1
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
2
|
Liu J, You X, Wang L, Zeng J, Huang H, Wu J. ROS-Responsive and Self-Tumor Curing Methionine Polymer Library Based Nanoparticles with Self-Accelerated Drug Release and Hydrophobicity/Hydrophilicity Switching Capability for Enhanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401438. [PMID: 38693084 DOI: 10.1002/smll.202401438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The applications of amino acid-based polymers are impeded by their limited structure and functions. Herein, a small library of methionine-based polymers (Met-P) with programmed structure and reactive oxygen species (ROS)-responsive properties is developed for tumor therapy. The Met-P can self-assemble into sub-100 nm nanoparticles (NPs) and effectively load anticancer drugs (such as paclitaxel (PTX) (P@Met-P NPs)) via the nanoprecipitation method. The screened NPs with superior stability and high drug loading are further evaluated in vitro and in vivo. When encountering with ROS, the Met-P polymers will be oxidized and then switch from a hydrophobic to a hydrophilic state, triggering the rapid and self-accelerated release of PTX. The in vivo results indicated that the screened P@2Met10 NPs possessed significant anticancer performance and effectively alleviated the side effects of PTX. More interestingly, the blank 2Met10 NPs displayed an obvious self-tumor inhibiting efficacy. Furthermore, the other Met-P NPs (such as 2Met8, 4Met8, and 4Met10) are also found to exhibit varied self-anti-cancer capabilities. Overall, this ROS-responsive Met-P library is a rare anticancer platform with hydrophobic/hydrophilic switching, controlled drug release, and self-anticancer therapy capability.
Collapse
Affiliation(s)
- Jie Liu
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianwen Zeng
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, Qingyuan, Guangdong, 511518, China
| | - Hai Huang
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jun Wu
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hongkong SAR, 999077, China
| |
Collapse
|
3
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
5
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
6
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Liu J, Jia B, Li Z, Li W. Reactive oxygen species-responsive polymer drug delivery systems. Front Bioeng Biotechnol 2023; 11:1115603. [PMID: 36815896 PMCID: PMC9932603 DOI: 10.3389/fbioe.2023.1115603] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Applying reactive polymer materials sensitive to biological stimuli has recently attracted extensive research interest. The special physiological effects of reactive oxygen species (ROS) on tumors or inflammation and the application of ROS-responsive polymers as drug-delivery systems in organisms have attracted much attention. ROS is a vital disease signal molecule, and the unique accumulation of ROS-responsive polymers in pathological sites may enable ROS-responsive polymers to deliver payload (such as drugs, ROS-responsive prodrugs, and gene therapy fragments) in a targeted fashion. In this paper, the research progress of ROS-responsive polymers and their application in recent years were summarized and analyzed. The research progress of ROS-responsive polymers was reviewed from the perspective of nanoparticle drug delivery systems, multi-responsive delivery systems, and ROS-responsive hydrogels. It is expected that our work will help understand the future development trends in this field.
Collapse
Affiliation(s)
- Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Boyan Jia
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| |
Collapse
|
8
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Sohn YS, Karmi O, Qin Y, Chen X, Nechushtai R, Willner I. Aptamer-Functionalized Ce 4+-Ion-Modified C-Dots: Peroxidase Mimicking Aptananozymes for the Oxidation of Dopamine and Cytotoxic Effects toward Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55365-55375. [PMID: 36475576 PMCID: PMC9782376 DOI: 10.1021/acsami.2c16199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Aptamer-functionalized Ce4+-ion-modified C-dots act as catalytic hybrid systems, aptananozymes, catalyzing the H2O2 oxidation of dopamine. A series of aptananozymes functionalized with different configurations of the dopamine binding aptamer, DBA, are introduced. All aptananozymes reveal substantially enhanced catalytic activities as compared to the separated Ce4+-ion-modified C-dots and aptamer constituents, and structure-catalytic functions between the structure and binding modes of the aptamers linked to the C-dots are demonstrated. The enhanced catalytic functions of the aptananozymes are attributed to the aptamer-induced concentration of the reaction substrates in spatial proximity to the Ce4+-ion-modified C-dots catalytic sites. The oxidation processes driven by the Ce4+-ion-modified C-dots involve the formation of reactive oxygen species (•OH radicals). Accordingly, Ce4+-ion-modified C-dots with the AS1411 aptamer or MUC1 aptamer, recognizing specific biomarkers associated with cancer cells, are employed as targeted catalytic agents for chemodynamic treatment of cancer cells. Treatment of MDA-MB-231 breast cancer cells and MCF-10A epithelial breast cells, as control, with the AS1411 aptamer- or MUC1 aptamer-modified Ce4+-ion-modified C-dots reveals selective cytotoxicity toward the cancer cells. In vivo experiments reveal that the aptamer-functionalized nanoparticles inhibit MDA-MB-231 tumor growth.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Tu Y, Xiao X, Dong Y, Li J, Liu Y, Zong Q, Yuan Y. Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials 2022; 289:121795. [PMID: 36108580 DOI: 10.1016/j.biomaterials.2022.121795] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
