1
|
Yang P, Sun W, Zhang Z, Xing H. Synthesis of Mesoporous SiO 2 coating containing chlorine phenol formaldehyde resin (Cl-PFR) composites for effective fingerprint detection. LUMINESCENCE 2022; 37:1873-1880. [PMID: 35997209 DOI: 10.1002/bio.4366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
As a kind of non-metals fluorescent reagent, the containing chlorine phenol-formaldehyde resin (Cl-PFR) nanoparticles (NPs) were synthesized with the facile method. The as-synthesized Cl-PFR nanoparticles can emit strong green fluorescence emission under the irradiation of 365nm UV light. Since mesoporous silica nanoparticles (MSNs) NPs have a large specific area, strong adsorption, and uniform dispersion, the MSN coating Cl-PFR composites were prepared by mixing Cl-PFR and MSN NPs together. Thus, the as-synthesized multifunctional composites combine the advantages of green fluorescence Cl-PFR, and strong adhesion MSN was applied to detect the potential fingerprint. Different bases fingerprints (glass, paper, aluminum sheets, rough stones, tape) can be clearly observed in the presence of the Cl-PFR@MSN-NH2 composites. Furthermore, the aging three months and washed with water several times fingerprint can also be clearly displayed with the multifunctional composites. This study provided a simple, economical, and non-toxic fluorescent reagent for the application in fingerprint detection.
Collapse
Affiliation(s)
- Ping Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
| | - Wei Sun
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
| | - Zikuan Zhang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
| | - Honglong Xing
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
| |
Collapse
|
2
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light-Harvesting Fluorescent Spherical Nucleic Acids Self-Assembled from a DNA-Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202115812. [PMID: 35064628 DOI: 10.1002/anie.202115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, Heilongjiang, P. R. China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hanbing Xue
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yulin Zhu
- Department of Chemistry, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yan Zhao
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
3
|
Mengele AK, Weixler D, Amthor S, Eikmanns BJ, Seibold GM, Rau S. Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202114842. [PMID: 34932847 PMCID: PMC9306768 DOI: 10.1002/anie.202114842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/01/2022]
Abstract
During the light-dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine-based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane-located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic-biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast.
Collapse
Affiliation(s)
- Alexander K. Mengele
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Dominik Weixler
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sebastian Amthor
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Gerd M. Seibold
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Section of Synthetic BiologyDepartment of Biotechnology and BioengineeringTechnical University of DenmarkSøltoftsplads2800Kongens LyngbyDenmark
| | - Sven Rau
- Institute of Inorganic Chemistry IMaterials and CatalysisUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
4
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light‐Harvesting Fluorescent Spherical Nucleic Acids Self‐Assembled from a DNA‐Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering Harbin Institute of Technology, Nangang District Harbin 150001 Heilongjiang P. R. China
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hanbing Xue
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yulin Zhu
- Department of Chemistry Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Li Lin
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yan Zhao
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
5
|
Mengele AK, Weixler D, Amthor S, Eikmanns BJ, Seibold GM, Rau S. Transforming
Escherichia coli
Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander K. Mengele
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sebastian Amthor
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Section of Synthetic Biology Department of Biotechnology and Bioengineering Technical University of Denmark Søltoftsplads 2800 Kongens Lyngby Denmark
| | - Sven Rau
- Institute of Inorganic Chemistry I Materials and Catalysis Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
6
|
Holmes NP, Chambon S, Holmes A, Xu X, Hirakawa K, Deniau E, Lartigau-Dagron C, Bousquet A. Organic semiconductor colloids: From the knowledge acquired in photovoltaics to the generation of solar hydrogen fuel. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Li L, Xu Z, Huang X. Whole-Cell-Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. Chempluschem 2021; 86:1021-1036. [PMID: 34286914 DOI: 10.1002/cplu.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Indexed: 12/17/2022]
Abstract
With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| |
Collapse
|
8
|
Deng Q, Mu F, Qiao Y, Wei D. N-Heterocyclic Carbene-Catalyzed Asymmetric C-O Bond Construction Between Benzoic Acid and o-Phthalaldehyde: Mechanism and Origin of Stereoselectivity. Chem Asian J 2021; 16:2346-2350. [PMID: 34224204 DOI: 10.1002/asia.202100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Indexed: 12/27/2022]
Abstract
A computational study was contributed to explore the origin of stereoselectivity of NHC-mediated cyclization reaction between benzoic acid and o-phthalaldehyde for asymmetric construction of phthalidyl ester. The most energetically favorable pathway mainly includes the following steps: (1) nucleophilic attack on carbonyl carbon of o-phthalaldehyde by catalyst NHC, (2) formation of Breslow intermediate, (3) oxidation by DQ, (4) asymmetric formation of dual C-O bonds, and (5) dissociation of catalyst with the product. The C-O bond formation was testified as the stereoselectivity-determining step, the R-configurational pathway is more energetically favorable than the S-configurational one. The non-covalent interaction (NCI) and atom-in-molecule (AIM) analyses were performed to reveal that the O-H ⋅⋅⋅ O and C-H ⋅⋅⋅ O hydrogen-bond interactions are the key factors for controlling the stereoselectivity. The detailed mechanism and origin of stereoselectivity give useful insights for understanding organocatalytic reactions for asymmetric construction of C-O bond.
