1
|
Ahmed AAA, Havenridge S, Sahoo K, Thapa L, Baksi A, Clever GH, Noei H, Kohantorabi M, Stierle A, Raj CR, Parak WJ, Aikens CM, Chakraborty I. Effect of Ni-Doping on the Optical, Structural, and Electrochemical Properties of Ag 29 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408096. [PMID: 39580690 PMCID: PMC11735891 DOI: 10.1002/smll.202408096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Atomically precise metal nanoclusters (NCs) can be compositionally controlled at the single-atom level, but understanding structure-property correlations is required for tailoring specific optical properties. Here, the impact of Ni atom doping on the optical, structural, and electrochemical properties of atomically precise 1,3-benzene dithiol (BDT) protected Ag29 NCs is studied. The Ni-doped Ag29 (NiAg28(BDT)12) NCs, are synthesized using a co-reduction method and characterized using electrospray ionization mass spectrometry (ESI MS), ion mobility spectrometry (IMS), and X-ray photoelectron spectroscopy (XPS). Only a single Ni atom doping can be achieved despite changing the precursor concentration. Ni doping in Ag29 NCs exhibits enhanced thermal stability, and electrocatalytic oxygen evolution reaction (OER) compared to the parent NCs. Density functional theory (DFT) calculations predict the geometry and optical properties of the parent and NiAg28(BDT)12 NCs. DFT is also used to study the systematic single-atom doping effect of metals such as Au, Cu, and Pt into Ag29 NCs and suggests that with Ni and Pt, the d atomic orbitals contribute to creating superatomic orbitals, which is not seen with other dopants or the parent cluster. The emission mechanism is dominated by a charge transfer from the ligands into the Ag core cluster regardless of the dopant.
Collapse
Affiliation(s)
- Abdullah A. A. Ahmed
- Center for Hybrid Nanostructures (CHyN) and Fachbereich PhysikUniversität Hamburg22607HamburgGermany
- Department of PhysicsFaculty of Applied ScienceThamar UniversityDhamar87246Yemen
| | - Shana Havenridge
- Department of ChemistryKansas State UniversityManhattanKS66506USA
| | - Koustav Sahoo
- School of Nano Science and TechnologyIndian Institute of Technology KharagpurKharagpur721302India
| | - Loknath Thapa
- Functional Materials and Electrochemistry LabDepartment of ChemistryIndian Institute of Technology KharagpurKharagpur721302India
| | - Ananya Baksi
- Department of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| | - Heshmat Noei
- DESY NanoLabDeutsches Elektronen Synchrotron (DESY)22607HamburgGermany
- Fachbereich PhysikUniversity of Hamburg20148HamburgGermany
| | - Mona Kohantorabi
- DESY NanoLabDeutsches Elektronen Synchrotron (DESY)22607HamburgGermany
- Fachbereich PhysikUniversity of Hamburg20148HamburgGermany
| | - Andreas Stierle
- DESY NanoLabDeutsches Elektronen Synchrotron (DESY)22607HamburgGermany
- Fachbereich PhysikUniversity of Hamburg20148HamburgGermany
| | - C. Retna Raj
- Functional Materials and Electrochemistry LabDepartment of ChemistryIndian Institute of Technology KharagpurKharagpur721302India
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN) and Fachbereich PhysikUniversität Hamburg22607HamburgGermany
| | | | - Indranath Chakraborty
- Center for Hybrid Nanostructures (CHyN) and Fachbereich PhysikUniversität Hamburg22607HamburgGermany
- School of Nano Science and TechnologyIndian Institute of Technology KharagpurKharagpur721302India
| |
Collapse
|
2
|
Wang H, Zhang X, Zhang W, Zhou M, Jiang HL. Heteroatom-Doped Ag 25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202401443. [PMID: 38407530 DOI: 10.1002/anie.202401443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Liu Z, Luo L, Kong J, Kahng E, Zhou M, Jin R. Bright near-infrared emission from the Au 39(SR) 29 nanocluster. NANOSCALE 2024; 16:7419-7426. [PMID: 38529816 DOI: 10.1039/d4nr00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The synthesis of atomically precise gold nanoclusters with high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region and understanding their photoluminescence mechanism are crucial for both fundamental science and practical applications. Herein, we report a highly luminescent, molecularly pure Au39(PET)29 (PET = 2-phenylethanethiolate) nanocluster with PLQY of 19% in the NIR range (915 nm). Steady state and time-resolved PL analyses, as well as temperature-dependent PL measurements reveal the emission nature of Au39(PET)29, which consists of prompt fluorescence (weak), thermally activated delayed fluorescence (TADF), and phosphorescence (predominant). Furthermore, strong dipole-dipole interaction in the solid-state (e.g., Au39(PET)29 nanoclusters embedded in a polystyrene thin-film) is found to narrow the energy gap between the S1 and T1 states, which results in faster intersystem crossing and reverse intersystem crossing; thus, the ratio of TADF to phosphorescence varies and the total PLQY is increased to 32%. This highly luminescent nanocluster holds promise in imaging, sensing and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Jie Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
5
|
Liu Z, Zhou M, Luo L, Wang Y, Kahng E, Jin R. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M 25(SR) 18 Nanoclusters. J Am Chem Soc 2023; 145:19969-19981. [PMID: 37642696 PMCID: PMC10510323 DOI: 10.1021/jacs.3c06543] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/31/2023]
