1
|
Khera HK, Mishra R. Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Mol Biotechnol 2024; 66:2168-2200. [PMID: 37695473 DOI: 10.1007/s12033-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Timely and accurate detection of the causal agent of a disease is crucial to restrict suffering and save lives. Mere symptoms are often not enough to detect the root cause of the disease. Better diagnostics applied for screening at a population level and sensitive detection assays remain the crucial component of disease surveillance which may include clinical, plant, and environmental samples, including wastewater. The recent advances in genome sequencing, nucleic acid amplification, and detection methods have revolutionized nucleic acid-based testing (NABing) and screening assays. A typical NABing assay consists of three modules: isolation of the nucleic acid from the collected sample, identification of the target sequence, and final reading the target with the help of a signal, which may be in the form of color, fluorescence, etc. Here, we review current NABing assays covering the different aspects of all three modules. We also describe the frequently used target amplification or signal amplification procedures along with the variety of applications of this fast-evolving technology and challenges in implementation of NABing in the context of disease management especially in low-resource settings.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Abstract
There have been numerous studies applying iridium oxides in different applications to explore their proton-change-based reactions since the 1980s. Iridium oxide can be fabricated directly by applying electrodeposition, sputter-coating method, or oxidation of iridium wire. Generally, there have been currently two approaches in applying iridium oxide to enable its sensing applications. One was to improve or create different electrolytes with (non-)electrodeposition method for better performance of Nernst Constant with the temperature-related system. The mechanism behind the scenes were summarized herein. The other was to change the structure of iridium oxide through different kinds of templates such as photolithography patterns, or template-assisted direct growth methods, etc. to improve the sensing performance. The detection targets varied widely from intracellular cell pH, glucose in an artificial sample or actual urine sample, and the hydrogen peroxide, glutamate or organophosphate pesticides, metal-ions, etc. This review paper has focused on the mechanism of electrodeposition of iridium oxide in aqueous conditions and the sensing applications towards different biomolecules compounds. Finally, we summarize future trends on Iridium oxide based sensing and predict future work that could be further explored.
Collapse
|
3
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
4
|
Zhao L, Zhang X, Zhou Y. Electrochemical Investigation of Heterogeneous Affinity Behaviour of Methylene Blue and G‐quadruplex. ELECTROANAL 2020. [DOI: 10.1002/elan.202060315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ling‐Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ying‐Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
5
|
A facile label-free electrochemical aptasensor constructed with nanotetrahedron and aptamer-triplex for sensitive detection of small molecule: Saxitoxin. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113805] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
|
7
|
Das J, Kelley SO. High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem Int Ed Engl 2019; 59:2554-2564. [PMID: 31332937 DOI: 10.1002/anie.201905005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/21/2019] [Indexed: 12/18/2022]
Abstract
Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild-type sequences. This review discusses high-performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing- and amplification-based methods to next-generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis-based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.
Collapse
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|
8
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019; 58:15448-15454. [DOI: 10.1002/anie.201906438] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
9
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Faal Maleki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
10
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
11
|
Suea-Ngam A, Howes PD, Stanley CE, deMello AJ. An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection. ACS Sens 2019; 4:1560-1568. [PMID: 31062585 DOI: 10.1021/acssensors.9b00237] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ochratoxin A (OTA)-a mycotoxin produced by Aspergillus and Penicillium fungi-is a carcinogen and common trace contaminant in agricultural and processed food products. As consumption is detrimental to human and animal health, regular product monitoring is vital, and highly sensitive and portable OTA sensors are necessary in many circumstances. Herein, we report an ultrasensitive, electroanalytical aptasensor for precise determination of OTA at trace levels. The sensor leverages a DNA aptamer to capture OTA and silver metallization as a signal enhancer. Exonuclease I is used to digest unbound aptamers, engendering excellent background signal suppression and sensitivity enhancements. Efficient optimization of assay conditions is achieved using central composite design (CCD), allowing rapid evaluation of both the electrode and square wave voltammetry parameter space. The sensor exhibits excellent analytical performance, with a concentration limit of detection of 0.7 pg mL-1, a limit of quantitation of 2.48 pg mL-1, and a linear dynamic range ( R2 = 0.968) of over 6 orders of magnitude (between 1 pg mL-1 and 0.1 μg mL-1). Direct comparison with ultraperformance liquid chromatography (UPLC) indicates excellent analytical performance for standard solutions ( R2 = 0.995) and spiked beer samples ( R2 = 0.993), with almost quantitative recovery and less than 5% relative standard deviation (RSD).
