1
|
Shah ZH, Wu B, Das S. Multistimuli-responsive microrobots: A comprehensive review. Front Robot AI 2022; 9:1027415. [PMID: 36420129 PMCID: PMC9676497 DOI: 10.3389/frobt.2022.1027415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Untethered robots of the size of a few microns have attracted increasing attention for the potential to transform many aspects of manufacturing, medicine, health care, and bioengineering. Previously impenetrable environments have become available for high-resolution in situ and in vivo manipulations as the size of the untethered robots goes down to the microscale. Nevertheless, the independent navigation of several robots at the microscale is challenging as they cannot have onboard transducers, batteries, and control like other multi-agent systems, due to the size limitations. Therefore, various unconventional propulsion mechanisms have been explored to power motion at the nanoscale. Moreover, a variety of combinations of actuation methods has also been extensively studied to tackle different issues. In this survey, we present a thorough review of the recent developments of various dedicated ways to actuate and control multistimuli-enabled microrobots. We have also discussed existing challenges and evolving concepts associated with each technique.
Collapse
Affiliation(s)
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
3
|
Pacheco M, Mayorga-Martinez CC, Escarpa A, Pumera M. Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26128-26134. [PMID: 35612487 DOI: 10.1021/acsami.2c02926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Micro-/nanorobot technology has developed rapidly in recent years due to their great potential to perform multiple tasks. Here, we develop magnetic microrobots prepared as polycaprolactone/Fe3O4 microspheres covered by micellar polyethyleneimine and use them to efficiently remove a nerve agent from contaminated water. The magnetic polymeric microrobots presented in this work removed around 60% of the nerve agent from water samples in a short time. The attractive performance of these magnetic microrobots offers a very promising approach to large-scale water treatment for environmental remediation.
Collapse
Affiliation(s)
- Marta Pacheco
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Alberto Escarpa
- Chemical Research Institute "Andres M. del Río", University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
4
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Transition metal dichalcogenide-based Janus micromotors for on-the-fly Salmonella detection. Mikrochim Acta 2022; 189:194. [PMID: 35426053 PMCID: PMC9010330 DOI: 10.1007/s00604-022-05298-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
Janus micromotors encapsulating transition metal dichalcogenides (TMDs) and modified with a rhodamine (RhO)-labeled affinity peptide (RhO-NFMESLPRLGMH) are used here for Salmonella enterica endotoxin detection. The OFF–ON strategy relies on the specific binding of the peptide with the TMDs to induce fluorescence quenching (OFF state); which is next recovered due to selectively binding to the endotoxin (ON state). The increase in the fluorescence of the micromotors can be quantified as a function of the concentration of endotoxin in the sample. The developed strategy was applied to the determination of Salmonella enterica serovar Typhimurium endotoxin with high sensitivity (limits of detection (LODs) of 2.0 µg/mL using MoS2, and 1.2 µg/mL using WS2), with quantitative recoveries (ranging from 93.7 ± 4.6 % to 94.3 ± 6.6%) in bacteria cultures in just 5 min. No fluorescence recovery is observed in the presence of endotoxins with a similar structure, illustrating the high selectivity of the protocol, even against endotoxins of Salmonella enterica serovar Enteritidis with great similarity in its structure, demonstrating the high bacterial specificity of the developed method. These results revealed the analytical potential of the reported strategy in multiplexed assays using different receptors or in the design of portable detection devices.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| |
Collapse
|
5
|
Muñoz J, Urso M, Pumera M. Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognition-on-the-Fly". Angew Chem Int Ed Engl 2022; 61:e202116090. [PMID: 35138049 PMCID: PMC9304198 DOI: 10.1002/anie.202116090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 01/03/2023]
Abstract
Herein, a general procedure for the synthesis of multifunctional MRs, which simultaneously exhibit i) chiral, ii) magnetic, and iii) fluorescent properties in combination with iv) self-propulsion, is reported. Self-propelled Ni@Pt superparamagnetic microrockets have been functionalized with fluorescent CdS quantum dots carrying a chiral host biomolecule as β-cyclodextrin (β-CD). The "on-the-fly" chiral recognition potential of MRs has been interrogated by taking advantage of the β-CD affinity to supramolecularly accommodate different chiral biomolecules (i.e., amino acids). As a proof-of-concept, tryptophan enantiomers have been discriminated with a dual-mode (optical and electrochemical) readout. This approach paves the way to devise intelligent cargo micromachines with "built-in" chiral supramolecular recognition capabilities to elucidate the concept of "enantiorecognition-on-the-fly", which might be facilely customized by tailoring the supramolecular host-guest encapsulation.
