1
|
Veilleux Carpentier A, Okun MS. Surgical Treatments of Parkinson's Disease. Neurol Clin 2025; 43:383-397. [PMID: 40185527 DOI: 10.1016/j.ncl.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Surgical interventions have become an integral part of the treatment armamentarium for Parkinson's disease in cases where medication management alone has proven inadequate. Ablative techniques, deep brain stimulation, levodopa-carbidopa intestinal gel infusion, and subcutaneous pump systems offer unique advantages and disadvantages, and the choice of surgical therapy should be individualized. As newer techniques and technologies emerge, the landscape for surgical therapies continues to evolve. A multidisciplinary approach is necessary to establish appropriate candidacy and to determine the most appropriate surgical intervention for each patient. Regular follow-up is essential to assess efficacy, manage complications, and to adjust and optimize treatment.
Collapse
Affiliation(s)
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Currie AD, Wong JK, Okun MS. A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease. NPJ Parkinsons Dis 2024; 10:195. [PMID: 39443513 PMCID: PMC11500395 DOI: 10.1038/s41531-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this review, we summarize preclinical and clinical trials investigating innovative neuromodulatory approaches for Parkinson disease (PD) motor symptom management. We highlight the following technologies: temporal interference, nanoparticles for drug delivery, blood-brain barrier opening, gene therapy, optogenetics, upconversion nanoparticles, magnetothermal nanoparticles, magnetoelectric nanoparticles, ultrasound-responsive nanoparticles, and designer receptors exclusively activated by designer drugs. These studies establish the basis for novel and promising neuromodulatory treatments for PD motor symptoms.
Collapse
Affiliation(s)
- A D Currie
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - J K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Kase D, Zimnik AJ, Han Y, Harsch DR, Bacha S, Cox KM, Bostan AC, Richardson RM, Turner RS. Movement-related activity in the internal globus pallidus of the parkinsonian macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610310. [PMID: 39257740 PMCID: PMC11383679 DOI: 10.1101/2024.08.29.610310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Although the basal ganglia (BG) plays a central role in the motor symptoms of Parkinson's disease, few studies have investigated the influence of parkinsonism on movement-related activity in the BG. Here, we studied the perimovement activity of neurons in globus pallidus internus (GPi) of non-human primates before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal responses were equally common in the parkinsonian brain as seen prior to MPTP and the distribution of different response types was largely unchanged. The slowing of behavioral reaction times and movement durations following the induction of parkinsonism was accompanied by a prolongation of the time interval between neuronal response onset and movement initiation. Neuronal responses were also reduced in magnitude and prolonged in duration after the induction of parkinsonism. Importantly, those two effects were more pronounced among decrease-type responses, and they persisted after controlling for MPTP-induced changes in the trial-by-trial timing of neuronal responses. Following MPTP The timing of neuronal responses also became uncoupled from the time of movement onset and more variable from trial-to-trial. Overall, the effects of MPTP on temporal features of neural responses correlated most consistently with the severity of parkinsonian motor impairments whereas the changes in response magnitude and duration were either anticorrelated with symptom severity or inconsistent. These findings point to a potential previously underappreciated role for abnormalities in the timing of GPi task-related activity in the generation of parkinsonian motor signs.
Collapse
Affiliation(s)
- Daisuke Kase
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Yan Han
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Devin R Harsch
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sarah Bacha
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin M Cox
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert S Turner
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Guidera JA, Kondapavulur S, Wang DD. A Systematic Review Comparing Radiofrequency versus Focused Ultrasound Pallidotomy in the Treatment of Parkinson's Disease. Stereotact Funct Neurosurg 2024; 102:325-342. [PMID: 39173595 DOI: 10.1159/000539911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Focused ultrasound (FUS) pallidotomy is a promising new therapy for Parkinson's disease (PD). The efficacy, motor outcomes, and side effects of FUS pallidotomy compared to radiofrequency (RF) pallidotomy are unknown. METHODS We performed a systematic review of the outcomes and side effect profiles of FUS versus RF pallidotomy in patients with PD. RESULTS Across four RF reports and one FUS report, putative contralateral UPDRS III scores were not significantly different following RF versus FUS pallidotomy. Across 18 RF and 2 FUS reports, the mean failure rate was 14% following RF pallidotomy versus 24% following FUS pallidotomy. Across 25 RF and 3 FUS reports, cognitive deficit was significantly more prevalent following RF pallidotomy (p = 0.004). CONCLUSION At present, limited data and heterogeneity in outcome reporting challenges comparisons of FUS and RF pallidotomy efficacy and safety. Available evidence suggests FUS pallidotomy may have broadly similar efficacy and a lower risk of cognitive impairment relative to RF pallidotomy. Standardized reporting of post-lesion outcomes in future studies would improve power and rule out potential confounders of these results.
Collapse
Affiliation(s)
- Jennifer A Guidera
- Department of Neurological Surgery, UCSF, San Francisco, California, USA,
- Medical Scientist Training Program, UCSF, San Francisco, California, USA,
| | | | - Doris D Wang
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
5
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
6
|
Tsuboi Y, Koebis M, Kogo Y, Ishida T, Suzuki I, Nomoto M, Hattori N. Effects of safinamide adjunct therapy on pain in patients with Parkinson's disease: Post hoc analysis of a Japanese phase 2/3 study. J Neurol Sci 2021; 429:118070. [PMID: 34509801 DOI: 10.1016/j.jns.2021.118070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The non-dopaminergic and dopaminergic actions of safinamide may alleviate pain in patients with Parkinson's disease (PD). We investigated the efficacy of safinamide for pain when administered as an adjunct to levodopa in Japanese patients with PD. METHODS This was a post hoc analysis of a phase 2/3 clinical study of safinamide in Japanese patients with PD who were experiencing wearing-off. Pain was assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) Part II 'sensory symptoms' item 17, on a scale of 0-4, and the 39-item Parkinson's Disease Questionnaire (PDQ-39) 'bodily discomfort' domain score. Subgroup analyses, according to baseline symptoms and concomitant medications, were also performed. RESULTS Least square (LS) mean changes in the UPDRS item 17 score from baseline to Week 24 in the placebo, safinamide 50-mg and safinamide 100-mg groups during the OFF phase were 0.08, -0.15 (p = 0.0133 vs placebo) and -0.18 (p = 0.0054), respectively, and during the ON phase were 0.04, -0.08 (p = 0.0529) and -0.08 (p = 0.0505), respectively. Changes from baseline to Week 24 in PDQ-39 'bodily discomfort' scores were not significantly different in safinamide groups vs placebo. The presence of moderate-to-severe bradykinesia or early-morning dystonia at baseline resulted in numerically greater effect sizes in UPDRS item 17 scores during the OFF phase. CONCLUSIONS Safinamide 50 mg and 100 mg reduced the UPDRS item 17 score in patients with PD, especially during the OFF phase. Patients with moderate-to-severe bradykinesia and early-morning dystonia may benefit from safinamide treatment.