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Claire E. Stanley
- Agroecology and Environment Research Division, Agroscope, 8046 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Du WF, Ge JH, Li JJ, Tang LJ, Yu RQ, Jiang JH. Single-step, high-specificity detection of single nucleotide mutation by primer-activatable loop-mediated isothermal amplification (PA-LAMP). Anal Chim Acta 2018; 1050:132-138. [PMID: 30661580 DOI: 10.1016/j.aca.2018.10.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a useful platform for nucleic acids detection in point-of-care (POC) situations, and development of single-step, close-tube LAMP reactions for specific detection of single nucleotide mutations (SNMs) remains a challenge. We develop a novel primer-activatable LAMP (PA-LAMP) strategy that enables highly specific and sensitive SNM detection using single-step, close-tube reactions. This strategy designs a terminal-blocked inner primer with a ribonucleotide insertion, which is cleaved and activated specifically to perfectly matched targets by ribonuclease (RNase) H2, to realize efficient amplification of mutant genes. It has shown dynamic responses of mutant target in a linear range from 220 aM to 22 pM with a lowest detectable concentration of 22 aM. It also demonstrates very high specificity in identifying the mutant in a large excess of the wild-type with a discrimination ratio as high as ∼10,000. It has been successfully applied to mutation detection of genomic DNA in tumor cells. The PA-LAMP strategy provides a useful, portable and affordable POC platform for highly sensitive and specific detection of genetic mutations in clinical applications.
Collapse
Affiliation(s)
- Wen-Fang Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jian-Hui Ge
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jun-Jie Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Li-Juan Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
13
|
Chen BJ, Mani V, Huang ST, Hu YC, Shan HCP. Bisintercalating DNA redox reporters for real-time electrochemical qLAMP. Biosens Bioelectron 2018; 129:277-283. [PMID: 30266426 DOI: 10.1016/j.bios.2018.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
Abstract
The electrochemical detection methods have emerged as a potential alternative to the bench-top optical systems in monitoring nucleic acid amplification. DNA intercalating redox reporters play a crucial role in such monitoring schemes. Here, a series of bisintercalating redox probes have been tailor-made to meet specific requirements of electrochemical quantitative loop-mediated isothermal amplification (qLAMP). The probes composed of two naphthoquinone-imidazole (NQIM) derivatives as signal motifs that are covalently bridged by different linkers (R). They are bis-NQIM-R; R = Alkane (Ak), ethylene glycol (EG) and phenyl (Ph). The linkers allow the probes to be fine-tuned for securing ideal redox reporter. DNA binding studies via electrochemical and fluorescence techniques demonstrate that the bis-NQIM-R probes possess better ds-DNA bisintercalating ability compared to their mono-analogs. The bis-NQIM-Ph was implemented in a real-time electrochemical qLAMP, for which a prototype custom-made device that can perform fully automated multiplexed analyses is devised. A single copy of Salmonella DNA was quantified in just 10 min and the performance is comparable to the benchtop fluorescence method. Thus, the bisintercalating redox reporters incorporated electrochemical detection schemes hold great promise in qLAMP.
Collapse
Affiliation(s)
- Bo-Jun Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC; Graduate Institute of Biomedical and Biochemical Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC; Graduate Institute of Biomedical and Biochemical Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC.
| | - Yi-Chiuen Hu
- National Applied Research Lab, Hsinchu, Taiwan, ROC
| | | |
Collapse
|
14
|
Reid MS, Le XC, Zhang H. Die exponentielle isotherme Amplifikation von Nukleinsäuren und Assays zur Detektion von Proteinen, Zellen, kleinen Molekülen und Enzymaktivitäten: Anwendungen für EXPAR. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael S. Reid
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| | - X. Chris Le
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
- Department of Laboratory Medicine and Pathology; Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology; Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| |
Collapse
|
15
|
Reid MS, Le XC, Zhang H. Exponential Isothermal Amplification of Nucleic Acids and Assays for Proteins, Cells, Small Molecules, and Enzyme Activities: An EXPAR Example. Angew Chem Int Ed Engl 2018; 57:11856-11866. [PMID: 29704305 DOI: 10.1002/anie.201712217] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.
Collapse
Affiliation(s)
- Michael S Reid
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
16
|
Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angew Chem Int Ed Engl 2018; 57:3711-3716. [PMID: 29389071 DOI: 10.1002/anie.201800455] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/30/2018] [Indexed: 12/16/2022]
Abstract
The analysis of circulating tumour nucleic acids (ctNAs) provides a minimally invasive way to assess the mutational spectrum of a tumour. However, effective and practical methods for analyzing this emerging class of markers are lacking. Analysis of ctNAs using a sensor-based approach has notable challenges, as it is vital to differentiate nucleic acids from normal cells from mutation-bearing sequences emerging from tumours. Moreover, many genes related to cancer have dozens of different mutations. Herein, we report an electrochemical approach that directly detects genes with mutations in patient serum by using combinatorial probes (CPs). The CPs enable detection of all of the mutant alleles derived from the same part of the gene. As a proof of concept, we analyze mutations of the EGFR gene, which has more than 40 clinically relevant alterations that include deletions, insertions, and point mutations. Our CP-based approach accurately detects mutant sequences directly in patient serum.