Collapse
Affiliation(s)
- Jose Muñoz
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology61200BrnoCzech Republic
| | - Mario Urso
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology61200BrnoCzech Republic
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology61200BrnoCzech Republic
- Center for Advanced Functional NanorobotsDept. of Inorganic ChemistryFaculty of Chemical TechnologyUniversity of Chemistry and Technology16628PragueCzech Republic
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichung40402Taiwan
| |
Collapse
|
6
|
Muñoz J, Urso M, Pumera M. Self‐Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for “Enantiorecogniton‐on‐the‐Fly”. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jose Muñoz
- Future Energy and Innovation Laboratory Central European Institute of Technology Brno University of Technology 61200 Brno Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory Central European Institute of Technology Brno University of Technology 61200 Brno Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory Central European Institute of Technology Brno University of Technology 61200 Brno Czech Republic
- Center for Advanced Functional Nanorobots Dept. of Inorganic Chemistry Faculty of Chemical Technology University of Chemistry and Technology 16628 Prague Czech Republic
- Department of Medical Research China Medical University Hospital China Medical University Taichung 40402 Taiwan
| |
Collapse
|
7
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
8
|
Salinas G, Pavel I, Sojic N, Kuhn A. Electrochemistry‐Based Light‐Emitting Mobile Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| |
Collapse
|
9
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Funktionelle Nukleinsäure‐Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yi Lu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
10
|
Xu H, Medina‐Sánchez M, Schmidt OG. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew Chem Int Ed Engl 2020; 59:15029-15037. [PMID: 32392393 PMCID: PMC7496921 DOI: 10.1002/anie.202005657] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/24/2022]
Abstract
An integrated system combining a magnetically-driven micromotor and a synthetized protein-based hyaluronic acid (HA) microflake is presented for the in situ selection and transport of multiple motile sperm cells (ca. 50). The system appeals for targeted sperm delivery in the reproductive system to assist fertilization or to deliver drugs. The binding mechanism between the HA microflake and sperm relies on the interactions between HA and the corresponding sperm HA receptors. Once sperm are captured within the HA microflake, the assembly is trapped and transported by a magnetically-driven helical microcarrier. The trapping of the sperm-microflake occurs by a local vortex induced by the microcarrier during rotation-translation under a rotating magnetic field. After transport, the microflake is enzymatically hydrolyzed by local proteases, allowing sperm to escape and finally reach the target location. This cargo-delivery system represents a new concept to transport not only multiple motile sperm but also other actively moving biological cargoes.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
| | - Mariana Medina‐Sánchez
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
| | - Oliver G. Schmidt
- Institute for Integrative NanosciencesLeibniz IFW DresdenHelmholtzstraße 2001069DresdenGermany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN)TU ChemnitzRosenbergstraße 609126ChemnitzGermany
- School of ScienceTU Dresden01062DresdenGermany
| |
Collapse
|
11
|
Xu H, Medina‐Sánchez M, Schmidt OG. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina‐Sánchez
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences Leibniz IFW Dresden Helmholtzstraße 20 01069 Dresden Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN) TU Chemnitz Rosenbergstraße 6 09126 Chemnitz Germany
- School of Science TU Dresden 01062 Dresden Germany
| |
Collapse
|
12
|
Tertis M, Cernat A, Mirel S, Cristea C. Nanodevices for Pharmaceutical and Biomedical Applications. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1728292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Cernat
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Tian L, Li B, Li X, Zhang Q. Janus dimers from tunable phase separation and reactivity ratios. Polym Chem 2020. [DOI: 10.1039/d0py00620c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Janus dimers, as a typical species of anisotropic material, are useful for both theoretical simulations and practical applications.