Although stimuli-responsive polymers have emerged as promising strategies for intelligent cancer therapy, limited polymer degradation and insufficient drug release remain a challenge. Here, we report a novel reactive oxygen species (ROS)-awakened self-amplifying degradable cinnamaldehyde (CA)-based poly(thioacetal) polymer. The polymer consists of ROS responsive thioacetal (TA) group and CA as the ROS generation agent. The self-amplified polymer degradation process is triggered by endogenous ROS-induced cleavage of the TA group to release CA. The CA released then promotes the generation of more ROS through mitochondrial dysfunction, resulting in amplified polymer degradation. More importantly, poly(thioacetal) itself can trigger immunogenic cell death (ICD) of the tumor cells and its side chains can be conjugated with indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor to reverse the immunosuppressive tumor microenvironment for synergistic cancer immunotherapy. The self-amplified degradable poly(thioacetal) developed in this work provides insights into the development of novel stimulus-responsive polymers for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jisi Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Qingyu Zong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Youyong Yuan
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Choi H, Choi B, Han JH, Shin HE, Park W, Kim DH. Reactive Oxygen Species Responsive Cleavable Hierarchical Metallic Supra-Nanostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202694. [PMID: 35962759 PMCID: PMC9509447 DOI: 10.1002/smll.202202694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A reactive oxygen species (ROS) responsive cleavable hierarchical metallic supra-nanostructure (HMSN) is reported. HMSN structured with thin branches composed of primary gold (Au) nanocrystals and silver (Ag) nano-linkers is synthesized by a one-pot aqueous synthesis with a selected ratio of Au/Ag/cholate. ROS responsive degradability of HMSN is tested in the presence of endogenous and exogeneous ROS. Significant ROS-responsive structural deformation of HMSN is observed in the ROS exposure with hydrogen peroxide (H2 O2 ) solution. The ROS responsiveness of HMSN is significantly comparable with negligible structural changes of conventional spherical gold nanoparticles. The demonstrated ROS responsive degradation of HMSN is further confirmed in various in vitro ROS conditions of each cellular endogenous ROS and exogeneous ROS generated by photodynamic therapy (PDT) or X-ray radiation. Then, in vivo ROS responsive degradability of HMSN is further evaluated with intratumoral injection of HMSN and exogeneous ROS generation via PDT in a mouse tumor model. Additional in vivo biodistribution and toxicity of intravenously administrated HMSN at 30-day post-injection are investigated for potential in vivo applications. The observed ROS responsive degradability of HMSN will provide a promising option for a type of ROS responsive-multifunctional nanocarriers in cancer treatment and various biomedical applications.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jun-Hyeok Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Ha Eun Shin
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Sołtan M, Bartusik-Aebisher D, Aebisher D. The potential of oxygen and nitrogen species-regulating drug delivery systems in medicine. Front Bioeng Biotechnol 2022; 10:973080. [PMID: 36110312 PMCID: PMC9468659 DOI: 10.3389/fbioe.2022.973080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of this review is to present most significant advances in biomaterials used for control of reactive oxygen/nitrogen species (ROS/RNS, RONS) in medicine. A summary of the main pathways of ROS production and the main pathways of RNS production are shown herein. Although the physiological and pathological roles of RONS have been known for at least 2decades, the potential of their control in management of disease went unappreciated. Recently, advances in the field of biochemical engineering and materials science have allowed for development of RONS-responsive biomaterials for biomedical applications, which aim to control and change levels of reactive species in tissue microenvironments. These materials utilize polymers, inorganic nanoparticles (NPs), or organic-inorganic hybrids. Thus, biomaterials like hydrogels have been developed to promote tissue regeneration by actively scavenging and reducing RONS levels. Their promising utility comes from thermo- and RONS-sensitivity, stability as a delivery-medium, ease for incorporation into other materials and facility for injection. Their particular attractiveness is attributed to drug release realized in targeted tissues and cells with elevated RONS levels, which leads to enhanced treatment outcomes and reduced adverse effects. The mechanism of their action depends on the functional groups employed and their response to oxidation, and may be based on solubility changes or cleavage of chemical bonds. When talking about antioxidants, one should also mention oxidative stress, which we call the imbalance between antioxidants and reactive oxygen species, which occurs due to a deficiency of endogenous antioxidants and a low supply of exogenous antioxidants. This study is a review of articles in English from the databases PubMed and Web of Science retrieved by applying the search terms “Oxygen Species, Nitrogen Species and biomaterials” from 1996 to 2021.