Collapse
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Ivaylo Ivanov
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Tina S Safaei
- Department of Electrical and Computer Engineering, Faculty of Engineering Department, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, Faculty of Engineering Department, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|
17
|
Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON M5S 3M2 Canada
| | - Ivaylo Ivanov
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON M5S 3M2 Canada
| | - Tina S. Safaei
- Department of Electrical and Computer Engineering; Faculty of Engineering Department; University of Toronto; Toronto ON Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering; Faculty of Engineering Department; University of Toronto; Toronto ON Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON M5S 3M2 Canada
| |
Collapse
|
18
|
Cinti S, Fiore L, Massoud R, Cortese C, Moscone D, Palleschi G, Arduini F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018; 179:186-192. [DOI: 10.1016/j.talanta.2017.10.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
19
|
Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosens Bioelectron 2018; 100:96-104. [DOI: 10.1016/j.bios.2017.08.060] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/19/2017] [Accepted: 08/28/2017] [Indexed: 12/01/2022]
|
20
|
Thu VT, Tien BQ, Ngoc Nga DT, Thanh LC, Sinh LH, Le TC, Lam TD. Reduced graphene oxide-polyaniline film as enhanced sensing interface for the detection of loop-mediated-isothermal-amplification products by open circuit potential measurement. RSC Adv 2018; 8:25361-25367. [PMID: 35539802 PMCID: PMC9082585 DOI: 10.1039/c8ra04050h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022] Open
Abstract
The development of low cost, portable diagnostic tools for in-field detection of viruses and other pathogenic microorganisms is in great demand but remains challenging. In this study, a novel approach based on reduced graphene oxide-polyaniline (rGO-PANi) film for the in situ detection of loop-mediated-isothermal-amplification (LAMP) products by means of open circuit potential measurement is proposed. The pH-sensitive conducting polymer PANi was electro-deposited onto rGO coated screen printed electrodes and tuned to be at the emeraldine state at which the pH sensitivity was maximized. By combining PANi and rGO, the pH sensitivity of the system was modulated up to about −64 mV per pH unit. This enabled the number of amplified amplicons resulting from the isothermal amplification process to be monitored. The sensor was then examined for monitoring LAMP reactions using Hepatitis B virus (HBV) as a model. This simple, low-cost, reproducible and sensitive interfacing layer is expected to provide a new possibility for designing point-of-care sensors under limited-resource conditions. A novel disposable sensor based on reduced graphene oxide-polyaniline (rGO-PANi) for detection of loop-mediated-isothermal-amplification (LAMP) products.![]()
Collapse
Affiliation(s)
- Vu Thi Thu
- University of Science and Technology of Hanoi (USTH)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Center for High Technology Development (HTD)
| | - Bui Quang Tien
- Graduate University of Science and Technology (GUST)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Military Academy of Logistics
| | - Dau Thi Ngoc Nga
- University of Science and Technology of Hanoi (USTH)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Center for High Technology Development (HTD)
| | - Ly Cong Thanh
- Graduate University of Science and Technology (GUST)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Hanoi University of Pharmacy
| | | | - Tu Cam Le
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Tran Dai Lam
- Center for High Technology Development (HTD)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Graduate University of Science and Technology (GUST)
| |
Collapse
|
21
|
He E, Cao T, Cai L, Guo D, Zhou Y, Zhang X, Li Z. A disposable microcapsule array chip fabricated by ice printing combined with isothermal amplification for Salmonella DNA detection. RSC Adv 2018; 8:39561-39566. [PMID: 35558039 PMCID: PMC9090901 DOI: 10.1039/c8ra07045h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022] Open
Abstract
In this work, a novel microcapsule array chip was fabricated for the detection of Salmonella DNA by integrating an ice-printing technique with DNA isothermal amplification. Reaction solutions were previously sealed in the microcapsule array chip via ice printing. To protect the relatively fragile DNA isothermal amplification system, an extra polystyrene (PS) film was introduced to isolate the reaction solution from photopolymer precursor, which was proved to be a vital step for providing a clean and stable environment for DNA amplification reaction. Detection operation can be done by simply injecting sample DNA into the microcapsule by an easily accessible syringe, and the result can be directly obtained through color change within 90 minutes. This method shows good sensitivity, specificity and stability. An ice printing fabricated microcapsule array chip is demonstrated based on loop-mediated isothermal amplification for visual salmonella DNA detection.![]()
Collapse
Affiliation(s)
- Enqi He
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Ting Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Liangyuan Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Dan Guo
- State Key Laboratory of Tribology
- Department of Mechanical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication
- Institute of Microelectronics
- Peking University
- Beijing 100871
- China
| |
Collapse
|
22
|
Liu Y, Fan J, Shangguan L, Liu Y, Wei Y, Wei W, Liu S. Ultrasensitive electrochemical detection of poly (ADP-ribose) polymerase-1 via polyaniline deposition. Talanta 2017; 180:127-132. [PMID: 29332790 DOI: 10.1016/j.talanta.2017.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Recent findings have thrust poly ADP (ADP: adenosine diphosphate)-ribose polymerase-1 (PARP-1) into the limelight as potential chemotherapeutic target because it is closely related to the development of tumor. So, studies on its detection and inhibitors evaluation have attracted more attention. It is interesting that poly (ADP-ribose) (PAR), the catalytic product of PARP-1 in the existence of nicotinamide adenine dinucleotide (NAD+), possess twice charge density of DNA strands. PAR contain 200 units, i.e., about 400bp bases, and multiple branched strands. So, plentiful negative charges on PAR supplied exquisite environment for PANI deposition, which was triggered by horseradish peroxidase (HRP). Because of the unique electrochemical property of PANI, ultrasensitive electrochemical detection of PARP-1 was proposed. Under optimum conditions, DPV intensity linearly increased with the increment of PARP-1 in the range of 0.005-1.0 U. The detection limit was 0.002 U, which was comparable or more sensitive than that obtained from previously reported strategies.