Collapse
Affiliation(s)
- Lei Tian
- Institute of Low-Dimensional Materials Genome Initiative
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Bei Li
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Xue Li
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
14
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Visible-Light-Driven Janus Microvehicles in Biological Media. Angew Chem Int Ed Engl 2019; 58:18017-18024. [PMID: 31560821 DOI: 10.1002/anie.201910053] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Indexed: 12/11/2022]
Abstract
A light-driven multifunctional Janus micromotor for the removal of bacterial endotoxins and heavy metals is described. The micromotor was assembled by using the biocompatible polymer polycaprolactone for the encapsulation of CdTe or CdSe@ZnS quantum dots (QDs) as photoactive materials and an asymmetric Fe3 O4 patch for propulsion. The micromotors can be activated with visible light (470-490 nm) to propel in peroxide or glucose media by a diffusiophoretic mechanism. Efficient propulsion was observed for the first time in complex samples such as human blood serum. These properties were exploited for efficient endotoxin removal using lipopolysaccharides from Escherichia coli O111:B4 as a model toxin. The micromotors were also used for mercury removal by cationic exchange with the CdSe@ZnS core-shell QDs. Cytotoxicity assays in HeLa cell lines demonstrated the high biocompatibility of the micromotors for future detoxification applications.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| |
Collapse
|
15
|
Pacheco M, Jurado‐Sánchez B, Escarpa A. Visible‐Light‐Driven Janus Microvehicles in Biological Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Pacheco
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
| | - Beatriz Jurado‐Sánchez
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio”University of Alcala 28807 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio”University of Alcala 28807 Madrid Spain
| |
Collapse
|
16
|
Bayati P, Popescu MN, Uspal WE, Dietrich S, Najafi A. Dynamics near planar walls for various model self-phoretic particles. SOFT MATTER 2019; 15:5644-5672. [PMID: 31245803 DOI: 10.1039/c9sm00488b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For chemically active particles suspended in a liquid solution and moving by self-phoresis, the dynamics near chemically inert, planar walls is studied theoretically by employing various choices for the activity function, i.e., the spatial distribution of the sites where various chemical reactions take place. We focus on the case of solutions composed of electrically neutral species. This analysis extends previous studies of the case that the chemical activity can be modeled effectively as the release of a "product" molecular species from parts of the surface of the particle by accounting for annihilation of the product molecules by chemical reactions, either on the rest of the surface of the particle or in the volume of the surrounding solution. We show that, for the models considered here, the emergence of "sliding" and "hovering" wall-bound states is a generic, robust feature. However, the details of these states, such as the range of parameters within which they occur, depend on the specific model for the activity function. Additionally, in certain cases there is a reversal of the direction of the motion compared to the one observed if the particle is far away from the wall. We have also studied the changes of the dynamics induced by a direct interaction between the particle and the wall by including a short-ranged repulsive component to the interaction in addition to the steric one (a procedure often employed in numerical simulations of active colloids). Upon increasing the strength of this additional component, while keeping its range fixed, significant qualitative changes occur in the phase portraits of the dynamics near the wall: for sufficiently strong short-ranged repulsion, the sliding steady states of the dynamics are transformed into hovering states. Furthermore, our studies provide evidence for an additional "oscillatory" wall-bound steady state of motion for chemically active particles due to a strong, short-ranged, and direct repulsion. This kind of particle translates along the wall at a distance from it which oscillates between a minimum and a maximum.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mihail N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - William E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany and Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, HI 96822, USA
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
17
|
Ren M, Guo W, Guo H, Ren X. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22761-22767. [PMID: 31203603 DOI: 10.1021/acsami.9b05925] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bubble-propelled micromotors with controllable shapes and sizes have been developed by a microfluidic method, which serves for effective wastewater treatment. Using the emulsion from microfluidics as the template, monodisperse micromotors can be fabricated in large quantities based on phase separation and UV-induced monomer polymerization. By adjusting the volume ratio of the two immiscible oils (ethoxylated trimethylolpropane triacrylate/paraffin oil) in the initial emulsion, the geometry of the resulting micromotor can be precisely controlled from nearly spherical, hemispherical to crescent-shaped. The size of the micromotor can be manipulated by varying the fluid flow parameters. In addition, by incorporating functional nanoparticles into the asymmetric structure, the micromotor can be functionalized flexibly for water remediation. In this research, Fe3O4 and MnO2 nanoparticles were successfully loaded on Janus micromotors. Fe3O4 nanoparticles can act as catalysts for pollutant degradation and also control the movement direction of micromotors. MnO2 nanoparticles on the concave of the micromotor catalyzed H2O2 to produce bubble propulsion motion in solution, which further enhanced the degradation of pollutants. Consequently, the obtained micromotor demonstrated effective degradation of methylene blue and can be easily recovered by magnets. Furthermore, this simple and flexible strategy offers a synthetic way for anisotropic Janus particles, which will broaden their potential application.