Abstract
More than a decade of research on the photoluminescence (PL) of classic Au25(SR)18 and its doped nanoclusters (NCs) still leaves many fundamental questions unanswered due to the complex electron dynamics. Here, we revisit the homogold Au25 (ligands omitted hereafter) and doped NCs, as well as the Ag25 and doped ones, for a comparative study to disentangle the influencing factors and elucidate the PL mechanism. We find that the strong electron-vibration coupling in Au25 leads to weak PL in the near-infrared region (∼1000 nm, quantum yield QY = 1% in solution at room temperature). Heteroatom doping of Au25 with a single Cd or Hg atom strengthens the coupling of the exciton with staple vibrations but reduces the coupling with the core breathing and quadrupolar modes. The QYs of the three MAu24 NCs (M = Hg, Au, and Cd) follow a linear relation with their PL lifetimes, suggesting a mechanism of suppressed nonradiative decay in PL enhancement. In contrast, the weaker electron-vibration coupling in Ag25 leads to higher PL (QY = 3.5%), and single Au atom doping further leads to a 5× enhancement of the radiative rate and a suppression of nonradiative decay rate (i.e., twice the PL lifetime of Ag25) in AuAg24 (hence, QY 35%), but doping more Au atoms results in gold distribution to staple motifs and thus triggering of strong electron-vibration coupling as in the MAu24 NCs, hence, counteracting the radiative enhancement effect and giving rise to only 5% QY for AuxAg25-x (x = 3-10). The obtained insights will provide guidance for the design of metal NCs with high PL for lighting, sensing, and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Peng J, Huang B, Wang P, Pei Y. On the Mechanism of Anti-galvanic Metal Displacement Reaction between [Au 25(SR) 18] − and Metal-Thiolate Complex. J Phys Chem A 2022; 126:8910-8917. [DOI: 10.1021/acs.jpca.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jiao Peng
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong Province, Foshan 5283311, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| |
Collapse
|
7
|
Pniakowska A, Kumaranchira Ramankutty K, Obstarczyk P, Perić Bakulić M, Sanader Maršić Ž, Bonačić‐Koutecký V, Bürgi T, Olesiak‐Bańska J. Gold‐Doping Effect on Two‐Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202209645. [DOI: 10.1002/anie.202209645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Pniakowska
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | | | - Patryk Obstarczyk
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
- Faculty of Science University of Split Ruđera Boškovića 33 21000 Split Croatia
| | - Vlasta Bonačić‐Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Thomas Bürgi
- Département de Chimie Physique Université de Genève 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Joanna Olesiak‐Bańska
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
8
|
Pniakowska A, Ramankutty KK, Obstarczyk P, Bakulić MP, Maršić ŽS, Bonačić-Koutecký V, Bürgi T, Olesiak-Banska J. Gold‐doping effect on two‐photon absorption and luminescence of atomically precise silver ligated nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Pniakowska
- Wroclaw University of Science and Technology: Politechnika Wroclawska Institute of Advanced Materials POLAND
| | | | - Patryk Obstarczyk
- Wroclaw University of Science and Technology: Politechnika Wroclawska Institute of Advanced Materials POLAND
| | - Martina Perić Bakulić
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Željka Sanader Maršić
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Vlasta Bonačić-Koutecký
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Thomas Bürgi
- Universite de Geneve Département de Chimie Physique SWITZERLAND
| | - Joanna Olesiak-Banska
- Wroclaw University of Science and Technology: Politechnika Wroclawska Faculty of Chemistry Wybrzeze Wyspianskiego 27 50-370 Wroclaw POLAND
| |
Collapse
|
9
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au 38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022; 61:e202207685. [PMID: 35638166 DOI: 10.1002/anie.202207685] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/25/2022]
Abstract
It is an obstacle to precisely manipulate a doped heteroatom into a desired position in a metal nanocluster. Herein, we overcome this difficulty to obtain Pt1 Au37 (SCH2 Pht Bu)24 and Pt2 Au36 (SCH2 Pht Bu)24 nanoclusters via controllably doping Pt atoms into the kernels of Au38 (SCH2 Pht Bu)24 . We reveal that asymmetrical doping of one Pt atom into either of the cores of Au38 (SCH2 Pht Bu)24 elevates the relative energy of the HOMO (highest occupied molecular orbital) accompanied by one valence electron loss of Pt1 Au37 (SCH2 Pht Bu)24 , compared to Au38 (SCH2 Pht Bu)24 with 14 electrons, while symmetrical doping of two Pt atoms into the cores of Au38 (SCH2 Pht Bu)24 narrows the HOMO-LUMO gap (LUMO: lowest unoccupied molecular orbital) of Pt2 Au36 (SCH2 Pht Bu)24 with two valence electrons less. Consequently, Pt1 Au37 (SCH2 Pht Bu)24 shows an electron-spin-induced high activity for CO2 electroreduction, whereas Pt2 Au36 (SCH2 Pht Bu)24 is least efficient and Au38 (SCH2 Pht Bu)24 has a decent performance.