Collapse
Affiliation(s)
- Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Michinori Koebis
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Ippei Suzuki
- Medicine Development Center, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Masahiro Nomoto
- Saiseikai Imabari Center for Health and Welfare, 7-6-1 Kitamura, Imabari, Ehime 799-1592, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan.
| |
Collapse
|
7
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Solomon O, Palnitkar T, Patriat R, Braun H, Aman J, Park MC, Vitek J, Sapiro G, Harel N. Deep-learning based fully automatic segmentation of the globus pallidus interna and externa using ultra-high 7 Tesla MRI. Hum Brain Mapp 2021; 42:2862-2879. [PMID: 33738898 PMCID: PMC8127160 DOI: 10.1002/hbm.25409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) surgery has been shown to dramatically improve the quality of life for patients with various motor dysfunctions, such as those afflicted with Parkinson's disease (PD), dystonia, and essential tremor (ET), by relieving motor symptoms associated with such pathologies. The success of DBS procedures is directly related to the proper placement of the electrodes, which requires the ability to accurately detect and identify relevant target structures within the subcortical basal ganglia region. In particular, accurate and reliable segmentation of the globus pallidus (GP) interna is of great interest for DBS surgery for PD and dystonia. In this study, we present a deep-learning based neural network, which we term GP-net, for the automatic segmentation of both the external and internal segments of the globus pallidus. High resolution 7 Tesla images from 101 subjects were used in this study; GP-net is trained on a cohort of 58 subjects, containing patients with movement disorders as well as healthy control subjects. GP-net performs 3D inference in a patient-specific manner, alleviating the need for atlas-based segmentation. GP-net was extensively validated, both quantitatively and qualitatively over 43 test subjects including patients with movement disorders and healthy control and is shown to consistently produce improved segmentation results compared with state-of-the-art atlas-based segmentations. We also demonstrate a postoperative lead location assessment with respect to a segmented globus pallidus obtained by GP-net.
Collapse
Affiliation(s)
- Oren Solomon
- Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tara Palnitkar
- Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Re'mi Patriat
- Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Henry Braun
- Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Joshua Aman
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael C. Park
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jerrold Vitek
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Guillermo Sapiro
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Department of Computer ScienceDuke UniversityDurhamNorth CarolinaUSA
- Department of MathematicsDuke UniversityDurhamNorth CarolinaUSA
| | - Noam Harel
- Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
9
|
Agrawal M, Garg K, Samala R, Rajan R, Singh M. A Scientometric Analysis of the 100 Most Cited Articles on Pallidotomy. Stereotact Funct Neurosurg 2021; 99:463-473. [PMID: 34077938 DOI: 10.1159/000516237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pallidotomy is the oldest stereotactically performed neurosurgical procedure for movement disorders. Consequently, there is a wealth of literature available on the topic. OBJECTIVES The aim of this analysis was to identify the top-cited articles on pallidotomy in order to discern the origins, spread, the current trends, and the future directions of this surgical procedure. METHODS We performed a search of the Web of Science database on 19 October 2020 using the keyword "pallidotomy." The top-100 cited articles found were arranged in descending order on the basis of citation count (CC) and citation per year (CY). Relevant conclusions were derived. RESULTS The 100 top-cited articles were published between 1961 and 2017, in 24 journals. The average CC and CY were 118.1 (range - 856-46) and 5.326 (range - 29.52-2.09), respectively. The 3 most prolific authors were Lang AE (Neurologist - Toronto), Lozano AM (Neurosurgeon - Toronto), and Vitek JL (Neurologist - Atlanta). The Journal of Neurosurgery published the highest number of top-cited articles [Neurology. 1960;10:61-9]. The maximum articles were from the USA. University of Toronto and Emory University were the most productive institutions. CONCLUSIONS Pallidotomy has gone through several ebbs and flows. Unilateral pallidotomy is currently recommended for the treatment of motor symptoms of Parkinson's disease and dystonia. The need for further research and improved technology to make the technique safer and prove its efficacy is highlighted, especially keeping in mind a large number of populations to which the prohibitively expensive deep brain stimulation is unavailable.
Collapse
Affiliation(s)
- Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Kanwaljeet Garg
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Samala
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Yamamoto K, Ito H, Fukutake S, Odo T, Kamei T, Yamaguchi T, Taira T. Movement during focused ultrasound therapy caused by an unstable magnetic resonance table: case report. J Neurosurg 2021; 134:1724-1727. [PMID: 32619978 DOI: 10.3171/2020.4.jns20219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/17/2020] [Indexed: 11/06/2022]
Abstract
Transcranial MR-guided focused ultrasound (MRgFUS) therapy is a less invasive form of stereotactic treatment for tremors and other movement disorders. Its stereotactic accuracy is ensured by stability of the stereotactic frame and MR table. The authors report a case wherein the patient's movement was detected, and the MR images were repeated to continue the treatment. A 72-year-old man with essential tremor underwent unilateral ventralis intermedius thalamotomy using MRgFUS. The stereotactic frame was correctly fixed to the patient's skull and the table. During the seventh sonication, the patient pressed the emergency button and vomited several times. Before the eighth sonication, the patient's movement was detected and was verified on coronal images. The MR images were repeated, and the treatment was successfully completed with significant improvement in the tremors. After treatment, it was discovered that the MR table was laterally unstable due to the absence of ball bearings, which should be present on both sides of the guide rail of the MR table. The ball bearings were attached to the reverse side of the table, and the table was stabilized. Stereotactic accuracy of MRgFUS is not only ensured by rigid fixation of the stereotactic frame, but also by stability of the MR table.