Collapse
Affiliation(s)
- Yong Liu
- Henan Key Laboratory of Polyoxometalat, Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Jiahui Fan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Li Shangguan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjian Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanqing Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
23
|
Converting pyrophosphate generated during loop mediated isothermal amplification to ATP: Application to electrochemical detection of Nosema bombycis genomic DNA PTP1. Biosens Bioelectron 2017; 102:518-524. [PMID: 29202437 DOI: 10.1016/j.bios.2017.11.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
Abstract
Traditionally, genomic DNA detection is relay on a rigorous DNA amplification process, which always accompanied with complicated gel electrophoresis or expensive fluorescence detection methods. In this work, we have translated genomic DNA detection into adenosine triphosphate (ATP) test based on a split aptamer-based electrochemical sandwich assay. The key characteristic of our method are list as follows: first, nucleic acid amplification of the target gene was performed by the use of a loop mediated isothermal amplification (LAMP) process. The pyrophosphate (PPi), which released as the byproduct during the LAMP reaction, were further converted into ATP in the presence of adenosine 5'-phosphosulfate (APS) and ATP sulfurylase. Thereafter, the converted ATP was detected by constructing an electrochemical sandwich aptasensor. With such design, the conversion from the difficult detecting target (genomic DNA) into a convenient measured object (ATP) has been achieved. This proposed strategy was highly sensitive for Nosema bombycis genomic DNA PTP1 detection with a detection limit as low as 0.47 fg/μL and a linear range from 0.001pg/μL to 50ng/μL. And we supposed that this novel target conversion electroanalytical strategy established a universal approach for quantitative analysis of any other kinds of nucleic acid in assistance of nucleic acid polymerization reaction.
Collapse
|
24
|
Roy S, Mohd-Naim NF, Safavieh M, Ahmed MU. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye. ACS Sens 2017; 2:1713-1720. [PMID: 29090907 DOI: 10.1021/acssensors.7b00671] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 103 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.
Collapse
Affiliation(s)
| | | | - Mohammadali Safavieh
- Division
of Engineering in Medicine, Brigham and Women’s Hospital-Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
25
|
Dou M, Sanjay ST, Dominguez DC, Zhan S, Li X. A paper/polymer hybrid CD-like microfluidic SpinChip integrated with DNA-functionalized graphene oxide nanosensors for multiplex qLAMP detection. Chem Commun (Camb) 2017; 53:10886-10889. [PMID: 28703226 PMCID: PMC5626606 DOI: 10.1039/c7cc03246c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A paper/poly(methyl methacrylate) (PMMA) hybrid CD-like microfluidic SpinChip integrated with DNA probe-functionalized graphene oxide (GO) nanosensors was developed for multiplex quantitative LAMP detection (mqLAMP). This approach can simply and effectively address a major challenging problem of multiplexing in current LAMP methods.