Collapse
Affiliation(s)
- Michał Sołtan
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| | - David Aebisher
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| |
Collapse
|
12
|
Ding F, Li F, Tang D, Wang B, Liu J, Mao X, Yin J, Xiao H, Wang J, Liu Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle‐Mediated Copper Chaperone Inhibition. Angew Chem Int Ed Engl 2022; 61:e202203546. [DOI: 10.1002/anie.202203546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Fei Li
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junyan Liu
- Department of Orthopaedics Xiangya Hospital Central South University Changsha 410008 P. R. China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| |
Collapse
|
13
|
Baghbanbashi M, Yong HW, Zhang I, Lotocki V, Yuan Z, Pazuki G, Maysinger D, Kakkar A. Stimuli-Responsive Miktoarm Polymer-Based Formulations for Fisetin Delivery and Regulatory Effects in Hyperactive Human Microglia. Macromol Biosci 2022; 22:e2200174. [PMID: 35817026 DOI: 10.1002/mabi.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. We demonstrate that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, was physically encapsulated into miktoarm star-derived aqueous polymersomes. We evaluated polymersomes and fisetin separately, and in combination, in human microglia (HMC3), to show if (i) polymersomes are toxic; (ii) fisetin reduces the abundance of reactive oxygen species (ROS); and (iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and non-incorporated into polymersomes, reduced ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Zhuoer Yuan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
14
|
Ding F, Li F, Tang D, Wang B, Liu J, Mao X, Yin J, Xiao H, Wang J, Liu Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle‐Mediated Copper Chaperone Inhibition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Fei Li
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junyan Liu
- Department of Orthopaedics Xiangya Hospital Central South University Changsha 410008 P. R. China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| |
Collapse
|
15
|
Tu Y, Li HM, Wang MM, Su Y, Liu HK, Su Z. Dual Mitochondria‐ and DNA‐Targeting Coumarin‐Pt(IV) Prodrug for the enhancement of Anticancer Performance. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Tu
- Nanjing Normal University Chemistry CHINA
| | | | | | - Yan Su
- Nanjing Normal University Chemistry CHINA
| | | | - Zhi Su
- Nanjing Normal University Chemistry Wenyuan Rd. #1 210093 Nanjing CHINA
| |
Collapse
|
16
|
Pham-Nguyen OV, Lee JW, Park Y, Jin S, Kim SR, Park J, Park JH, Jung YM, Yoo HS. Light-triggered Structural Modulation of Nanofibrous Meshes to Promote Deep Penetration of Cultured Cells. Macromol Biosci 2022; 22:e2100530. [PMID: 35263035 DOI: 10.1002/mabi.202100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Indexed: 11/09/2022]
Abstract
Although nanofibrous meshes are considered promising cultivation beds for maintaining cell differentiation, three-dimensional (3D) cultivation is not possible because their nanoporous structures impede cell infiltration. To facilitate transverse cell migration across nanofibrous meshes, we prepared electrospun nanofibers with structures that varied in response to red laser light. Polyoxalate (POX), composed of oxalate linkers and oligomeric caprolactone, was synthesized and electrospun into fibrous meshes with a photosensitizer (chlorin e6: Ce6). These meshes exhibited morphological and chemical changes upon laser irradiation, and mass erosion rates of the meshes were faster after laser irradiation. Cell cultivation on POX meshes revealed that red laser effectively facilitated traverse migration of the cells without affecting cell viability. We envision the use of light-triggered change of meshes to promote the migration of cells during 3D matrix cultivation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- O. Pham-Nguyen, J. W. Lee, Prof. J. H. Park, Prof. H. S. Yoo, Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Won Lee
- O. Pham-Nguyen, J. W. Lee, Prof. J. H. Park, Prof. H. S. Yoo, Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeonju Park
- Y. Park, Prof. Y. M. Jung, Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sila Jin
- S. Jin, J. Park, Prof. Y. M. Jung, Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Song Rae Kim
- S. R. Kim, Korea Basic Science Institute, Chuncheon Center, Chuncheon, 24341, Republic of Korea
| | - Jongmin Park
- S. Jin, J. Park, Prof. Y. M. Jung, Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Hyun Park
