRI of the samples using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a consensus labeling of the template is generated. The agreement of the consensus labeling with manual labeling of each sample is measured, and the effect of aiding registration with landmarks and manually generated mask images is evaluated. The atlas is provided as an online resource with the aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe epilepsy demonstrates the application of the atlas to in vivo studies.
Collapse
Affiliation(s)
- Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tallent MK, Qiu C. Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 2008; 286:96-103. [PMID: 18221832 PMCID: PMC2843391 DOI: 10.1016/j.mce.2007.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/02/2007] [Accepted: 12/01/2007] [Indexed: 02/07/2023]
Abstract
The neuropeptide somatostatin (SST) is highly expressed in brain regions associated with seizures. In hippocampus, SST expression and release is regulated by seizures, and SST-containing neurons within the hilus of the dentate gyrus are sensitive to seizure-induced death. In vivo and in vitro studies suggest that the loss of SST function in the dentate could contribute to epileptogenesis and seizure susceptibility. SST also has inhibitory actions in the CA1 and CA3 hippocampus indicating this peptide is an important homeostatic regulator throughout the hippocampus. In vivo studies show SST has robust antiepileptic properties with the major site of action being hippocampus. In rodents, somatostatin receptor subtype 2 (SST(2)) and SST(4) appear to mediate the majority of the antiepileptic actions of SST, with SST(2) predominate in rat and SST(4) in mouse. Thus SST receptors may be appropriate targets for new antiepileptic drugs (AEDs), although validation in human tissue is lacking.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
50
|
Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J. Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 2008; 286:75-87. [PMID: 17997029 DOI: 10.1016/j.mce.2007.09.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/10/2007] [Accepted: 09/19/2007] [Indexed: 12/21/2022]
Abstract
Somatostatin is abundantly expressed in mammalian brain. The peptide binds with high affinity to six somatostatin receptors, sst1, sst2A and B, sst3 to 5, all belonging to the G-protein-coupled receptor family. Recent advances in the neuroanatomy of somatostatin neurons and cellular distribution of sst receptors shed light on their functional roles in the neuronal network. Beside their initially described neuroendocrine role, somatostatin systems subserve neuromodulatory roles in the brain, influencing motor activity, sleep, sensory processes and cognitive functions, and are altered in brain diseases like affective disorders, epilepsia and Alzheimer's disease.
Collapse
|