Collapse
Affiliation(s)
- Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA
| | | | | | | | | |
Collapse
|
26
|
Wang C, Cheng N, Zhu L, Xu Y, Huang K, Zhu P, Zhu S, Fu W, Xu W. Colorimetric biosensor based on a DNAzyme primer and its application in logic gate operations for DNA screening. Anal Chim Acta 2017; 987:111-117. [DOI: 10.1016/j.aca.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
27
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
28
|
H. Tom Soh. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
H. Tom Soh. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201702763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Zhang X, Guo L, Ma R, Cong L, Wu Z, Wei Y, Xue S, Zheng W, Tang S. Rapid detection of Salmonella with Recombinase Aided Amplification. J Microbiol Methods 2017; 139:202-204. [PMID: 28619662 DOI: 10.1016/j.mimet.2017.06.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
Rapid Salmonella detection using Recombinase Aided Amplification was established. The reaction completes in 20 min at 39°C and can be performed with a portable device. Once further improved, this method should be a great choice for monitoring contamination, such as foodborne Salmonella or for similar purposes.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Hangzhou Airport Office of the Zhejiang Entry-Exit Inspection and Quarantine Bureau, Hangzhou, Zhejiang Province, China
| | - Lichuan Guo
- Jiangsu Qitian Bio-Tech Co. Ltd, Wuxi, Jiangsu Province, China
| | - Ranran Ma
- Jiangsu Qitian Bio-Tech Co. Ltd, Wuxi, Jiangsu Province, China
| | - Lijuan Cong
- Airport Industrial Zone B6, Shunyi District, Beijing, China
| | - Zhonghua Wu
- International Travel Healthcare Center, Hangzhou, Zhejiang Province, China
| | - Ying Wei
- Hangzhou Airport Office of the Zhejiang Entry-Exit Inspection and Quarantine Bureau, Hangzhou, Zhejiang Province, China
| | - Shijie Xue
- Hangzhou Airport Office of the Zhejiang Entry-Exit Inspection and Quarantine Bureau, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- International Travel Healthcare Center, Hangzhou, Zhejiang Province, China
| | - Saijun Tang
- College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
Wang S, Zhang L, Wan S, Cansiz S, Liu Y, Cai R, Hong CY, Teng IT, Shi M, Wu Y, Dong Y, Tan W. Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS NANO 2017; 11:3943-3949. [PMID: 28287705 PMCID: PMC5518691 DOI: 10.1021/acsnano.7b00373] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exosomes are extracellular vesicles (50-100 nm) circulating in biofluids as intercellular signal transmitters. Although the potential of cancerous exosomes as tumor biomarkers is promising, sensitive and rapid detection of exosomes remains challenging. Herein, we combined the strengths of advanced aptamer technology, DNA-based nanostructure, and portable electrochemical devices to develop a nanotetrahedron (NTH)-assisted aptasensor for direct capture and detection of hepatocellular exosomes. The oriented immobilization of aptamers significantly improved the accessibility of an artificial nucleobase-containing aptamer to suspended exosomes, and the NTH-assisted aptasensor could detect exosomes with 100-fold higher sensitivity when compared to the single-stranded aptamer-functionalized aptasensor. The present study provides a proof-of-concept for sensitive and efficient quantification of tumor-derived exosomes. We thus expect the NTH-assisted electrochemical aptasensor to become a powerful tool for comprehensive exosome studies.
Collapse
Affiliation(s)
- Sai Wang
- Beijing Key Laboratory of Bioprocess, College of Life
Science and Technology, Beijing University of Chemical Technology, Beijing 100029,
China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Liqin Zhang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Shuo Wan
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Sena Cansiz
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Ren Cai
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Cheng-Yi Hong
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - I-Ting Teng
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Muling Shi
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Yuan Wu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| | - Yiyang Dong
- Beijing Key Laboratory of Bioprocess, College of Life
Science and Technology, Beijing University of Chemical Technology, Beijing 100029,
China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and
Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer
Center, McKnight Brain Institute, UF Genetics Institute, University of Florida,
Gainesville, Florida 32611-7200, United States
| |
Collapse
|
32
|
Wang Y, Zhang L, Shen L, Ge S, Yu J, Yan M. Electrochemiluminescence DNA biosensor based on the use of gold nanoparticle modified graphite-like carbon nitride. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2234-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
33
|