Collapse
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au
38
Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
11
|
Ramankutty KK, Yang H, Baghdasaryan A, Teyssier J, Nicu VP, Buergi T. Molecule-like and lattice vibrations in metal clusters. Phys Chem Chem Phys 2022; 24:13848-13859. [PMID: 35616625 PMCID: PMC9176185 DOI: 10.1039/d1cp04708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
We report distinct molecule-like and lattice (breathing) vibrational signatures of atomically precise, ligand-protected metal clusters using low-temperature Raman spectroscopy. Our measurements provide fingerprint Raman spectra of a series of noble metal clusters, namely, Au25(SR)18, Ag25(SR)18, Ag24Au1(SR)18, Ag29(S2R)12 and Ag44(SR)30 (-SR = alkyl/arylthiolate, -S2R = dithiolate). Distinct, well-defined, low-frequency Raman bands of these clusters result from the vibrations of their metal cores whereas the higher-frequency bands reflect the structure of the metal-ligand interface. We observe a distinct breathing vibrational mode for each of these clusters. Detailed analyses of the bands are presented in the light of DFT calculations. These vibrational signatures change systematically when the metal atoms and/or the ligands are changed. Most importantly, our results show that the physical, lattice dynamics model alone cannot completely describe the vibrational properties of ligand-protected metal clusters. We show that low-frequency Raman spectroscopy is a powerful tool to understand the vibrational dynamics of atomically precise, molecule-like particles of other materials such as molecular nanocarbons, quantum dots, and perovskites.
Collapse
Affiliation(s)
| | - Huayan Yang
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Ani Baghdasaryan
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Jeremie Teyssier
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Valentin Paul Nicu
- Department of Environmental Science, Physics, Physical Education, and Sport, Lucian Blaga University of Sibiu, loan Ratiu Street, Nr. 7-9, 550012 Sibiu, Romania.
- Pro Vitam Ltd, Muncitorilor Street, Nr. 16, Sfantu Gheorghe, Romania
| | - Thomas Buergi
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
12
|
Partial Phosphorization: A Strategy to Improve Some Performance(s) of Thiolated Metal Nanoclusters Without Notable Reduction of Stability. Chemistry 2022; 28:e202200212. [DOI: 10.1002/chem.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/07/2022]
|
13
|
Li J, Wang P, Pei Y. Ligand Shell Isomerization Induces Different Fluorescence Origins of Two Au 28 Nanoclusters. J Phys Chem Lett 2022; 13:3718-3725. [PMID: 35442683 DOI: 10.1021/acs.jpclett.2c00539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the origin of the photoluminescence (PL) phenomenon in ligand-protected metal nanoclusters is of paramount importance in both fundamental science and practical applications. In this study, we have studied the origin of fluorescence emission of two thiolate-ligand-protected Au28 clusters (Au28(CHT)20 and Au28(TBBT)20) by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Theoretical calculation results show that the ligand shell isomerization induces different ligand motif-to-metal core charge transfers (LMCT) of Au28(TBBT)20 and Au28(CHT)20. Moreover, in Au28(CHT)20, the emission process of S2 → S0 can compete favorably with the internal conversion of S2 → S1. Furthermore, the high quantum yield of Au28(CHT)20 is attributed to its high symmetric structure, which leads to less energy dissipation during the structural relaxation process.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| |
Collapse
|
14
|
Guo M, Zhao R, Liu H, Ma H, Guo J, Yang H, Liu Y, Zhang X, Huang Y, Zhang G, Wang J, Long W, Zhang XD. Ligand-Modulated Catalytic Selectivity of Ag Clusterzyme for Relieving Multiorgan Injury via Inhabiting Acute Oxidative Stress. Bioconjug Chem 2021; 32:2342-2352. [PMID: 34643081 DOI: 10.1021/acs.bioconjchem.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The artificial enzymes at the atomic level have shown great potential in chemical biology and nanomedicine, and modulation of catalytic selectivity is also critical to the application of nanozymes. In this work, atomic precision Ag25 clusterzymes protected by single- and dual-ligand were developed. Further, the catalytic activity and selectivity of Ag25 clusterzymes were modulated by adjusting doping elements and ligand. The Ag24Pt1 shows more prominent antioxidant activity characteristics in the dual-ligand system, while the Ag24Cu1 possesses the superoxide dismutase-like (SOD-like) activity regardless of the single- or dual-ligand system, indicating modulated catalytic selectivity. In vitro experiments showed the Ag24Pt1-D can recover radiation induced DNA damages and eliminate the excessive reactive oxygen species (ROS) generated from radiation. Subsequent in vivo radiation protection experiments reveal that Ag24Cu1-S and Ag24Pt1-D can improve the survival rate of irradiated mice from 0 to 40% and 30%, respectively. The detailed biological experiments confirm that the Ag24Cu1-S and Ag24Pt1-D can recover the SOD and 3,4-methylenedioxyamphetamine (MDA) levels via suppressing the chronic inflammation reaction. Nearly 60% of Ag24Cu1-S and Ag24Pt1-D can be excreted after a 1 day injection, and no obvious toxicological reactions were observed 30 days after injection.