Collapse
Affiliation(s)
- Kazuaki Yamamoto
- 1Department of Neurosurgery, Tokyo Women's Medical University, Tokyo
- 2Department of Neurosurgery, Shonan Kamakura General Hospital, Kamakura
| | - Hisashi Ito
- 3Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa; and
| | - Shigeru Fukutake
- 3Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa; and
| | - Takashi Odo
- 3Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa; and
| | - Tetsumasa Kamei
- 3Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa; and
| | - Toshio Yamaguchi
- 4Research Institute of Diagnostic Imaging, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Takaomi Taira
- 1Department of Neurosurgery, Tokyo Women's Medical University, Tokyo
| |
Collapse
|
11
|
Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Martínez-Fernández R, Obeso JA. Present and future of subthalamotomy in the management of Parkinson´s disease: a systematic review. Expert Rev Neurother 2021; 21:533-545. [PMID: 33788645 DOI: 10.1080/14737175.2021.1911649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The subthalamic nucleus (STN) is known to be involved in the pathophysiology of Parkinson´s disease and by reducing its abnormal activity, normal output of basal ganglia can be restored along with improvement in PD cardinal motor features. Deep brain stimulation of the STN is currently the main surgical procedure for PD with motor complications, but lesioning can be an alternative.Areas covered: Here, the authors systematically review the current evidence regarding subthalamotomy both with radiofrequency and, more recently, with focused ultrasound (FUS) for the treatment of PD.Expert opinion: Unilateral subthalamotomy for the treatment of PD motor features can be considered a viable option in asymmetric patients, particularly with FUS which allows a minimally invasive safe and effective ablation of the STN. Risk of inducing dyskinesia (i.e., hemichorea/ballism) may be strikingly reduced when lesions enlarge dorsally to impinge on pallidothalamic fibers.
Collapse
Affiliation(s)
- Jorge U Máñez-Miró
- HM CINAC (Centro Integral De Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Rafael Rodríguez-Rojas
- HM CINAC (Centro Integral De Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Marta Del Álamo
- HM CINAC (Centro Integral De Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - R Martínez-Fernández
- HM CINAC (Centro Integral De Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral De Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain.,CEU-San Pablo University, Móstoles, Madrid, Spain
| |
Collapse
|
12
|
Mahajan UV, Ravikumar VK, Kumar KK, Ku S, Ojukwu DI, Kilbane C, Ghanouni P, Rosenow JM, Stein SC, Halpern CH. Bilateral Deep Brain Stimulation is the Procedure to Beat for Advanced Parkinson Disease: A Meta-Analytic, Cost-Effective Threshold Analysis for Focused Ultrasound. Neurosurgery 2021; 88:487-496. [PMID: 33295629 DOI: 10.1093/neuros/nyaa485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Parkinson disease (PD) impairs daily functioning for an increasing number of patients and has a growing national economic burden. Deep brain stimulation (DBS) may be the most broadly accepted procedural intervention for PD, but cost-effectiveness has not been established. Moreover, magnetic resonance image-guided focused ultrasound (FUS) is an emerging incisionless, ablative treatment that could potentially be safer and even more cost-effective. OBJECTIVE To (1) quantify the utility (functional disability metric) imparted by DBS and radiofrequency ablation (RF), (2) compare cost-effectiveness of DBS and RF, and (3) establish a preliminary success threshold at which FUS would be cost-effective compared to these procedures. METHODS We performed a meta-analysis of articles (1998-2018) of DBS and RF targeting the globus pallidus or subthalamic nucleus in PD patients and calculated utility using pooled Unified Parkinson Disease Rating Scale motor (UPDRS-3) scores and adverse events incidences. We calculated Medicare reimbursements for each treatment as a proxy for societal cost. RESULTS Over a 22-mo mean follow-up period, bilateral DBS imparted the most utility (0.423 quality-adjusted life-years added) compared to (in order of best to worst) bilateral RF, unilateral DBS, and unilateral RF, and was the most cost-effective (expected cost: $32 095 ± $594) over a 22-mo mean follow-up. Based on this benchmark, FUS would need to impart UPDRS-3 reductions of ∼16% and ∼33% to be the most cost-effective treatment over 2- and 5-yr periods, respectively. CONCLUSION Bilateral DBS imparts the most utility and cost-effectiveness for PD. If our established success threshold is met, FUS ablation could dominate bilateral DBS's cost-effectiveness from a societal cost perspective.
Collapse
Affiliation(s)
- Uma V Mahajan
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Kevin K Kumar
- Stanford University School of Medicine, Stanford, California
| | - Seul Ku
- Stanford University School of Medicine, Stanford, California
| | - Disep I Ojukwu
- Stanford University School of Medicine, Stanford, California
| | - Camilla Kilbane
- Case Western Reserve University School of Medicine, Cleveland, Ohio.,University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Pejman Ghanouni
- Stanford University School of Medicine, Stanford, California
| | | | - Sherman C Stein
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Casey H Halpern
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Sharma VD, Patel M, Miocinovic S. Surgical Treatment of Parkinson's Disease: Devices and Lesion Approaches. Neurotherapeutics 2020; 17:1525-1538. [PMID: 33118132 PMCID: PMC7851282 DOI: 10.1007/s13311-020-00939-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 10/23/2022] Open
Abstract
Surgical treatments have transformed the management of Parkinson's disease (PD). Therapeutic options available for the management of PD motor complications include deep brain stimulation (DBS), ablative or lesioning procedures (pallidotomy, thalamotomy, subthalamotomy), and dopaminergic medication infusion devices. The decision to pursue these advanced treatment options is typically done by a multidisciplinary team by considering factors such as the patient's clinical characteristics, efficacy, ease of use, and risks of therapy with a goal to improve PD symptoms and quality of life. DBS has become the most widely used surgical therapy, although there is a re-emergence of interest in ablative procedures with the introduction of MR-guided focused ultrasound. In this article, we review DBS and lesioning procedures for PD, including indications, selection process, and management strategies.