Collapse
Affiliation(s)
- Qianqian Deng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Fangjing Mu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University of Light Industry, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
9
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021; 60:5759-5765. [DOI: 10.1002/anie.202015247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Li D, Li W, Zhang H, Zhang X, Zhuang J, Liu Y, Hu C, Lei B. Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21009-21019. [PMID: 32281782 DOI: 10.1021/acsami.9b21576] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sunlight utilization by plants via the photosynthesis process is limited to the visible spectral range. How to expand the utilization spectral range via construction of a hybrid photosynthetic system is a hot topic in this field. In this work, far-red carbon dots (FR-CDs) with excellent water solubility, good biocompatibility, high quantum yield (QY), and superior stability were prepared by a one-step microwave synthesis in 3 min. The as-prepared FR-CDs is an efficient converter transferring ultraviolet A (UV-A) light to 625-800 nm far-red emission, which can be directly absorbed and utilized by chloroplasts. Due to the broader spectral utilization of solar energy and Emerson effect, increased photosynthetic activity can be achieved both in vivo and in vitro when applied for Roman lettuce. The in vitro hybrid photosynthetic system via coating chloroplasts with FR-CDs presents higher electron transfer efficiency between PS II (photosystem II) to PS I (photosystem I), which consequently increases the ATP production. The in vivo experiment further confirms that FR-CDs-treated lettuce can induce a 28.00% higher electron transfer rate compared with the control group, which results in 51.14 and 24.60% enhancement of fresh and dry weights, respectively. This work is expected to provide a way for improving the conversion efficiency from solar energy to chemical energy. (PS II) to photosystem I (PS I), which consequently increases the ATP production. The in vivo experiment further confirms that FR-CDs-treated lettuce can induce a 28.00% higher electron transfer rate compared with the control group, which results in 51.14 and 24.60% enhancement of fresh and dry weights, respectively. This work is expected to provide a way for improving the conversion efficiency from solar energy to chemical energy.
Collapse
Affiliation(s)
- Dongna Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
12
|
Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, Sun H, Han X, Pramanik M, Miao Y, Duan H, Pu K, Zhang R. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat Commun 2020; 11:1857. [PMID: 32312987 PMCID: PMC7170847 DOI: 10.1038/s41467-020-15730-x] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Despite its growing promise in cancer treatment, ferrotherapy has low therapeutic efficacy due to compromised Fenton catalytic efficiency in tumor milieu. We herein report a hybrid semiconducting nanozyme (HSN) with high photothermal conversion efficiency for photoacoustic (PA) imaging-guided second near-infrared photothermal ferrotherapy. HSN comprises an amphiphilic semiconducting polymer as photothermal converter, PA emitter and iron-chelating Fenton catalyst. Upon photoirradiation, HSN generates heat not only to induce cytotoxicity but also to enhance Fenton reaction. The increased ·OH generation promotes both ferroptosis and apoptosis, oxidizes HSN (42 nm) and transforms it into tiny segments (1.7 nm) with elevated intratumoral permeability. The non-invasive seamless synergism leads to amplified therapeutic effects including a deep ablation depth (9 mm), reduced expression of metastasis-related proteins and inhibition of metastasis from primary tumor to distant organs. Thereby, our study provides a generalized nanozyme strategy to compensate both ferrotherapy and phototherapeutics for complete tumor regression. Due to tumour microenvironment, Fenton reactions have low therapeutic efficiency. Here the authors report on the application of NIR-II hybrid semiconducting nanozymes for combined photothermal therapy and enhanced ferrotherapy with photoacoustic imaging and show application in vivo in tumour models.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xuhui Zhao
- The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - He Sun
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiao Han
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Ruiping Zhang
- The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China.