Collapse
Affiliation(s)
- Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Jiao Guo
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haiyu Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ya Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoning Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - You Huang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Junying Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Chang H, Bootharaju MS, Lee S, Kim JH, Kim BH, Hyeon T. To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hogeun Chang
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- Department of Organic Materials and Fiber Engineering Soongsil University Seoul Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
16
|
Li Y, Zhou M, Jin R. Programmable Metal Nanoclusters with Atomic Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006591. [PMID: 33984169 DOI: 10.1002/adma.202006591] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1-3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X-ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum-confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold-thiolate nanoclusters (Aun (SR)m ) are revealed to contain an inner kernel, Au-S interface (motifs), and surface ligand (-R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg ) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smaller Eg . Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
17
|
Yi H, Han SM, Song S, Kim M, Sim E, Lee D. Superatom‐in‐Superatom [RhH@Ag
24
(SPhMe
2
)
18
]
2−
Nanocluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hanseok Yi
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Sang Myeong Han
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Suhwan Song
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Minseok Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Eunji Sim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Dongil Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
18
|
Zhou J, Yang S, Tan Y, Cheng H, Chai J, Zhu M. Cu Doping-Induced Transformation from [Ag 62 S 12 (SBu t ) 32 ] 2+ to [Ag 62-x Cu x S 12 (SBu t ) 32 ] 4+ Nanocluster. Chem Asian J 2021; 16:2973-2977. [PMID: 34374215 DOI: 10.1002/asia.202100739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/07/2021] [Indexed: 12/28/2022]
Abstract
The change in the valence state of nanocluster can induce remarkable changes in the properties and structure. However, achieving the valence state changes in nanoclusters is still a challenge. In this work, we use Cu2+ as dopant to "oxidize" [Ag62 S12 (SBut )32 ]2+ (4 free electrons) to obtain the new nanocluster: [Ag62-x Cux S12 (SBut )32 ]4+ with 2 free electrons. As revealed by its structure, the [Ag62-x Cux S12 (SBut )32 ]4+ (x=10∼21) has a similar structure to that of [Ag62 S12 (SBut )32 ]2+ precursor and all the Cu atoms occupy the surface site of nanocluster. It's worth noting that with the Cu atoms doping, the [Ag62-x Cux S12 (SBut )32 ]4+ nanocluster is more stable than [Ag62 S12 (SBut )32 ]2+ at higher temperature and in electrochemical cycle. This result has laid a foundation for the subsequent application and exploration. Overall, this work reveals crystals structure of a new Ag-Cu nanocluster and offers a new insight into the electron reduction/oxidation of nanocluster.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Function-al Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Function-al Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Function-al Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Huaisheng Cheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Function-al Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Function-al Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
19
|
Medves M, Sementa L, Toffoli D, Fronzoni G, Krishnadas KR, Bürgi T, Bonacchi S, Dainese T, Maran F, Fortunelli A, Stener M. Predictive optical photoabsorption of Ag 24Au(DMBT) 18 - via efficient TDDFT simulations. J Chem Phys 2021; 155:084103. [PMID: 34470368 DOI: 10.1063/5.0056869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.
Collapse
Affiliation(s)
- Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | | | - Thomas Bürgi
- Département de Chimie Physique, Université de Gene've, 1211 Geneva 4, Switzerland
| | - Sara Bonacchi
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Tiziano Dainese
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Flavio Maran
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
20
|
Yi H, Han SM, Song S, Kim M, Sim E, Lee D. Superatom-in-Superatom [RhH@Ag 24 (SPhMe 2 ) 18 ] 2- Nanocluster. Angew Chem Int Ed Engl 2021; 60:22293-22300. [PMID: 34224193 DOI: 10.1002/anie.202106311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Heterometal doping is a powerful method for tuning the physicochemical properties of metal nanoclusters. While the heterometals doped into such nanoclusters predominantly include transition metals with closed d-shells, the doping of open d-shell metals remains largely unexplored. Herein, we report the first synthesis of a [RhHAg24 (SPhMe2 )18 ]2- nanocluster, in which a Rh atom with open d-shells ([Kr]4d8 5s1 ) is incorporated into the Ag24 framework by forming a RhH superatom with closed d-shells ([Kr]4d10 ). Combined experimental and theoretical investigations showed that the Ag24 framework was co-doped with Rh and hydride and that the RhH dopant was a superatomic construct of a Pd atom. Additional studies demonstrated that the [RhHAg24 (SPhMe2 )18 ]2- nanocluster was isoelectronic to the [PdAg24 (SPhMe2 )18 ]2- nanocluster with the superatomic 8-electron configuration (1S2 1P6 ). This study demonstrated for the first time that a superatom could be incorporated into a cluster superatom to generate a stable superatom-in-superatom nanocluster.