- O. Pham-Nguyen, J. W. Lee, Prof. J. H. Park, Prof. H. S. Yoo, Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Y. Park, Prof. Y. M. Jung, Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea.,S. Jin, J. Park, Prof. Y. M. Jung, Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyuk Sang Yoo
- O. Pham-Nguyen, J. W. Lee, Prof. J. H. Park, Prof. H. S. Yoo, Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Prof. H. S. Yoo, Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
17
|
Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021; 28:272-284. [PMID: 33501883 PMCID: PMC7850355 DOI: 10.1080/10717544.2021.1876182] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) is among the most common malignancy that has a profound impact on human health and life quality. The treatment for HNC, especially for the advanced cancer is stage-dependent and in need of combined therapies. Various forms of adjuvant treatments such as chemotherapy, phototherapy, hyperthermia, gene therapy have been included in the HNC therapy. However, there are still restrictions with traditional administration such as limited in situ therapeutic effect, systemic toxicity, drug resistance, etc. In recent years, stimuli-responsive drug delivery systems (DDSs) have attracted the great attention in HNC therapy. These intelligent DDSs could respond to unique tumor microenvironment, external triggers or dual/multi stimulus with more specific drug delivery and release, leading to enhanced treatment efficiency and less reduced side effects. In this article, recent studies on stimuli-responsive DDSs for HNC therapy were summarized, which could respond to endogenous and exogenous triggers including pH, matrix metalloproteinases (MMPs), reactive oxygen species (ROS), redox condition, light, magnetic field and multi stimuli. Their therapeutic remarks, current limits and future prospect for these intelligent DDSs were discussed. Furthermore, multifunctional stimuli-responsive DDSs have also been reviewed. With the modification of drug carriers or co-loading with therapeutic agents. Those intelligent DDSs showed more biofunctions such as combined therapeutic effects or integration of diagnosis and treatment for HNC. It is believed that stimuli-responsive drug delivery systems showed great potential for future clinic translation and application for the treatment of HNC.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Smirnova VV, Chausov DN, Serov DA, Kozlov VA, Ivashkin PI, Pishchalnikov RY, Uvarov OV, Vedunova MV, Semenova AA, Lisitsyn AB, Simakin AV. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6915. [PMID: 34832317 PMCID: PMC8620072 DOI: 10.3390/ma14226915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.
Collapse
Affiliation(s)
- Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Department of Fundamental Science, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| |
Collapse
|
19
|
Chausov DN, Burmistrov DE, Kurilov AD, Bunkin NF, Astashev ME, Simakin AV, Vedunova MV, Gudkov SV. New Organosilicon Composite Based on Borosiloxane and Zinc Oxide Nanoparticles Inhibits Bacterial Growth, but Does Not Have a Toxic Effect on the Development of Animal Eukaryotic Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6281. [PMID: 34771805 PMCID: PMC8585151 DOI: 10.3390/ma14216281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Nikolai F. Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5, 105005 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Li W, Li M, Qi J. Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules 2021; 26:5567. [PMID: 34577040 PMCID: PMC8469141 DOI: 10.3390/molecules26185567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) is involved in and regulates important physiological functions of the body as an essential antioxidant. GSH plays an important role in anti-oxidation, detoxification, anti-aging, enhancing immunity and anti-tumor activity. Herein, based on the physiological properties of GSH in different diseases, mainly including the strong reducibility of GSH, high GSH content in tumor cells, and the NADPH depletion when GSSH is reduced to GSH, we extensively report the design principles, effect, and potential problems of various nano-drugs in diabetes, cancer, nervous system diseases, fluorescent probes, imaging, and food. These studies make full use of the physiological and pathological value of GSH and develop excellent design methods of nano-drugs related to GSH, which shows important scientific significance and prominent application value for the related diseases research that GSH participates in or responds to.