Collapse
Affiliation(s)
- Vibhash D Sharma
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Blvd, MS 3042, Kansas City, KS, 66160, USA.
| | - Margi Patel
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
14
|
Schwab BC, Kase D, Zimnik A, Rosenbaum R, Codianni MG, Rubin JE, Turner RS. Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. PLoS Biol 2020; 18:e3000829. [PMID: 33048920 PMCID: PMC7584254 DOI: 10.1371/journal.pbio.3000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/23/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Collapse
Affiliation(s)
- Bettina C. Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Technical Medical Center, University of Twente, Enschede, the Netherlands
| | - Daisuke Kase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| | - Marcello G. Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Understanding Parkinson's disease and deep brain stimulation: Role of monkey models. Proc Natl Acad Sci U S A 2019; 116:26259-26265. [PMID: 31871164 DOI: 10.1073/pnas.1902300116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder affecting over 10 million people worldwide. In the 1930s and 1940s there was little understanding regarding what caused PD or how to treat it. In a desperate attempt to improve patients' lives different regions of the neuraxis were ablated. Morbidity and mortality were common, but some patients' motor signs improved with lesions involving the basal ganglia or thalamus. With the discovery of l-dopa the advent of medical therapy began and surgical approaches became less frequent. It soon became apparent, however, that medical therapy was associated with side effects in the form of drug-induced dyskinesia and motor fluctuations and surgical therapies reemerged. Fortunately, during this time studies in monkeys had begun to lay the groundwork to understand the functional organization of the basal ganglia, and with the discovery of the neurotoxin MPTP a monkey model of PD had been developed. Using this model scientists were characterizing the physiological changes that occurred in the basal ganglia in PD and models of basal ganglia function and dysfunction were proposed. This work provided the rationale for the return of pallidotomy, and subsequently deep brain stimulation procedures. In this paper we describe the evolution of these monkey studies, how they provided a greater understanding of the pathophysiology underlying the development of PD and provided the rationale for surgical procedures, the search to understand mechanisms of DBS, and how these studies have been instrumental in understanding PD and advancing the development of surgical therapies for its treatment.
Collapse
|
16
|
Obeso JA. Editor's Note: Deep Brain Stimulation and Functional Neurosurgery for Movement Disorders: Is the Current Cycle Waning? Mov Disord 2019; 34:1792-1794. [PMID: 31845763 DOI: 10.1002/mds.27955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jose A Obeso
- CINAC, HM Puerta del Sur, Mostoles, Madrid.,Medical School, CEU-San Pablo University, Madrid, Spain.,CIBERNED, Madrid, Spain
| |
Collapse
|
17
|
Qiu X, Liu Y, Xiao X, He J, Zhang H, Li Y. In Vitro Induction of Human Embryonic Stem Cells into the Midbrain Dopaminergic Neurons and Transplantation in Cynomolgus Monkey. Cell Reprogram 2019; 21:285-295. [PMID: 31651190 DOI: 10.1089/cell.2019.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A simple, rapid, efficient, and specialized culture system was successfully developed in this study to induce human embryonic stem cells into dopaminergic neurons in vitro. It only took 5 days to generate quickly and directly a large number of homogeneous neural stem cell (NSC) spheres by the introduction of small molecules LDN (inhibitor of BMP [bone morphogenetic protein] pathway that inhibits BMP type I receptors ALK2 and ALK3), SB431542 (inhibitor of TGF-β/Activin/Dodal pathway that inhibits ALK4, ALK5, and ALK7), CHIR99021 (inhibitors of GSK-3 [glycogen synthase kinase 3]), and basic fibroblast growth factor (bFGF). The dopaminergic neurons were successfully induced at day 25 (tyrosine hydroxylase [TH] expressed) and at day 32 (TH highly expressed) with high purity (TH/Tuj1: 84.14% and 93.15%, respectively) by the addition of FGF8 (fibroblast growth factor 8), sonic hedgehog (SHH), and Purmorphamine after the generation of NSC at day 5. And, the dopaminergic neurons induced by this system successfully survived and integrated into the striatum of cynomolgus monkey brain after transplantation, which verified the efficiency of the induction system developed in this study, suggesting the potential clinical application in cell therapy for neurological diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- Embryo Engineering Lab, College of Animal Science & Technology, Southwest University, Chongqing, P R. China
| | - Yingquan Liu
- Embryo Engineering Lab, College of Animal Science & Technology, Southwest University, Chongqing, P R. China
| | - Xiong Xiao
- Embryo Engineering Lab, College of Animal Science & Technology, Southwest University, Chongqing, P R. China
| | - Jingjing He
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, P.R. China
| | - Huiyun Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yuemin Li
- Embryo Engineering Lab, College of Animal Science & Technology, Southwest University, Chongqing, P R. China
| |
Collapse
|
18
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Koy A, Cirak S, Gonzalez V, Becker K, Roujeau T, Milesi C, Baleine J, Cambonie G, Boularan A, Greco F, Perrigault PF, Cances C, Dorison N, Doummar D, Roubertie A, Beroud C, Körber F, Stüve B, Waltz S, Mignot C, Nava C, Maarouf M, Coubes P, Cif L. Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperkinesia. J Neurol Sci 2018; 391:31-39. [DOI: 10.1016/j.jns.2018.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
|
20
|
Schreglmann SR, Krauss JK, Chang JW, Bhatia KP, Kägi G. Functional lesional neurosurgery for tremor: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89:717-726. [PMID: 29326290 DOI: 10.1136/jnnp-2017-316302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND This work evaluates the consistency, effect size and incidence of persistent side effects of lesional neurosurgical interventions in the treatment of tremor due to Parkinson's disease (PD), essential tremor (ET), multiple sclerosis (MS) and midbrain lesions. METHODS Systematic review and meta-analysis according to PRISMA-P guidelines. Random effects meta-analysis of standardised mean difference based on a peer-reviewed protocol (PROSPERO no. CRD42016048049). RESULTS From 1249 abstracts screened, 86 peer-reviewed studies reporting 102 cohorts homogeneous for tremor aetiology, surgical target and technique were included.Effect on PD tremor was better when targeted at the ventral intermediate nucleus (V.im.) by radiofrequency ablation (RF) (Hedge's g: -4.15;) over V.im. by Gamma Knife (GK) (-2.2), subthalamic nucleus (STN) by RF (-1.12) and globus pallidus internus (GPi) by RF (-0.89). For ET MRI-guided focused ultrasound (MRIgFUS) ablation of the cerebellothalamic tract (CTT) (-2.35) and V.im. (-2.08) showed similar mean tremor reductions to V.im. ablation by RF (-2.42) or GK (-2.13). In MS V.im. ablation by GK (-1.96) and RF (-1.63) were similarly effective.Mean rates of persistent side effects after unilateral lesions in PD were 12.8% (RF V.im.), 13.6% (RF STN), 9.2% (RF GPi), 0.7% (GK V.im.) and 7.0% (MRIgFUS V.im.). For ET, rates were 9.3% (RF V.im.), 1.8% (GK V.im.), 18.7% (MRIgFUS V.im.) and 0.0% (MRIgFUS CTT), for MS 37.7% (RF V.im.) and for rubral tremor 30.3% (RF V.im.). CONCLUSION This meta-analysis quantifies safety, consistency and efficacy of lesional neurosurgical interventions for tremor by target, technique and aetiology.