Collapse
Affiliation(s)
- Hanseok Yi
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sang Myeong Han
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minseok Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Anderson ID, Riskowski RA, Ackerson CJ. Observable but Not Isolable: The RhAu 24 (PET) 181+ Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004078. [PMID: 33174675 DOI: 10.1002/smll.202004078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The synthesis and characterization of RhAu24 (PET)18 (PET = 2-phenylethanethiol) is described. The cluster is cosynthesized with Au25 (PET)18 and rhodium thiolates in a coreduction of RhCl3 , HAuCl4 , and PET. Rapid decomposition of RhAu24 (PET)18 occurs when purified from the other reaction products, precluding the study of isolated cluster. Mixtures containing RhAu24 (PET)18 , Au25 (PET)18 , and rhodium thiolates are therefore characterized. Mass spectrometry, X-ray photoelectron spectroscopy, and chromatography methods suggest a combination of charge-charge and metallophilic interactions among Au25 (PET)181- , rhodium thiolates and RhAu24 (PET)18 resulting in stabilization of RhAu24 (PET)18 . The charge of RhAu24 (PET)18 is assigned as 1+ on the basis of its stoichiometric 1:1 presence with anionic Au25 (PET)18 , and its stability is contextualized within the superatom electron counting rules. This analysis concludes that the Rh atom absorbs one superatomic electron to close its d-shell, giving RhAu24 (PET)181+ a superatomic electron configuration of 1S2 1P4 . Overall, an updated framework for rationalizing open d-shell heterometal dopant electronics in thiolated gold nanoclusters emerges.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan A Riskowski
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
22
|
Pei X, Guan Z, Nan Z, Wang Q. Heterometallic Coinage Metal Acetylenediide Clusters Showing Tailored Thermochromic Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Li Pei
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zong‐Jie Guan
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Zi‐Ang Nan
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Quan‐Ming Wang
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
23
|
Pei XL, Guan ZJ, Nan ZA, Wang QM. Heterometallic Coinage Metal Acetylenediide Clusters Showing Tailored Thermochromic Luminescence. Angew Chem Int Ed Engl 2021; 60:14381-14384. [PMID: 33871145 DOI: 10.1002/anie.202104391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/28/2022]
Abstract
Acetelyenediide (C2 2- ) species have been encapsulated in bimetallic and trimetallic clusters: [(AuL)6 Ag7 (C≡C)3 ](BF4 )7 (2) and [(AuL)6 AgCu6 (C≡C)3 ](BF4 )7 (3), L=phenylbis(2-pyridyl)phosphine (PPhpy2 ). Single-crystal X-ray diffraction analysis revealed that they are isostructural and six silver atoms in 2 are replaced with copper in 3. Both clusters have a trefoil skeleton, which can be viewed as three trigonal bipyramidal (LAu-C≡C-AuL)M2 Ag (M=Ag/Cu) motifs sharing a common silver atom. TDDFT calculations showed Cu-doping significantly increases the energy level of (C2 -Cu)-involved occupied orbital, thus inducing interesting transition coupling of dual-emission at low temperature. This work not only provides a strategy for constructing heterometallic clusters, but also shows the prospect for pursuing novel thermochromic luminescent materials by incorporating multi-congeneric metal components.
Collapse
Affiliation(s)
- Xiao-Li Pei
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zi-Ang Nan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
24
|
Akanuma Y, Imaoka T, Sato H, Yamamoto K. Silver in the Center Enhances Room‐Temperature Phosphorescence of a Platinum Sub‐nanocluster by 18 Times. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuki Akanuma
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takane Imaoka
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO, Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyasu Sato
- Rigaku Corporation 3-9-12, Matsubara-cho Akishima-shi 196-8666 Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO, Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
25
|
Akanuma Y, Imaoka T, Sato H, Yamamoto K. Silver in the Center Enhances Room-Temperature Phosphorescence of a Platinum Sub-nanocluster by 18 Times. Angew Chem Int Ed Engl 2021; 60:4551-4554. [PMID: 33200557 DOI: 10.1002/anie.202012921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
There has been controversy surrounding the roles of the metal core (metal-metal interaction) and the shell (metal-ligand interaction) in photoluminescence of ligand-protected metal nanoclusters. We have discovered aggregation-induced room-temperature phosphorescence of a platinum-thiolate complex and its silver ion inclusion complex (a silver-doped platinum sub-nanocluster). The inclusion of silver ion boosted the photoluminescent quantum yield by 18 times. Photophysical measurements indicate that the rate of nonradiative decay was slower for the silver-doped platinum sub-nanocluster. DFT calculations showed that the LUMO, which had the main contribution from Ag s-orbital and Pt d-orbitals, played a critical role in suppressing the structural distortion at the excited state. This work will hopefully stimulate more research on designing strategies based on molecular orbitals of atomicity-precise luminescent multimetallic nanoclusters.