Collapse
Affiliation(s)
| | - Minghui Li
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| | - Jing Qi
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| |
Collapse
|
21
|
Pottanam Chali S, Hüwel S, Rentmeister A, Ravoo BJ. Self-Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery. Chemistry 2021; 27:12198-12206. [PMID: 34125454 PMCID: PMC8457085 DOI: 10.1002/chem.202101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Supramolecular nanogels are an emerging class of polymer nanocarriers for intracellular delivery, due to their straightforward preparation, biocompatibility, and capability to spontaneously encapsulate biologically active components such as DNA. A completely biodegradable three-component cationic supramolecular nanogel was designed exploiting the multivalent host-guest interaction of cyclodextrin and adamantane attached to a polypeptide backbone. While cyclodextrin was conjugated to linear poly-L-lysine, adamantane was grafted to linear as well as star shaped poly-L-lysine. Size control of nanogels was obtained with the increase in the length of the host and guest polymer. Moreover, smaller nanogels were obtained using the star shaped polymers because of the compact nature of star polymers compared to linear polymers. Nanogels were loaded with anionic model cargoes, pyranine and carboxyfluorescein, and their enzyme responsive release was studied using protease trypsin. Confocal microscopy revealed successful transfection of mammalian HeLa cells and intracellular release of pyranine and plasmid DNA, as quantified using a luciferase assay, showing that supramolecular polypeptide nanogels have significant potential in gene therapy applications.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Sabine Hüwel
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Andrea Rentmeister
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
22
|
Fang R, Pi J, Wei T, Ali A, Guo L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers (Basel) 2021; 13:2089. [PMID: 34202869 PMCID: PMC8271857 DOI: 10.3390/polym13132089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Polypeptoids have attracted a lot of atteSDntion because of their unique structural characteristics and special properties. Polypeptoids have the same main chain structures to polypeptides, making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to external environmental changes by modifying the configurations of the side chains. The external stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids, including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors in response to external stimuli and the application of responsive polypeptoid biomaterials in various biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.
Collapse
Affiliation(s)
| | | | | | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| |
Collapse
|
23
|
Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs. Acta Biomater 2021; 125:242-252. [PMID: 33657454 DOI: 10.1016/j.actbio.2021.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/02/2023]
Abstract
Bacterial infections and the formation of biofilms on the surface of implantable medical devices are critical issues that cause device failure. Implantable medical devices, such as drug delivery technologies, offer promising benefits for targeted and prolonged drug release, but a number of common disadvantages arise that include inadequate release and side effects. Organic film coatings for antifouling and drug delivery are expected to overcome these challenges. Ferrocene polymer-based multifunctional multilayer films were prepared to control the reactive oxygen species (ROS)-responsive release of therapeutic agents while maintaining an antifouling effect and improving biocompatibility. Polymers based on ferrocene and polyethylene glycol were prepared by controlling the molar ratio of carboxylate and amine groups. Layer-by-layer deposition was optimized to achieve the linear growth and self-assembly of dense and stable films. Outstanding anti-biofilm activity (~91% decrease) could be achieved and the films were found to be blood compatible. Importantly, the films effectively incorporated hydrophobic drugs and exhibited dual-responsive drug release at low pH and under ROS conditions at physiological pH. Drug delivery to MCF-7 breast cancer cells was achieved using a Paclitaxel loaded film, which exhibited an anticancer efficacy of 62%. STATEMENT OF SIGNIFICANCE: Healthcare associated infection is caused by the formation of a biofilm by bacteria on the surface of a medical device. In order to solve this, extensive research has been conducted on many coating technologies. Also, a method of chemical treatment by releasing the drug when it enters the body by loading the drug into the coating film is being studied. However, there is still a lack of technology that can achieve both functions of preventing biofilm production and drug delivery. Therefore, in this study, a multilayer thin film that supports drug and inhibits biofilm formation was prepared through Layer-by-Layer coating of a polymer containing PEG to prevent adsorption. As such, it helps the design of multifunctional coatings for implantable medical devices.