Collapse
Affiliation(s)
- Sebastian R Schreglmann
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, UK
| | - Joachim K Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, UK
| | - Georg Kägi
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
21
|
Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson's Disease. Mov Disord 2017; 33:36-47. [PMID: 29194808 DOI: 10.1002/mds.27228] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/07/2022] Open
Abstract
Neurosurgical interventions have been used to treat PD for over a century. We examined the changing landscape of surgery for PD to appraise the value of various procedures in the context of advances in our understanding and technology. We assessed the number of articles published on neurosurgical procedures for PD over time as an albeit imprecise surrogate for their usage level. We identified over 8,000 publications associated with PD surgery. Over half the publications were on DBS. The field of DBS for PD showed a rapid rise in articles, but is now in a steady state. Thalamotomy and, to a lesser extent, pallidotomy follow a biphasic publication distribution with peaks approximately 30 years apart. Articles on gene therapy and transplantation experienced initial rapid rises and significant recent declines. Procedures using novel technologies, including gamma knife and focused ultrasound, are emerging, but are yet to have significant impact as measured by publication numbers. Pallidotomy and thalamotomy are prominent examples of procedures that were popular, declined, and re-emerged and redeclined. Transplantation and gene therapy have never broken into clinical practice. DBS overtook all procedures as the dominant surgical intervention and drove widespread use of surgery for PD. Notwithstanding, the number of DBS articles appears to have plateaued. As advances continue, emerging treatments may compete with DBS in the future. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher S Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Tam
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Kumbhare D, Holloway KL, Baron MS. Parkinsonism and dystonia are differentially induced by modulation of different territories in the basal ganglia. Neuroscience 2017; 353:42-57. [DOI: 10.1016/j.neuroscience.2017.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
23
|
Makkos A, Pál E, Aschermann Z, Janszky J, Balázs É, Takács K, Karádi K, Komoly S, Kovács N. High-Frequency Repetitive Transcranial Magnetic Stimulation Can Improve Depression in Parkinson's Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Neuropsychobiology 2017; 73:169-77. [PMID: 27093063 DOI: 10.1159/000445296] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND A recent evidence-based guideline demonstrated that bilateral repetitive transcranial magnetic stimulation (rTMS) over the motor cortex (M1) can improve motor symptoms of Parkinson's disease (PD). We conducted a randomized, double-blind, placebo-controlled study to evaluate the impact of bilateral M1 rTMS on depression in PD. METHODS Forty-six patients with PD and mild-to-moderate depression were randomly assigned to active (n = 23) and sham (n = 23) rTMS. Two patients in the sham group did not complete the protocol because of reasons unrelated to the study. High-frequency rTMS was applied over the primary motor cortex bilaterally for 10 days. An investigator blinded to the treatment performed three video-taped examinations on each patient: before stimulation (baseline), and 1 day (short-term effect) and 30 days after the treatment session ended (long-term effect). The primary end point was the changes in depression, while secondary end points included health-related quality of life scales and Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). RESULTS In the actively treated group, not only did the severity of depression improve (from 17 to 7 points, Montgomery-Åsberg Depression Rating Scale, median values, p < 0.001), but also the health-related quality of life (from 25.4 to 16.9 points, PDQ-39 summary index, median values, p < 0.001). Besides, we could also demonstrate an improvement in MDS-UPDRS Motor Examination (from 26 to 20 points, median values, p < 0.05). In the sham-treated group, none of the examined tests and scales improved significantly after treatment. CONCLUSIONS Our results demonstrate the beneficial effects of high-frequency bilateral M1 rTMS on depression and health-related quality of life in PD. However, this effect of rTMS should also be confirmed in patients with severe depression by further clinical trials.
Collapse
Affiliation(s)
- Attila Makkos
- Doctoral School of Clinical Neuroscience, University of Px00E9;cs, Px00E9;cs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Khabarova EA, Denisova NP, Rogov DY, Dmitriev AB. [The preliminary results of subthalamic nucleus stimulation after destructive surgery in Parkinson's disease]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2017; 80:36-41. [PMID: 28139571 DOI: 10.17116/neiro201680636-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the efficacy of bilateral electrical stimulation (ES) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD) after preceding pallidotomy or ventrolateral (VL) thalamotomy. MATERIAL AND METHODS The study included 9 patients with bilateral STN ES who had undergone previous unilateral destructive surgery on the subcortical structures: pallidotomy (5 patients) and VL thalamotomy (4). A control group consisted of 9 patients with STN ES, without prior destructive surgery. A clinical and neurological examination included quantitative assessment of motor disturbances using the Hoehn-Yahr scale and Unified Parkinson's disease rating scale (UPDRS). UPDRS was used to evaluate the motor activity (IIIrd part of the scale) and severity of drug-induced dyskinesia and motor fluctuations (IVth part of the scale). RESULTS In the group of STN ES with preceding destruction of the subcortical structures, an improvement in motor functions in the early period (6 months) was 45%, and severity of drug-induced complications was decreased by 75%. In a group of STN DBS without destruction, motor disturbances were improved by 61%, and drug-induced complications were decreased by 77%. Improvement in motor functions amounted to 51.9% in patients with preceding pallidotomy (GPi destruction) and 37.5% in a group with preceding VL thalamotomy. The equivalent dose of levodopa was reduced by 51.39%, from 1,008±346 to 490±194, in the study group and by 55.04%, from 963±96 to 433±160, in the control group. CONCLUSION Bilateral STN neurostimulation is effective after unilateral stereotaxic destruction of the subcortical structures in PD patients.
Collapse
Affiliation(s)
| | - N P Denisova
- Federal Center of Neurosurgery, Novosibirsk, Russia
| | - D Yu Rogov
- Federal Center of Neurosurgery, Novosibirsk, Russia
| | - A B Dmitriev
- Federal Center of Neurosurgery, Novosibirsk, Russia
| |
Collapse
|
25
|
Hogg E, Wertheimer J, Graner S, Tagliati M. Deep Brain Stimulation and Nonmotor Symptoms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1045-1089. [DOI: 10.1016/bs.irn.2017.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Colcher A, Stern MB. Therapeutics in the Neurorehabilitation of Parkinson's Disease. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) affects 1 percent of the population over the age of 65. The number of people with this disorder is steadily rising. Therapy for PD remains primarily pharmacologic, with medications that target the depleted dopaminergic system being the mainstay of therapy. Surgical therapies, both ablative and stimulatory, are in creasingly being used for patients with more advanced disease and/or complications of drug therapy. Experimental therapies aimed at restoring dopaminergic function and protecting dopaminergic cells are being studied. Alternate neurotransmitter systems are being evaluated as potential targets for therapy. Complete treatment of patients with PD utilizes education, physical therapy, support groups, and medication. When a comprehensive approach is used, PD is treatable and manageable.