Collapse
Affiliation(s)
- Yuki Akanuma
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Takane Imaoka
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, 196-8666, Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
26
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021; 60:2822-2827. [DOI: 10.1002/anie.202013725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/16/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
27
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
28
|
Qin Z, Sharma S, Wan C, Malola S, Xu W, Häkkinen H, Li G. A Homoleptic Alkynyl‐Ligated [Au
13
Ag
16
L
24
]
3−
Cluster as a Catalytically Active Eight‐Electron Superatom. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhaoxian Qin
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chong‐qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Wen‐wu Xu
- Department of Physics School of Physical Science and Technology Ningbo University Ningbo 315211 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
29
|
Qin Z, Sharma S, Wan C, Malola S, Xu W, Häkkinen H, Li G. A Homoleptic Alkynyl‐Ligated [Au
13
Ag
16
L
24
]
3−
Cluster as a Catalytically Active Eight‐Electron Superatom. Angew Chem Int Ed Engl 2020; 60:970-975. [DOI: 10.1002/anie.202011780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Zhaoxian Qin
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chong‐qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Wen‐wu Xu
- Department of Physics School of Physical Science and Technology Ningbo University Ningbo 315211 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
30
|
Kawawaki T, Imai Y, Suzuki D, Kato S, Kobayashi I, Suzuki T, Kaneko R, Hossain S, Negishi Y. Atomically Precise Alloy Nanoclusters. Chemistry 2020; 26:16150-16193. [DOI: 10.1002/chem.202001877] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yukari Imai
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Daiki Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Shun Kato
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ibuki Kobayashi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Taiyo Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ryo Kaneko
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
31
|
Hirai H, Ito S, Takano S, Koyasu K, Tsukuda T. Ligand-protected gold/silver superatoms: current status and emerging trends. Chem Sci 2020; 11:12233-12248. [PMID: 34094434 PMCID: PMC8162828 DOI: 10.1039/d0sc04100a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Monolayer-protected gold/silver clusters have attracted much interest as nano-scale building units for novel functional materials owing to their nonbulk-like structures and size-specific properties. They can be viewed as ligand-protected superatoms because their magic stabilities and fundamental properties are well explained in the framework of the jellium model. In the last decade, the number of ligand-protected superatoms with atomically-defined structures has been increasing rapidly thanks to the well-established synthesis and structural determination by X-ray crystallography. This perspective summarizes the current status and emerging trends in synthesis and characterization of superatoms. The topics related to synthesis include (1) development of targeted synthesis based on transformation, (2) enhancement of robustness and synthetic yield for practical applications, and (3) development of controlled fusion and assembly of well-defined superatoms to create new properties. New characterization approaches are also introduced such as (1) mass spectrometry and laser spectroscopies in the gas phase, (2) determination of static and dynamic structures, and (3) computational analysis by machine learning. Finally, future challenges and prospects are discussed for further promotion and development of materials science of superatoms. This perspective summarizes the current status and emerging trends in synthesis and characterization of ligand-protected gold/silver superatoms.![]()
Collapse
Affiliation(s)
- Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
32
|
Li Y, Higaki T, Du X, Jin R. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905488. [PMID: 32181554 DOI: 10.1002/adma.201905488] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Indexed: 05/24/2023]
Abstract
Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand-protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic-inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal-ligand surface bonding-induced chirality for the nanoclusters is proposed. The different bonding modes of M-X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au-thiolate NCs with Au-phosphine ones further reveals the important roles of surface bonding. Compared to the Au-thiolate NCs, the Ag/Cu/Cd-thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high-performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Krishnadas KR, Sementa L, Medves M, Fortunelli A, Stener M, Fürstenberg A, Longhi G, Bürgi T. Chiral Functionalization of an Atomically Precise Noble Metal Cluster: Insights into the Origin of Chirality and Photoluminescence. ACS NANO 2020; 14:9687-9700. [PMID: 32672935 DOI: 10.1021/acsnano.0c01183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We probe the origin of photoluminescence of an atomically precise noble metal cluster, Ag24Au1(DMBT)18 (DMBT = 2,4-dimethylbenzenethiolate), and the origin of chirality in its chirally functionalized derivatives, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7 (R/S-BINAS = R/S-1,1'-[binaphthalene]-2,2'-dithiol), using chiroptical spectroscopic measurements and density functional theory (DFT) calculations. Combination of chiroptical and luminescence spectroscopies to understand the nature of electronic transitions has not been applied to such molecule-like metal clusters. In order to impart chirality to the achiral Ag24Au1(DMBT)18 cluster, the chiral ligand, R/S-BINAS, was incorporated into it. A series of clusters, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7, were synthesized. We demonstrate that the low-energy electronic transitions undergo an unexpected achiral to chiral and back to achiral transition from pure Ag24Au1(DMBT)18 to Ag24Au1(R/S-BINAS)x(DMBT)18-2x, by increasing the number of BINAS ligands. The UV/vis, luminescence, circular dichroism, and circularly polarized luminescence spectroscopic measurements, in conjunction with DFT calculations, suggest that the photoluminescence in Ag24Au1(DMBT)18 and its chirally functionalized derivatives originates from the transitions involving the whole Ag24Au1S18 framework and not merely from the icosahedral Ag12Au1 core. These results suggest that the chiroptical signatures and photoluminescence in these cluster systems cannot be solely attributed to any one of the structural components, that is, the metal core or the protecting metal-ligand oligomeric units, but rather to their interaction and that the ligand shell plays a crucial role. Our work demonstrates that chiroptical spectroscopic techniques such as circular dichroism and circularly polarized luminescence represent useful tools to understand the nature of electronic transitions in ligand-protected metal clusters and that this approach can be utilized for gaining deeper insights into the structure-property relationships of the electronic transitions of such molecule-like clusters.