Collapse
|
24
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
25
|
Fang Y, Lin X, Jin X, Yang D, Gao S, Shi K, Yang M. Design and Fabrication of Dual Redox Responsive Nanoparticles with Diselenide Linkage Combined Photodynamically to Effectively Enhance Gene Expression. Int J Nanomedicine 2020; 15:7297-7314. [PMID: 33061382 PMCID: PMC7534861 DOI: 10.2147/ijn.s266514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND PEI is currently the most used non-viral gene carrier and the transfection efficiency is closely related to the molecular weight; however, the prominent problem is that the cytotoxicity increased with the molecular weight. METHODS A novel redox responsive biodegradable diselenide cross-linked polymer (dPSP) was designed to enhance gene expression. ICG-pEGFP-TRAIL/dPSP nanoparticles with high drug loading are prepared, which have redox sensitivity and plasmid protection. The transfection efficiency of dPSP nanoparticle was evaluated in vitro. RESULTS The plasmid was compressed by 100% at the N/P ratio of 16, and the particle size was less than 100 nm. When explored onto high concentrations of GSH/H2O2, dPSP4 degraded into small molecular weight cationic substances with low cytotoxicity rapidly. Singlet oxygen (1O2) was produced when indocyanine green (ICG) was irradiated by near-infrared laser irradiation (NIR) to promote oxidative degradation of dPSP4 nanoparticles. Under the stimulation of NIR 808 and redox agent, the particle size and PDI of ICG-pDNA/dPSP nanoparticle increased significantly. CONCLUSION Compared with gene therapy alone, co-transportation of dPSP4 nanoparticle with ICG and pEGFP-TRAIL had better antitumor effect. Diselenide-crosslinked polyspermine had a promising prospect on gene delivery and preparation of multifunctional anti-tumor carrier.
Collapse
Affiliation(s)
- Yan Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Kai Shi
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen ODK-2100, Denmark
| |
Collapse
|
26
|
Zhang X, Kang Y, Liu GT, Li DD, Zhang JY, Gu ZP, Wu J. Poly(cystine–PCL) based pH/redox dual-responsive nanocarriers for enhanced tumor therapy. Biomater Sci 2019; 7:1962-1972. [DOI: 10.1039/c9bm00009g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Illustration of pH/redox dual-responsive poly(cystine–PCL)/PTX NPs for tumor therapy.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Gui-ting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Dan-dan Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | | | - Zhi-peng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
27
|
Hu Y, Deng M, Yang H, Chen L, Xiao C, Zhuang X, Chen X. Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016; 55:10676-80. [DOI: 10.1002/anie.201604858] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/20/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
29
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Kim K, Lee CS, Na K. Light-controlled reactive oxygen species (ROS)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem Commun (Camb) 2016; 52:2839-42. [DOI: 10.1039/c5cc09239f] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A doxorubicin (DOX)-loaded and light-induced ROS-producing polymeric micelle (D-LRPM), in which light triggers simultaneous DOX-release and endo/lysosomal escape, produces a powerful, spatiotemporally controllable, therapeutic efficacy for tumor treatment.
Collapse
Affiliation(s)
- Kihong Kim
- Department of Biotechnology
- The Catholic University of Korea
- Bucheon-si
- Republic of Korea
| | - Chung-Sung Lee
- Department of Biotechnology
- The Catholic University of Korea
- Bucheon-si
- Republic of Korea
| | - Kun Na
- Department of Biotechnology
- The Catholic University of Korea
- Bucheon-si
- Republic of Korea
| |
Collapse
|
31
|
Zhang QM, Serpe MJ. Versatile Method for Coating Surfaces with Functional and Responsive Polymer-Based Films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27547-27553. [PMID: 26640982 DOI: 10.1021/acsami.5b09875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A versatile surface modification technique was developed to yield poly(N-isopropylacrylamide) (pNIPAm) microgel-based thin films on a variety of substrates, e.g., metals, nonmetals, and polymers. Because the chemistry, and hence functionality and responsivity, of the pNIPAm-based microgels is easily tuned, multifunctional and responsive thin films could be generated on many different surfaces without varying the coating conditions. In one case, we showed that fluorescent/light emitting thin films could be generated using crystal violet-modified microgels. Antibacterial films could be obtained using silver nanoparticle-modified pNIPAm-based microgels. Finally, we show that thin films fabricated via the methods here could be used as a component in optical sensors. Although we show only a few examples of the utility of this approach, we feel that the apparent universality of the technique can be extended to countless other applications.