Collapse
Affiliation(s)
- Meng Ren
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Weilin Guo
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Huaisu Guo
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Xiaohua Ren
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| |
Collapse
|
18
|
Affiliation(s)
- P. Bayati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - A. Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| |
Collapse
|
19
|
Xu D, Zhan C, Sun Y, Dong Z, Wang GP, Ma X. Turn-Number-Dependent Motion Behavior of Catalytic Helical Carbon Micro/Nanomotors. Chem Asian J 2019; 14:2497-2502. [PMID: 30985962 DOI: 10.1002/asia.201900386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/12/2019] [Indexed: 11/12/2022]
Abstract
Helical micro/nanomotors (MNMs) can be propelled by external fields to swim through highly viscous fluids like complex biological environments, which promises miniaturized robotic tools to perform assigned tasks at small scales. However, the catalytic propulsion method, most widely adopted to drive MNMs, is seldom studied to actuate helical MNMs. Herein, we report catalytic helical carbon MNMs (CHCM) by sputtering Pt onto helical carbon nano-coils (HCNC) that are in bulk prepared by a thermal chemical vapor deposition method. The Pt-triggered H2 O2 decomposition can drive the MNMs by an electrokinetic mechanism. The MNMs demonstrate versatile motion behaviors including both directional propulsion and rotation depending on the turn number of the carbon helix. Besides, due to the ease of surface functionalization on carbon and other properties such as biocompatibility and photothermal effect, the helical carbon MNMs promise multifunctional applications for biomedical or environmental applications.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Flexible Printed Electronic Technology Centre, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chen Zhan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Flexible Printed Electronic Technology Centre, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yanming Sun
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijun Dong
- Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guo Ping Wang
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Flexible Printed Electronic Technology Centre, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
20
|
Yang Y, Zou T, Wang Z, Xing X, Peng S, Zhao R, Zhang X, Wang Y. The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe 3+ and Hg 2+ Ions and Their Application as a Novel Fluorescent Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E738. [PMID: 31086109 PMCID: PMC6566331 DOI: 10.3390/nano9050738] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/29/2023]
Abstract
The fluorescence intensity of N, S co-doped graphene quantum dots (N, S-GQDs) can be quenched by Fe3+ and Hg2+. Density functional theory (DFT) simulation and experimental studies indicate that the fluorescence quenching mechanisms for Fe3+ and Hg2+ detection are mainly attributed to the inner filter effect (IFE) and dynamic quenching process, respectively. The electronegativity difference between C and doped atoms (N, S) in favor to introduce negative charge sites on the surface of N, S-GQDs leads to charge redistribution. Those negative charge sites facilitate the adsorption of cations on the N, S-GQDs' surface. Atomic population analysis results show that some charge transfer from Fe3+ and Hg2+ to N, S-GQDs, which relate to the fluorescent quenching of N, S-GQDs. In addition, negative adsorption energy indicates the adsorption of Hg2+ and Fe2+ is energetically favorable, which also contributes to the adsorption of quencher ions. Blue fluorescent N, S-GQDs were synthesized by a facile one-pot hydrothermal treatment. Fluorescent lifetime and UV-vis measurements further validate the fluorescent quenching mechanism is related to the electron transfer dynamic quenching and IFE quenching. The as-synthesized N, S-GQDs were applied as a fluorescent probe for Fe3+ and Hg2+ detection. Results indicate that N, S-GQDs have good sensitivity and selectivity on Fe3+ and Hg2+ with a detection limit as low as 2.88 and 0.27 nM, respectively.
Collapse
Affiliation(s)
- Yue Yang
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Tong Zou
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Zhezhe Wang
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Xinxin Xing
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Sijia Peng
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Rongjun Zhao
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Xu Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.
| |
Collapse
|
21
|
Otri I, El Sayed S, Medaglia S, Martínez-Máñez R, Aznar E, Sancenón F. Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry 2019; 25:3770-3774. [PMID: 30688381 DOI: 10.1002/chem.201806306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/28/2022]
Abstract
A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range.
Collapse
Affiliation(s)
- Ismael Otri
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sameh El Sayed
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
22
|
Syama S, Mohanan PV. Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. NANO-MICRO LETTERS 2019; 11:6. [PMID: 34137957 PMCID: PMC7770934 DOI: 10.1007/s40820-019-0237-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/25/2018] [Indexed: 05/03/2023]
Abstract
Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.