Collapse
Affiliation(s)
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alexandre Fürstenberg
- Département de Chimie Analytique et Minérale, Université de Genève 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Barik SK, Huo S, Wu C, Chiu T, Liao J, Wang X, Kahlal S, Saillard J, Liu CW. Polyhydrido Copper Nanoclusters with a Hollow Icosahedral Core: [Cu
30
H
18
{E
2
P(OR)
2
}
12
] (E=S or Se; R=
n
Pr,
i
Pr or
i
Bu). Chemistry 2020; 26:10471-10479. [DOI: 10.1002/chem.202001449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Subrat Kumar Barik
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| | - Shou‐Chih Huo
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| | - Chun‐Yen Wu
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| | - Tzu‐Hao Chiu
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| | - Jian‐Hong Liao
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| | - Xiaoping Wang
- Neutron Scattering DivisionNeutron Sciences DirectorateOak Ridge National Laboratory Oak Ridge TN, 37831 USA
| | - Samia Kahlal
- CNRS, ISCR-UMR 6226Univ Rennes 35000 Rennes France
| | | | - C. W. Liu
- Department of ChemistryNational Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd. Shoufeng Hualien 974301 Taiwan R.O.C
| |
Collapse
|
35
|
Li Y, Jin R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J Am Chem Soc 2020; 142:13627-13644. [DOI: 10.1021/jacs.0c05866] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
36
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020; 59:13941-13946. [DOI: 10.1002/anie.202005087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
37
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
38
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020; 59:11898-11902. [DOI: 10.1002/anie.202004268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
39
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
40
|
Chen S, Du W, Qin C, Liu D, Tang L, Liu Y, Wang S, Zhu M. Assembly of the Thiolated [Au
1
Ag
22
(S‐Adm)
12
]
3+
Superatom Complex into a Framework Material through Direct Linkage by SbF
6
−
Anions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information TechnologyAnhui University JiuLong Rd Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Chenwanli Qin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Danyu Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Li Tang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Ying Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Manzhou Zhu
- Institutes of Physical Science and Information TechnologyAnhui University JiuLong Rd Hefei Anhui 230601 P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
41
|
Chen S, Du W, Qin C, Liu D, Tang L, Liu Y, Wang S, Zhu M. Assembly of the Thiolated [Au
1
Ag
22
(S‐Adm)
12
]
3+
Superatom Complex into a Framework Material through Direct Linkage by SbF
6
−
Anions. Angew Chem Int Ed Engl 2020; 59:7542-7547. [DOI: 10.1002/anie.202000073] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information TechnologyAnhui University JiuLong Rd Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Chenwanli Qin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Danyu Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Li Tang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Ying Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| | - Manzhou Zhu
- Institutes of Physical Science and Information TechnologyAnhui University JiuLong Rd Hefei Anhui 230601 P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid MaterialsAnhui University)Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
42
|
Wang S, Xiong L, Sun G, Tang L, Zhang J, Pei Y, Zhu M. The mechanism of metal exchange in non-metallic nanoclusters. NANOSCALE ADVANCES 2020; 2:664-668. [PMID: 36133226 PMCID: PMC9419833 DOI: 10.1039/c9na00746f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 05/26/2023]
Abstract
We substituted gold atoms in fcc structured Au28 and Au36 nanoclusters with a Ag(i)SR complex and obtained Ag x Au28-x and Ag x Au36-x nanoclusters, respectively. The positive electrostatic potential (ESP) and dual descriptor (Δf) values were calculated for the metal cores of both nanoclusters, which indicated that the metal exchange is an electrophilic reaction.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui University Hefei Anhui 230601 PR China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 PR China
| | - Guodong Sun
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui University Hefei Anhui 230601 PR China
| | - Li Tang
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui University Hefei Anhui 230601 PR China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei Anhui 230601 PR China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 PR China
| | - Manzhou Zhu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui University Hefei Anhui 230601 PR China
| |
Collapse
|
43
|
Sun W, Jin S, Du W, Kang X, Chen A, Wang S, Sheng H, Zhu M. Total Structure Determination of the Pt1
Ag9
[P(Ph-F)3
]7
Cl3
Nanocluster. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wenjing Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
- Institutes of Physical Science and Information Technology; Anhui University; 230601 Hefei Anhui P. R. China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Along Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
- Institutes of Physical Science and Information Technology; Anhui University; 230601 Hefei Anhui P. R. China
| |
Collapse
|
44
|