Zhou L, Wang J, Chen Z, Li J, Wang T, Zhang Z, Xie G. A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2129-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Zhang FT, Cai LY, Zhou YL, Zhang XX. Immobilization-free DNA-based homogeneous electrochemical biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Xi J, Xie C, Zhang Y, Wang L, Xiao J, Duan X, Ren J, Xiao F, Wang S. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22563-73. [PMID: 27502735 DOI: 10.1021/acsami.6b05561] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of carbon based hollow-structured nanospheres (HNSs) materials has stimulated growing interest due to their controllable structure, high specific surface area, large void space, enhanced mass transport, and good biocompatibility. The incorporation of functional nanomaterials into their core and/or shell opens new horizons in designing functionalized HNSs for a wider spectrum of promising applications. In this work, we report a new type of functionalized HNSs based on Pd nanoparticles (NPs) decorated double shell structured N-doped graphene quantum dots (NGQDs)@N-doped carbon (NC) HNSs, with ultrafine Pd NPs and "nanozyme" NGQDs as dual signal-amplifying nanoprobes, and explore their promising application as a highly efficient electrocatalyst in electrochemical sensing of a newly emerging biomarker, i.e., hydrogen peroxide (H2O2), for cancer detection. Due to the synergistic effect of the robust and conductive HNS supports and catalytically active Pd NPs and NGQD in facilitating electron transfer, the NGQD@NC@Pd HNS hybrid material exhibits high electrocatalytic activity toward the direct reduction of H2O2 and can promote the electrochemical reduction reaction of H2O2 at a favorable potential of 0 V, which effectively restrains the redox of most electroactive species in physiological samples and eliminates interference signals. The resultant electrochemical H2O2 biosensor based hybrid HNSs materials demonstrates attractive performance, including low detection limit down to nanomole level, short response time within 2 s, as well as high sensitivity, reproducibility, selectivity, and stability, and have been used in real-time tracking of trace amounts of H2O2 secreted from different living cancer cells in a normal state and treated with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan, 430073, China
| | | | | | | | | | | | - Jinghua Ren
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, 430022, P. R. China
| | | | | |
Collapse
|
36
|
Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H. Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomater Sci Eng 2016; 2:278-294. [PMID: 28503658 PMCID: PMC5425166 DOI: 10.1021/acsbiomaterials.5b00449] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective pathogen detection is of paramount importance in infectious disease diagnosis and treatment monitoring. Currently available diagnostic assays based on polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) are time-consuming, complex, and relatively expensive, thus limiting their utility in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been used extensively in the development of rapid and sensitive diagnostic assays for pathogen detection and nucleic acid analysis and hold great promise for revolutionizing point-of-care molecular diagnostics. Here, we review novel LAMP-based lab-on-a-chip (LOC) diagnostic assays developed for pathogen detection over the past several years. We review various LOC platforms based on their design strategies for pathogen detection and discuss LAMP-based platforms still in development and already in the commercial pipeline. This review is intended as a guide to the use of LAMP techniques in LOC platforms for molecular diagnostics and genomic amplifications.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Manoj K. Kanakasabapathy
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Farhang Tarlan
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Minhaz U. Ahmed
- Biosensors and Biotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Negara Brunei Darussalam
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Waseem Asghar
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Hadi Shafiee
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Liu W, Zhu M, Liu H, Wei J, Zhou X, Xing D. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants. Biosens Bioelectron 2016; 81:309-316. [PMID: 26985583 DOI: 10.1016/j.bios.2016.02.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays.
Collapse
Affiliation(s)
- Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jitao Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
38
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
39
|
Zhang W, Tullier MP, Patel K, Carranza A, Pojman JA, Radadia AD. Microfluidics using a thiol-acrylate resin for fluorescence-based pathogen detection assays. LAB ON A CHIP 2015; 15:4227-4231. [PMID: 26371689 DOI: 10.1039/c5lc00971e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate thiol-acrylate microfluidics prepared via soft lithography for single-step protein immobilization and fluorescence-based pathogen detection. Such microfluidics are formed via room temperature curing, and bonded without oxygen plasma. The background fluorescence of the resin was found to be similar to PDMS for several filter sets. We also show that thiol-acrylate devices are able to bond to gold-coated surfaces, which allows for integration with microfabricated sensors.
Collapse
Affiliation(s)
- W Zhang
- Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Ave, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Chen F, Zhao Y, Fan C, Zhao Y. Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. Anal Chem 2015; 87:8718-23. [PMID: 26249366 DOI: 10.1021/acs.analchem.5b01545] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sequence mismatches may induce nonspecific extension reaction, causing false results for SNP diagnostics. Herein, we systematically investigated the impact of various 3'-terminal mismatches on isothermal amplification catalyzed by representative DNA polymerases. Despite their diverse efficiencies depending on types of mismatch and kinds of DNA polymerase, all 12 kinds of single 3'-terminal mismatches induced the extension reaction. Generally, only several mismatches (primer-template, C-C, G-A, A-G, and A-A) present an observable inhibitory effect on the amplification reaction, whereas other mismatches trigger amplified signals as high as those of Watson-Crick pairs. The related mechanism was deeply discussed, and a primer-design guideline for specific SNP analysis was summarized. Furthermore, we found that the addition of appropriate gold nanoparticles (AuNPs) can significantly inhibit mismatch extension and enhance the amplification specificity. Also the high-accuracy SNP analysis of human blood genomic DNA has been demonstrated by AuNPs-improved isothermal amplification, the result of which was verified by sequencing (the gold standard method for SNP assay). Collectively, this work provides mechanistic insight into mismatch behavior and achieves accurate SNP diagnostics, holding great potential for the application in molecular diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Yuquan Road, Shanghai 201800, P. R. China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