Collapse
Affiliation(s)
- S Syama
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India.
| |
Collapse
|
23
|
Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, Wu WKK, Kwong TNY, Lo NWS, Ip M, Wong SH, Sung JJY, Chiu PWY, Zhang L. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. SCIENCE ADVANCES 2019; 5:eaau9650. [PMID: 30746470 PMCID: PMC6357761 DOI: 10.1126/sciadv.aau9650] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/30/2018] [Indexed: 05/15/2023]
Abstract
A rapid, direct, and low-cost method for detecting bacterial toxins associated with common gastrointestinal diseases remains a great challenge despite numerous studies and clinical assays. Motion-based detection through tracking the emerging micro- and nanorobots has shown great potential in chemo- and biosensing due to accelerated "chemistry on the move". Here, we described the use of fluorescent magnetic spore-based microrobots (FMSMs) as a highly efficient mobile sensing platform for the detection of toxins secreted by Clostridium difficile (C. diff) that were present in patients' stool. These microrobots were synthesized rapidly and inexpensively by the direct deposition of magnetic nanoparticles and the subsequent encapsulation of sensing probes on the porous natural spores. Because of the cooperation effect of natural spore, magnetic Fe3O4 nanoparticles, and functionalized carbon nanodots, selective fluorescence detection of the prepared FMSMs is demonstrated in C. diff bacterial supernatant and even in actual clinical stool samples from infectious patients within tens of minutes, suggesting rapid response and good selectivity and sensitivity of FMSMs toward C. diff toxins.
Collapse
Affiliation(s)
- Yabin Zhang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Lidong Yang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Chi Ian Vong
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Kai Fung Chan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Thomas N. Y. Kwong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Norman W. S. Lo
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Sunny H. Wong
- Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Joseph J. Y. Sung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Philip W. Y. Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| |
Collapse
|
24
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Lab-on-a-micromotor: catalytic Janus particles as mobile microreactors for tailored synthesis of nanoparticles. Chem Sci 2018; 9:8056-8064. [PMID: 30568766 PMCID: PMC6253719 DOI: 10.1039/c8sc03681k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Catalytic Janus micromotors encapsulating Cd2+ or citrate are used here as mobile microreactors for "on the fly" CdS quantum dot and gold nanoparticle synthesis. Micromotor navigation in microliter "reagent solutions" results in the generation of the corresponding nanoparticles inside the micromotor body with high yield and negligible waste generation. Nanoparticle generation can be attributed to convective diffusion of reagents into the moving reactor body. "On-demand" modulation of nanoparticle size and catalytic activities can be achieved by judicious control of the motion behavior of the microreactor. The use of confined reagents in connection with such enhanced movement allows for efficient operation in very low (less than 800 μL) volumes. The new microreactors developed here hold considerable promise for reactions in aqueous environments for novel synthetic schemes in different sites along with multiplexed capabilities for a myriad of catalytic reactions.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
- Chemical Research Institute "Andrés M. Del Rio" , University of Alcala , E-28807 , Madrid , Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , University of Alcala , E-28807 , Madrid , Spain . ;
- Chemical Research Institute "Andrés M. Del Rio" , University of Alcala , E-28807 , Madrid , Spain
| |
Collapse
|
25
|
Zarei M, Zarei M. Self-Propelled Micro/Nanomotors for Sensing and Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800912. [PMID: 29882292 DOI: 10.1002/smll.201800912] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Self-propelled micro/nanomotors have gained attention for successful application in cargo delivery, therapeutic treatments, sensing, and environmental remediation. Unique characteristics such as high speed, motion control, selectivity, and functionability promote the application of micro/nanomotors in analytical sciences. Here, the recent advancements and main challenges regarding the application of self-propelled micro/nanomotors in sensing and environmental remediation are discussed. The current state of micro/nanomotors is reviewed, emphasizing the period of the last five years, then their developments into the future applications for enhanced sensing and efficient purification of water resources are extrapolated.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Civil Engineering, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Mohanna Zarei
- Department of Civil Engineering, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
26
|
Chen A, Ge XH, Chen J, Zhang L, Xu JH. Multi-functional micromotor: microfluidic fabrication and water treatment application. LAB ON A CHIP 2017; 17:4220-4224. [PMID: 29143043 DOI: 10.1039/c7lc00950j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Micromotors are important for a wide variety of applications. Here, we develop a microfluidic approach for one-step fabrication of a Janus self-propelled micromotor with multiple functions. By fine tuning the fabrication parameters and loading functional nanoparticles, our micromotor reaches a high speed and achieves an oriented function to promote the water purification efficiency and recycling process.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. C.
| | | | | | | | | |
Collapse
|
27
|
Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Microfluidic Lithography of Bioinspired Helical Micromotors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunru Yu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Wei Gao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Ze Zhao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Huan Wang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
28
|
Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Microfluidic Lithography of Bioinspired Helical Micromotors. Angew Chem Int Ed Engl 2017; 56:12127-12131. [DOI: 10.1002/anie.201705667] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yunru Yu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Wei Gao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Ze Zhao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Huan Wang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|