Collapse
|
27
|
Muralidharan A, Jensen AL, Connolly A, Hendrix CM, Johnson MD, Baker KB, Vitek JL. Physiological changes in the pallidum in a progressive model of Parkinson's disease: Are oscillations enough? Exp Neurol 2016; 279:187-196. [PMID: 26946223 DOI: 10.1016/j.expneurol.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
Abstract
Neurophysiological changes in the basal ganglia thalamo-cortical circuit associated with the development of parkinsonian motor signs remain poorly understood. Theoretical models have ranged from those emphasizing changes in mean discharge rate to increased oscillatory activity within the beta range. The present study characterized neuronal activity within and across the internal and external segments of the globus pallidus as a function of motor severity using a staged, progressively severe 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinsonism in three rhesus monkeys. An increase in coherence between neuronal pairs across the external and internal globus pallidus was present in multiple frequency bands in the parkinsonian state; both the peak frequency of oscillatory coherence and the variability were reduced in the parkinsonian state. The incidence of 8-20Hz oscillatory activity in the internal globus pallidus increased with the progression of the disease when pooling the data across the three animals; however it did not correlate with motor severity when assessed individually and increased progressively in only one of three animals. No systematic relationship between mean discharge rates or the incidence or structure of bursting activity and motor severity was observed. These data suggest that exaggerated coupling across pallidal segments contribute to the development of the parkinsonian state by inducing an exaggerated level of synchrony and loss of focusing within the basal ganglia. These data further point to the lack of a defined relationship between rate changes, the mere presence of oscillatory activity in the beta range and bursting activity in the basal ganglia to the motor signs of Parkinson's disease.
Collapse
Affiliation(s)
- A Muralidharan
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - A L Jensen
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - A Connolly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - C M Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - M D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - K B Baker
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - J L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
28
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
29
|
Cury R, Galhardoni R, Fonoff E, Perez Lloret S, dos Santos Ghilardi M, Barbosa E, Teixeira M, Ciampi de Andrade D. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms. Eur J Pain 2015; 20:151-65. [DOI: 10.1002/ejp.745] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2015] [Indexed: 01/07/2023]
Affiliation(s)
- R.G. Cury
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - R. Galhardoni
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - E.T. Fonoff
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - S. Perez Lloret
- Laboratory of Clinical Pharmacology and Epidemiology; Catholic University; Buenos Aires Argentina
| | | | - E.R. Barbosa
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - M.J. Teixeira
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - D. Ciampi de Andrade
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
| |
Collapse
|
30
|
Li J, Zhang Y, Li Y. Long-term follow-up of bilateral subthalamic nucleus stimulation in Chinese Parkinson's disease patients. Br J Neurosurg 2015; 29:329-33. [DOI: 10.3109/02688697.2014.997665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Nambu A, Tachibana Y, Chiken S. Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.baga.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Profile of Mahlon DeLong and Alim Benabid, 2014 Lasker-DeBakey Medical Research awardees. Proc Natl Acad Sci U S A 2014; 111:17693-5. [PMID: 25489082 DOI: 10.1073/pnas.1419249111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 2014; 30:342-9. [PMID: 25156805 DOI: 10.1002/mds.25995] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/26/2022] Open
Abstract
In the recent past, basal ganglia circuitry was simplified as represented by the direct and indirect pathways and by hyperdirect pathways. Based on data from animal studies, we hypothesized a fourth pathway, the cortico-pallidal, pathway, that complements the hyperdirect pathway to the subthalamus. Ten normal brains were analyzed by using the high angular resolution diffusion imaging-constrained spherical deconvolution (CSD)-based technique. The study was performed with a 3T magnetic resonance imaging (MRI) scanner (Achieva, Philips Healthcare, Best, Netherlands); by using a 32-channel SENSE head coil. We showed that CSD is a powerful technique that allows a fine evaluation of both the long and small tracts between cortex and basal ganglia, including direct, indirect, and hyperdirect pathways. In addition, a pathway directly connecting the cortex to the globus pallidus was seen. Our results confirm that the CSD tractography is a valuable technique allowing a reliable reconstruction of small- and long-fiber pathways in brain regions with multiple fiber orientations, such as basal ganglia. This could open a future scenario in which CSD could be used to focally target with deep brain stimulation (DBS) the small bundles within the basal ganglia loops.
Collapse
Affiliation(s)
- Demetrio Milardi
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy; IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Okun MS, Oyama G. [Mechanism of action for deep brain stimulation and electrical neuro-network modulation (ENM)]. Rinsho Shinkeigaku 2014; 53:691-4. [PMID: 24097315 DOI: 10.5692/clinicalneurol.53.691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep brain stimulation (DBS) has become an important treatment option for carefully screened medication resistant neurological and neuropsychiatric disorders. DBS therapy is not always applied deep to the brain; does not have to be applied exclusively to the brain; and the mechanism for DBS is not simply stimulation of structures. The applications and target locations for DBS devices are rapidly expanding, with many new regions of the brain, spinal cord, peripheral nerves, and muscles now possibly accessed through this technology. We will review the idea of "electrical neuro-network modulation (ENM)"; discuss the importance of the complex neural networks underpinning the effects of DBS; discuss the expansion of brain targets; discuss the use of fiber based targets; and discuss the importance of tailoring DBS therapy to the symptom, rather than the disease.