Collapse
Affiliation(s)
- Qiang Matthew Zhang
- Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
32
|
Chen H, Tian J, He W, Guo Z. H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. J Am Chem Soc 2015; 137:1539-47. [DOI: 10.1021/ja511420n] [Citation(s) in RCA: 652] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huachao Chen
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weijiang He
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination
Chemistry, Coordination Chemistry Institute, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
33
|
Bae SR, Choi J, Kim HO, Kang B, Kim MH, Han S, Noh I, Lim JW, Suh JS, Huh YM, Haam S. Pseudo metal generation via catalytic oxidative polymerization on the surface of reactive template for redox switched off–on photothermal therapy. J Mater Chem B 2015; 3:505-513. [DOI: 10.1039/c4tb01461h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An autonomous redox-responsive switched off–on photothermal therapeutic agent is introduced by a novel catalytic oxidative approach to polyaniline generation.
Collapse
|
34
|
Wong PT, Tang K, Coulter A, Tang S, Baker JR, Choi SK. Multivalent Dendrimer Vectors with DNA Intercalation Motifs for Gene Delivery. Biomacromolecules 2014; 15:4134-45. [PMID: 25285357 DOI: 10.1021/bm501169s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kenny Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Alexa Coulter
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q. Reactive Oxygen Species-Responsive Protein Modification and Its Intracellular Delivery for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed Engl 2014; 53:13444-8. [PMID: 25287050 DOI: 10.1002/anie.201407234] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Indexed: 12/11/2022]
Abstract
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A-NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A-NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A-NBC reactivation, RNase A-NBC shows a significant specific cytotoxicity against tumor cells.
Collapse
Affiliation(s)
- Ming Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
| | | | | | | | | |
Collapse
|
37
|
Feng L, Li K, Shi X, Gao M, Liu J, Liu Z. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv Healthc Mater 2014; 3:1261-71. [PMID: 24652715 DOI: 10.1002/adhm.201300549] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/21/2014] [Indexed: 01/31/2023]
Abstract
A pH-responsive nanocarrier is developed by coating nanoscale graphene oxide (NGO) with dual types of polymers, polyethylene glycol (PEG) and poly(allylamine hydrochloride) (PAH), the latter of which is then modified with 2,3-dimethylmaleic anhydride (DA) to acquire pH-dependent charge reversibility. After loading with doxorubicin (DOX), a chemotherapy drug, the obtained NGO-PEG-DA/DOX complex exhibits a dual pH-responsiveness, showing markedly enhanced cellular uptake under the tumor microenvironmental pH, and accelerated DOX release under a further lowered pH inside cell lysosomes. Combining such a unique behavior with subsequently slow efflux of DOX, NGO-PEG-DA/DOX offers remarkably improved cell killing for drug-resistant cancer cells under the tumor microenvironmental pH in comparison with free DOX. Exploiting its excellent photothermal conversion ability, combined chemo- and photothermal therapy is further demonstrated using NGO-PEG-DA/DOX, realizing a synergistic therapeutic effect. This work presents a novel design of surface chemistry on NGO for the development of smart drug delivery systems responding to the tumor microenvironment and external physical stimulus, with the potential to overcome drug resistance.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Kunyang Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Xiaoze Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Min Gao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| |
Collapse
|
38
|
Yuan Y, Liu J, Liu B. Conjugated‐Polyelectrolyte‐Based Polyprodrug: Targeted and Image‐Guided Photodynamic and Chemotherapy with On‐Demand Drug Release upon Irradiation with a Single Light Source. Angew Chem Int Ed Engl 2014; 53:7163-8. [DOI: 10.1002/anie.201402189] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
| | - Jie Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
- Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)
| |
Collapse
|
39
|
Yuan Y, Liu J, Liu B. Conjugated‐Polyelectrolyte‐Based Polyprodrug: Targeted and Image‐Guided Photodynamic and Chemotherapy with On‐Demand Drug Release upon Irradiation with a Single Light Source. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
| | - Jie Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576 (Singapore)
- Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)
| |
Collapse
|
40
|
Mo R, Jiang T, Gu Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed Engl 2014; 53:5815-20. [PMID: 24764317 DOI: 10.1002/anie.201400268] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Indexed: 11/12/2022]
Abstract
A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA); Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA).
| | | | | |
Collapse
|
41
|
Mo R, Jiang T, Gu Z. Enhanced Anticancer Efficacy by ATP-Mediated Liposomal Drug Delivery. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400268] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|