41
|
Chen F, Fan C, Zhao Y. Inhibitory impact of 3'-terminal 2'-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana. Anal Chem 2015; 87:8758-64. [PMID: 26244621 DOI: 10.1021/acs.analchem.5b01683] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3'-terminal 2'-O-methylation has been found in several kinds of small silencing RNA, regarded as a protective mechanism against enzymatic 3' → 5' degradation and 3'-end uridylation. The influence of this modification on enzymatic polymerization, however, remains unknown. Herein, a systematic investigation is performed to explore this issue. We found these methylated small RNAs exhibited a suppression behavior in target-primed polymerization, revealing biased result for the manipulation of these small RNAs by conventional polymerization-based methodology. The related potential mechanism is investigated and discussed, which is probably ascribed to the big size of modified group and its close location to 3'-OH. Furthermore, two novel solutions each utilizing base-stacking hybridization and three-way junction structure have been proposed to realize unbiased recognition of small RNAs. On the basis of phosphorothioate against nicking, a creative amplified strategy, phosphorothioate-protected polymerization/binicking amplification, has also been developed for the unbiased quantification of methylated small RNA in Arabidopsis thaliana, demonstrating its promising potential for real sample analysis. Collectively, our studies uncover the polymerization inhibition by 3'-terminal 2'-O-methylated small RNAs with mechanistic discussion, and propose novel unbiased solutions for amplified quantification of small RNAs in real sample.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Yuquan Road, Shanghai 201800, P. R. China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
42
|
Zhang X, Li Q, Jin X, Jiang C, Lu Y, Tavallaie R, Gooding JJ. Quantitative determination of target gene with electrical sensor. Sci Rep 2015; 5:12539. [PMID: 26205714 PMCID: PMC4513347 DOI: 10.1038/srep12539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/14/2015] [Indexed: 12/30/2022] Open
Abstract
Integrating loop-mediated isothermal amplification (LAMP) with capacitively coupled contactless conductivity detection (C(4)D), we have developed an electrical sensor for the simultaneous amplification and detection of specific sequence DNA. Using the O26-wzy gene as a model, the amount of initial target gene could be determined via the threshold time obtained by monitoring the progression of the LAMP reaction in real time. Using the optimal conditions, a detection limit of 12.5 copy/μL can be obtained within 30 min. Monitoring the LAMP reaction by C(4)D has not only all the advantages that existing electrochemical methods have, but also additional attractive features including being completely free of carryover contamination risk, high simplicity and extremely low cost. These benefits all arise from the fact that the electrodes are separated from the reaction solution, that is C(4)D is a contactless method. Hence in proof of principle, the new strategy promises a robust, simple, cost-effective and sensitive method for quantitative determination of a target gene, that is applicable either to specialized labs or at point-of-care.
Collapse
Affiliation(s)
- Xuzhi Zhang
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, P.R. China
| | - Qiufen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, P.R. China
| | - Xianshi Jin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, P.R. China
| | - Cheng Jiang
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yong Lu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Roya Tavallaie
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 2015; 7:569-75. [PMID: 26100805 DOI: 10.1038/nchem.2270] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
The analysis of cell-free nucleic acids (cfNAs), which are present at significant levels in the blood of cancer patients, can reveal the mutational spectrum of a tumour without the need for invasive sampling of the tissue. However, this requires differentiation between the nucleic acids that originate from healthy cells and the mutated sequences shed by tumour cells. Here we report an electrochemical clamp assay that directly detects mutated sequences in patient serum. This is the first successful detection of cfNAs without the need for enzymatic amplification, a step that normally requires extensive sample processing and is prone to interference. The new chip-based assay reads out the presence of mutations within 15 minutes using a collection of oligonucleotides that sequester closely related sequences in solution, and thus allow only the mutated sequence to bind to a chip-based sensor. We demonstrate excellent levels of sensitivity and specificity and show that the clamp assay accurately detects mutated sequences in a collection of samples taken from lung cancer and melanoma patients.