Collapse
Affiliation(s)
- Michael S Okun
- Center for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida
| | | |
Collapse
|
35
|
Nofal RA, Altaweel AA, Seada YI. Future of Treatment of Temporomandibular Joint Dysfunctions in Parkinsonian Patients. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojst.2014.44030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Fenoy AJ, Simpson RK. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg 2013; 120:132-9. [PMID: 24236657 DOI: 10.3171/2013.10.jns131225] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Deep brain stimulation (DBS) surgery is increasingly prominent in the treatment of various disorders refractory to medication. Despite the procedure's efficacy, the community at large continues to be hesitant about presumed associated risks. The main object of this study was to assess the incidence of various surgical complications occurring both during and after DBS device implantation in a large population of patients with movement disorders in an effort to better quantify patient risk, define management plans, and develop methods for risk avoidance. A second aim was to corroborate the low procedural complication risk of DBS reported by others, which in light of the procedure's efficacy is needed to promote its widespread acceptance. METHODS All patients who had undergone new DBS device implantation surgery between 2002 and 2010 by a single surgeon were entered into a database after being verified by cross-referencing manufacturer implantation records. All surgical records and charts were reviewed to identify intraoperative, perioperative, and long-term surgical complications, including any characteristics predictive of an adverse event. RESULTS Seven hundred twenty-eight patients received 1333 new DBS electrodes and 1218 new internal pulse generators (IPGs) in a total of 1356 stereotactic procedures for the treatment of movement disorders. Seventy-eight percent of the patients had staged lead and IPG implantations. Of the 728 patients, 452 suffered from medically refractory Parkinson disease; in the other patients, essential tremor (144), dystonia (64), mixed disease (30), and other hyperkinetic movement disorders (38) were diagnosed. Severe intraoperative adverse events included vasovagal response in 6 patients (0.8%), hypotension in 2 (0.3%), and seizure in 2 (0.3%). Postoperative imaging confirmed asymptomatic intracerebral hemorrhage (ICH) in 4 patients (0.5%), asymptomatic intraventricular hemorrhage in 25 (3.4%), symptomatic ICH in 8 (1.1%), and ischemic infarction in 3 (0.4%), associated with hemiparesis and/or decreased consciousness in 13 (1.7%). Long-term complications of DBS device implantation not requiring additional surgery included hardware discomfort in 8 patients (1.1%) and loss of desired effect in 10 (1.4%). Hardware-related complications requiring surgical revision included wound infections in 13 patients (1.7%), lead malposition and/or migration in 13 (1.7%), component fracture in 10 (1.4%), component malfunction in 4 (0.5%), and loss of effect in 19 (2.6%). CONCLUSIONS The authors confirmed that the overall risk of both procedure- and hardware-related adverse events is acceptably low. They offer advice on how to avoid the most common complications.
Collapse
Affiliation(s)
- Albert J Fenoy
- Mischer Neuroscience Institute, Department of Neurosurgery, The University of Texas Health Science Center at Houston; and
| | | |
Collapse
|
37
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of the dopamine producing neurons projecting from the substantia nigra into the corpus striatum. Current medical therapy is limited and cannot stop or reverse the degeneration. Over the past 30 years, attempts were made to change the course of the disease by replacing the lost neurons with grafts from various sources. Recent controlled clinical trials of fetal cell transplantation for PD have had disappointing results. These events present an opportunity to examine the past developments and future direction of cell transplantation for PD.
Collapse
Affiliation(s)
- Ben Roitberg
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
38
|
Rughani AI, Hodaie M, Lozano AM. Acute complications of movement disorders surgery: Effects of age and comorbidities. Mov Disord 2013; 28:1661-7. [DOI: 10.1002/mds.25610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/02/2013] [Accepted: 05/31/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Anand I. Rughani
- Neuroscience Institute; Maine Medical Center; Portland Maine, United States
| | - Mojgan Hodaie
- Division of Neurosurgery; University of Toronto, Toronto Western Hospital/University Health Network; Toronto Canada
| | - Andres M. Lozano
- Division of Neurosurgery; University of Toronto, Toronto Western Hospital/University Health Network; Toronto Canada
| |
Collapse
|
39
|
Obeso JA, Guridi J, Nambu A, Crossman AR. Motor manifestations and basal ganglia output activity: the paradox continues. Mov Disord 2013; 28:416-8. [PMID: 23494928 DOI: 10.1002/mds.25358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/16/2012] [Indexed: 11/06/2022] Open
|
40
|
Pereira JB, Junqué C, Bartrés-Faz D, Martí MJ, Sala-Llonch R, Compta Y, Falcón C, Vendrell P, Pascual-Leone Á, Valls-Solé J, Tolosa E. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul 2013; 6:16-24. [DOI: 10.1016/j.brs.2012.01.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/26/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022] Open
|
41
|
Abstract
Actions are goal-directed behaviours that usually involve movem ent. There is evidence that intentional self-generated actions (willed actions) are controlled differently from routine, stereotyped actions that are externally triggered by environmental stimuli. We review evidence from investigations using positron emission tomography (PET), recordings of movement-related cortical potentials (MRCPs) or transcranial magnetic stimulation (TMS), and conclude that willed actions are controlled by a network of frontal cortical (dorsolateral prefrontal cortex, supplementary motor area, anterior cingulate) and subcortical (thalamus and basal ganglia) areas. We also consider evidence suggesting that some of the cognitive and motor deficits of patients with frontal lesions, Parkinson's disease, or schizophrenia as well as apathy and abulia and rarer phenomena such as primary obsessional slowness can be considered as reflecting im pairment of willed actions. We propose that the concept of a willed action system based on the frontostriatal circuits provides a useful framework for integrating the cognitive, motor, and motivational deficits found in these disorders. Problems remaining to be resolved include: identification of the component processes of willed actions; the specific and differential role played by each of the frontal cortical and subcortical areas in the control of willed actions; the specific mechanisms of impairm ent of willed actions in Parkinson's disease, schizophrenia, and frontal damage; and the precise role of the neurotransmitter dopamine in the willed action system.
Collapse
|
42
|
Wichmann T, Delong MR. Anatomy and physiology of the basal ganglia: relevance to Parkinson's disease and related disorders. HANDBOOK OF CLINICAL NEUROLOGY 2012; 83:1-18. [PMID: 18808908 DOI: 10.1016/s0072-9752(07)83001-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, and; Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
43
|
Brun Y, Karachi C, Fernandez-Vidal S, Jodoin N, Grabli D, Bardinet E, Mallet L, Agid Y, Yelnik J, Welter ML. Does unilateral basal ganglia activity functionally influence the contralateral side? What we can learn from STN stimulation in patients with Parkinson's disease. J Neurophysiol 2012; 108:1575-83. [DOI: 10.1152/jn.00254.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, the control of voluntary movement, in which the corticobasal ganglia (BG) circuitry participates, is mainly lateralized. However, several studies have suggested that both the contralateral and ipsilateral BG systems are implicated during unilateral movement. Bilateral improvement of motor signs in patients with Parkinson's disease (PD) has been reported with unilateral lesion or high-frequency stimulation (HFS) of the internal part of the globus pallidus or the subthalamic nucleus (STN-HFS). To decipher the mechanisms of production of ipsilateral movements induced by the modulation of unilateral BG circuitry activity, we recorded left STN neuronal activity during right STN-HFS in PD patients operated for bilateral deep brain stimulation. Left STN single cells were recorded in the operating room during right STN-HFS while patients experienced, or did not experience, right stimulation-induced dyskinesias. Most of the left-side STN neurons (64%) associated with the presence of right dyskinesias were inhibited, with a significant decrease in burst and intraburst frequencies. In contrast, left STN neurons not associated with right dyskinesias were mainly activated (48%), with a predominant increase 4–5 ms after the stimulation pulse and a decrease in oscillatory activity. This suggests that unilateral neuronal STN modulation is associated with changes in the activity of the contralateral STN. The fact that one side of the BG system can influence the functioning of the other could explain the occurrence of bilateral dyskinesias and motor improvement observed in PD patients during unilateral STN-HFS, as a result of a bilateral disruption of the pathological activity in the corticosubcortical circuitry.