Liao L, Wang C, Zhuang S, Yan N, Zhao Y, Yang Y, Li J, Deng H, Wu Z. An Unprecedented Kernel Growth Mode and Layer‐Number‐Odevity‐Dependent Properties in Gold Nanoclusters. Angew Chem Int Ed Engl 2020; 59:731-734. [DOI: 10.1002/anie.201912090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lingwen Liao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Nan Yan
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Ying Yang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life SciencesSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of BioinformaticsSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
45
|
Liao L, Wang C, Zhuang S, Yan N, Zhao Y, Yang Y, Li J, Deng H, Wu Z. An Unprecedented Kernel Growth Mode and Layer‐Number‐Odevity‐Dependent Properties in Gold Nanoclusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lingwen Liao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Nan Yan
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Ying Yang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life SciencesSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of BioinformaticsSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
46
|
Higaki T, Liu C, Morris DJ, He G, Luo T, Sfeir MY, Zhang P, Rosi NL, Jin R. Au
130−
x
Ag
x
Nanoclusters with Non‐Metallicity: A Drum of Silver‐Rich Sites Enclosed in a Marks‐Decahedral Cage of Gold‐Rich Sites. Angew Chem Int Ed Engl 2019; 58:18798-18802. [DOI: 10.1002/anie.201908694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Chong Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David J. Morris
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Guiying He
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Tian‐Yi Luo
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Present address: Department of Physics Graduate Center City University of New York New York NY 10016 USA
- Photonics Initiative Advanced Science Research Center City University of New York New York NY 10031 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Nathaniel L. Rosi
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
47
|
Higaki T, Liu C, Morris DJ, He G, Luo T, Sfeir MY, Zhang P, Rosi NL, Jin R. Au
130−
x
Ag
x
Nanoclusters with Non‐Metallicity: A Drum of Silver‐Rich Sites Enclosed in a Marks‐Decahedral Cage of Gold‐Rich Sites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Chong Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David J. Morris
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Guiying He
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Tian‐Yi Luo
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Present address: Department of Physics Graduate Center City University of New York New York NY 10016 USA
- Photonics Initiative Advanced Science Research Center City University of New York New York NY 10031 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Nathaniel L. Rosi
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
48
|
Zheng K, Fung V, Yuan X, Jiang DE, Xie J. Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. J Am Chem Soc 2019; 141:18977-18983. [DOI: 10.1021/jacs.9b05776] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kaiyuan Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Victor Fung
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
49
|
Jin S, Wang S, Zhu M. Insight into the Geometric and Electronic Structures of Gold/Silver Superatomic Clusters Based on Icosahedron M
13
Units and Their Alloys. Chem Asian J 2019; 14:3222-3231. [DOI: 10.1002/asia.201900760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shan Jin
- Institutes of Physical Science and Information TechnologyDepartment of Chemistry and Centre for Atomic Engineering, of Advanced Materials, AnHui ProvinceKey Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P.R. China
| | - Shuxin Wang
- Institutes of Physical Science and Information TechnologyDepartment of Chemistry and Centre for Atomic Engineering, of Advanced Materials, AnHui ProvinceKey Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P.R. China
| | - Manzhou Zhu
- Institutes of Physical Science and Information TechnologyDepartment of Chemistry and Centre for Atomic Engineering, of Advanced Materials, AnHui ProvinceKey Laboratory of Chemistry for Inorganic/Organic, Hybrid Functionalized MaterialsAnhui University Hefei Anhui 230601 P.R. China
| |
Collapse
|
50
|
Kim K, Hirata K, Nakamura K, Kitazawa H, Hayashi S, Koyasu K, Tsukuda T. Elucidating the Doping Effect on the Electronic Structure of Thiolate‐Protected Silver Superatoms by Photoelectron Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kuenhee Kim
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Keisuke Hirata
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Present address: Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Natatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Katsunosuke Nakamura
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hirokazu Kitazawa
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Present address: Department of Applied Chemistry College of Life Sciences Ritsumeikan University 1-1-1 Noji-higashi Kusatsu Shiga 525-8577 Japan
| | - Shun Hayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Present Address: Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Kiichirou Koyasu
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University, Katsura Kyoto 615-8520 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University, Katsura Kyoto 615-8520 Japan
| |
Collapse
|