Collapse
|
44
|
Yang F, Yang X, Wang Y, Qin Y, Liu X, Yan X, Zou K, Ning Y, Zhang GJ. Template-independent, in situ grown DNA nanotail enabling label-free femtomolar chronocoulometric detection of nucleic acids. Anal Chem 2014; 86:11905-12. [PMID: 25369556 DOI: 10.1021/ac503728s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A routine electrochemical DNA (E-DNA) sensor requires either an exquisite design of conformation-switchable recognition probe that is critical to facilitate electron transfer at a sensing interface, or a template-dependent DNA amplification, which often involves designing prone-to-false "sticky ends" and labeling redox tags at one end of the signal probes. Here we report an in situ grown DNA nanotail (IGT)-mediated straightforward and template-free signal amplification strategy for highly sensitive and sequence-specific DNA detection. This novel electrochemical IGT (E-IGT) DNA sensor can quantify target nucleic acids in a label-free manner because the electrochemical signals are generated by chronocoulometric interrogation of redox [Ru(NH3)6](3+) that electrostatically and quantitatively binds to the negatively charged phosphate moieties in the electrode surface-attached DNA. By introduction of terminal deoxynucleoside transferase (TdT) to this sensor design, both the sensitivity and selectivity have been significantly enhanced. This DNA sensor achieves an impressive detection limit of 20 fM for a DNA sequence with 22 nucleotides, which is lower than that of an analogous optical DNA sensor by 2 orders of magnitude. More importantly, it exhibits excellent selectivity against even a single-base mismatched sequence. In addition, this novel DNA sensor presents reliable reusability and is capable of measuring target DNA in complex matrixes, such as undiluted human serum, with minimal interference. These advantages make our E-IGT sensor a promising contender in the E-DNA sensor family for medical diagnostics.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan 430065, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 2014; 61:491-9. [DOI: 10.1016/j.bios.2014.05.039] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/20/2023]
|
46
|
Zhang F, Wang R, Wang L, Wu J, Ying Y. Tracing phosphate ions generated during DNA amplification and its simple use for visual detection of isothermal amplified products. Chem Commun (Camb) 2014; 50:14382-5. [DOI: 10.1039/c4cc06973k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Zhang FT, Nie J, Zhang DW, Chen JT, Zhou YL, Zhang XX. Methylene blue as a G-quadruplex binding probe for label-free homogeneous electrochemical biosensing. Anal Chem 2014; 86:9489-95. [PMID: 25211349 DOI: 10.1021/ac502540m] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, G-quadruplex sequence was found to significantly decrease the diffusion current of methylene blue (MB) in homogeneous solution for the first time. Electrochemical methods combined with circular dichroism spectroscopy and UV-vis spectroscopy were utilized to systematically explore the interaction between MB and an artificial G-quadruplex sequence, EAD2. The interaction of MB and EAD2 (the binding constant, K ≈ 1.3 × 10(6) M(-1)) was stronger than that of MB and double-stranded DNA (dsDNA) (K ≈ 2.2 × 10(5) M(-1)), and the binding stoichiometry (n) of EAD2/MB complex was calculated to be 1.0 according to the electrochemical titration curve combined with Scatchard analysis. MB was proved to stabilize the G-quadruplex structure of EAD2 and showed a competitive binding to G-quadruplex in the presence of hemin. EAD2 might mainly interact with MB, a positive ligand of G-quadruplex, through the end-stacking with π-system of the guanine quartet, which was quite different from the binding mechanism of dsDNA with MB by intercalation. A novel signal read-out mode based on the strong affinity between G-quadruplex and MB coupling with aptamer/G-quadruplex hairpin structure was successfully implemented in cocaine detection with high specificity. G-quadruplex/MB complex will function as a promising electrochemical indicator for constructing homogeneous label-free electrochemical biosensors, especially in the field of simple, rapid, and noninvasive biochemical assays.
Collapse
Affiliation(s)
- Fang-Ting Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
48
|
Liu D, Wang Z, Jin A, Huang X, Sun X, Wang F, Yan Q, Ge S, Xia N, Niu G, Liu G, Hight Walker AR, Chen X. Acetylcholinesterase-Catalyzed Hydrolysis Allows Ultrasensitive Detection of Pathogens with the Naked Eye. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Liu D, Wang Z, Jin A, Huang X, Sun X, Wang F, Yan Q, Ge S, Xia N, Niu G, Liu G, Hight Walker AR, Chen X. Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Ed Engl 2013; 52:14065-9. [PMID: 24155243 DOI: 10.1002/anie.201307952] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Dingbin Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol 2013; 79:2302-11. [PMID: 23354710 DOI: 10.1128/aem.03882-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S. enterica isolates. Point-of-care methods for detection and strain discrimination of Salmonella serovars would thus have considerable benefit to medical, veterinary, and field applications that safeguard public health and reduce industry-associated losses. Here we describe a single, disposable microfluidic chip that supports isothermal amplification and sequence-specific detection and discrimination of Salmonella serovars derived from whole blood of septic mice. The integrated microfluidic electrochemical DNA (IMED) chip consists of an amplification chamber that supports loop-mediated isothermal amplification (LAMP), a rapid, single-temperature amplification method as an alternative to PCR that offers advantages in terms of sensitivity, reaction speed, and amplicon yield. The amplification chamber is connected via a microchannel to a detection chamber containing a reagentless, multiplexed (here biplex) sensing array for sequence-specific electrochemical DNA (E-DNA) detection of the LAMP products. Validation of the IMED device was assessed by the detection and discrimination of S. enterica subsp. enterica serovars Typhimurium and Choleraesuis, the causative agents of enterocolitis and sepsis in humans, respectively. IMED chips conferred rapid (under 2 h) detection and discrimination of these strains at clinically relevant levels (<1,000 CFU/ml) from whole, unprocessed blood collected from septic animals. The IMED-based chip assay shows considerable promise as a rapid, inexpensive, and portable point-of-care diagnostic platform for the detection and strain-specific discrimination of microbial pathogens.
Collapse
|