Collapse
Affiliation(s)
- Yohann Brun
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
| | - Carine Karachi
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Service de Neurochirurgie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sara Fernandez-Vidal
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Centre de Neuroimagerie de Recherche, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicolas Jodoin
- Service de Neurologie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Centre d'Investigation Clinique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; and
| | - David Grabli
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Centre d'Investigation Clinique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; and
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Bardinet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Centre de Neuroimagerie de Recherche, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Luc Mallet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
| | - Yves Agid
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
| | - Jerome Yelnik
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Centre d'Investigation Clinique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; and
| | - Marie-Laure Welter
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épiniere, UMR-S975, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U975, Paris, France
- Centre National de la Recherche Scientifique, UMR 7225, Paris, France
- Centre d'Investigation Clinique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; and
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
44
|
Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033559 PMCID: PMC3181806 DOI: 10.31887/dcns.2004.6.3/galexander] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Collapse
Affiliation(s)
- Garrett E Alexander
- Department of Neurology, Emory University School of Medicine, Atlanta, Ga, USA
| |
Collapse
|
45
|
Abstract
Deep brain stimulation (DBS) was introduced as a treatment for patients with parkinsonism and other movement disorders in the early 1990s. The technique rapidly became the treatment of choice for these conditions, and is now also being explored for other diseases, including Tourette syndrome, gait disorders, epilepsy, obsessive-compulsive disorder, and depression. Although the mechanism of action of DBS remains unclear, it is recognized that DBS works through focal modulation of functionally specific circuits. The fact that the same DBS parameters and targets can be used in multiple diseases suggests that DBS does not counteract the pathophysiology of any specific disorder, but acts to replace pathologic activities in disease-affected brain circuits with activity that is more easily tolerated. Despite the progress made in the use of DBS, much remains to be done to fully realize the potential of this therapy. We describe some of the most active areas of research in this field, both in terms of exploration of new targets and stimulation parameters, and in terms of new electrode or stimulator designs.
Collapse
Affiliation(s)
- Mahlon DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
46
|
Abstract
Dystonia has generally been considered a basal ganglia (BG) disorder. Early models hypothesized that dystonia occurred as the result of reduced mean discharge rates in the internal segment of the globus pallidus (GPi). Increasing evidence suggests a more systemwide disruption of the basal ganglia thalamic circuit (BGTC) resulting in altered firing patterns, synchronized oscillations, and widened receptive fields. A model of dystonia incorporating these changes within the BGTC is presented in which we postulate that this pathophysiology arises from disruptions within the striatum. Alterations in the cerebellothalamocortical (CBTC) pathway to the development of dystonia may also play a role. However, the contribution of CBTC abnormalities to dystonia remains unclear and may vary with different etiologies of dystonia. Finally, the relevance of established and emerging theories related to the pathophysiology of dystonia is addressed within the context of improving conventional approaches for deep brain stimulation (DBS) treatment strategies.
Collapse
|
47
|
Kim HJ, Jeon BS, Paek SH. Effect of deep brain stimulation on pain in Parkinson disease. J Neurol Sci 2011; 310:251-5. [DOI: 10.1016/j.jns.2011.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/16/2022]
|
48
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
49
|
|
50
|
Oshima H, Katayama Y, Morishita T, Sumi K, Otaka T, Kobayashi K, Suzuki Y, Fukaya C, Yamamoto T. Subthalamic nucleus stimulation for attenuation of pain related to Parkinson disease. J Neurosurg 2011; 116:99-106. [PMID: 21905799 DOI: 10.3171/2011.7.jns11158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The objective of this study was to evaluate the efficacy of chronic subthalamic nucleus (STN) stimulation for alleviating pain related to Parkinson disease (PD). METHODS Among 163 consecutive patients undergoing STN stimulation, 69 were identified as experiencing pain preoperatively that was related to their PD. All 69 patients suffering from pain were followed up prospectively for 12 months after surgery. All patients described the severity of their pain according to a visual analog scale (VAS) preoperatively and at 2 weeks, 6 months, and 12 months postoperatively. Pain unrelated to PD was not studied. RESULTS Several types of pain related to PD, the categories of which were based on a modification of 2 previous classifications (Ford and Honey), can occur in such patients: 1) musculoskeletal pain, 2) dystonic pain, 3) somatic pain exacerbated by PD, 4) radicular/peripheral neuropathic pain, and 5) central pain. The overall mean VAS score was significantly decreased postoperatively by 75% and 69% at 2 weeks and 6 months, respectively (p < 0.001). The mean VAS score at 12 months was also decreased by 80%, but 6 instances of pain (3 reports of somatic back pain and 3 reports of radicular/peripheral neuropathic pain) required additional spinal surgery to alleviate the pain severity. The results were analyzed using the Wilcoxon signed-rank test and demonstrated a significant reduction in VAS scores at all follow-up assessments (p < 0.001). Musculoskeletal pain and dystonic pain were well alleviated by STN stimulation. In contrast, somatic pain exacerbated by PD and peripheral neuropathic pain originating from lumbar spinal diseases, such as spondylosis deformans and/or canal stenosis, often deteriorated postoperatively despite attenuation of the patients' motor disability. Patients with central pain were poor responders. CONCLUSIONS This study found that STN stimulation produced significant improvement of overall pain related to PD in patients with advanced PD, and the efficacy continued for at least 1 year. The present results indicate that musculoskeletal pain and dystonic pain responded well to STN stimulation, but patients with back pain (somatic pain) and radicular/peripheral neuropathic pain originating from spinal disease have a potential risk for postoperative deterioration of their pain.
Collapse
Affiliation(s)
- Hideki Oshima
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|