| |
Collapse
|
13
|
Gai P, Yu W, Zhao H, Qi R, Li F, Liu L, Lv F, Wang S. Solar‐Powered Organic Semiconductor–Bacteria Biohybrids for CO
2
Reduction into Acetic Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Panpan Gai
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University Qingdao 266109 P. R. China
| | - Wen Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University Qingdao 266109 P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University Qingdao 266109 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Gai P, Yu W, Zhao H, Qi R, Li F, Liu L, Lv F, Wang S. Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO 2 Reduction into Acetic Acid. Angew Chem Int Ed Engl 2020; 59:7224-7229. [PMID: 32065712 DOI: 10.1002/anie.202001047] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/17/2023]
Abstract
An organic semiconductor-bacteria biohybrid photosynthetic system is used to efficiently realize CO2 reduction to produce acetic acid with the non-photosynthetic bacteria Moorella thermoacetica. Perylene diimide derivative (PDI) and poly(fluorene-co-phenylene) (PFP) were coated on the bacteria surface as photosensitizers to form a p-n heterojunction (PFP/PDI) layer, affording higher hole/electron separation efficiency. The π-conjugated semiconductors possess excellent light-harvesting ability and biocompatibility, and the cationic side chains of organic semiconductors could intercalate into cell membranes, ensuring efficient electron transfer to bacteria. Moorella thermoacetica can thus harvest photoexcited electrons from the PFP/PDI heterojunction, driving the Wood-Ljungdahl pathway to synthesize acetic acid from CO2 under illumination. The efficiency of this organic biohybrid is about 1.6 %, which is comparable to those of reported inorganic biohybrid systems.
Collapse
Affiliation(s)
- Panpan Gai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Li Y, Li W, Zhang H, Liu Y, Ma L, Lei B. Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. NANOSCALE 2020; 12:155-166. [PMID: 31799548 DOI: 10.1039/c9nr08187a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maximizing the utilization of the ultraviolet portion in the solar radiation spectrum has always been a goal for plant growth in order to minimize the harm and harvest the benefits. For this reason, fluorescent, amine-functionalized, and water-soluble silicon quantum dots (SiQDs) were fabricated with a mono-dispersed size of 2.4 nm. The SiQDs were used as artificial antennas to amplify the light harvesting ability and consequently enhance the photosynthesis in Italian lettuce. Upon ultraviolet excitation, the intense blue emission from the quantum dots matched very well to the absorption of the chloroplasts, allowing for the ultraviolet portion in solar radiation to be effectively utilized. The consumed optical energy enhanced the photosystem II activity, which made the amplification of photosynthesis possible. More importantly, in vivo, the quantum dots significantly promoted Italian lettuce seedling growth at concentrations below 30 mg L-1 on the root length, seedling height, and biomass by increasing the soluble sugar and water content by 49.8% and 40.9%, respectively. Interestingly, the chlorophyll a and b content increased to 41.0 and 114.8%, respectively, with no inhibition, even at the highest dose of 200 mg L-1. This study provides a new perspective on the use of quantum dots to amplify the utilization of ultraviolet light in agriculture.
Collapse
Affiliation(s)
- Yanjuan Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. and College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Haoran Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Li Ma
- Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA.
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. and College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
16
|
Jiang L, Bai H, Liu L, Lv F, Ren X, Wang S. Luminescent, Oxygen‐Supplying, Hemoglobin‐Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905884] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Linye Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of Environmental Science and EngineeringCollege of Resources and Environmental SciencesChina Agricultural University Beijing 100193 P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xueqin Ren
- Department of Environmental Science and EngineeringCollege of Resources and Environmental SciencesChina Agricultural University Beijing 100193 P. R. China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and RemediationChina Agricultural University Beijing 100193 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Jiang L, Bai H, Liu L, Lv F, Ren X, Wang S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 58:10660-10665. [PMID: 31173456 DOI: 10.1002/anie.201905884] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/10/2022]
Abstract
Photodynamic therapy (PDT) is a promising method for cancer treatment. Two parameters that influence the efficacy of PDT are the light source and oxygen supply. Herein, we prepared a system for PDT using hemoglobin (Hb)-linked conjugated polymer nanoparticles (CPNs), which can luminesce and supply oxygen. Hb catalyzes the activation of luminol, the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles can absorb the chemiluminescence of luminol through chemiluminescence resonance energy transfer (CRET) and then sensitize the oxygen supplied by Hb to produce reactive oxygen species that kill cancer cells. This system could be used for the controlled release of an anticancer prodrug. The system does not need an external light source and circumvents the insufficient level molecular oxygen under hypoxia. This work provides a proof-of-concept to explore smart and multifunctional nanoplatforms for phototherapy.
Collapse
Affiliation(s)
- Linye Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xueqin Ren
- Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, China Agricultural University, Beijing, 100193, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Li Y, Feng X, Wang A, Yang Y, Fei J, Sun B, Jia Y, Li J. Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angew Chem Int Ed Engl 2018; 58:796-800. [PMID: 30474178 DOI: 10.1002/anie.201812582] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 11/07/2022]
Abstract
Prototypes of natural biosystems provide opportunities for artificial biomimetic systems to break the limits of natural reactions and achieve output control. However, mimicking unique natural structures and ingenious functions remains a challenge. Now, multiple biochemical reactions were integrated into artificially designed compartments via molecular assembly. First, multicompartmental silica nanoparticles with hierarchical structures that mimic the chloroplasts were obtained by a templated synthesis. Then, photoacid generators and ATPase-liposomes were assembled inside and outside of silica compartments, respectively. Upon light illumination, protons produced by a photoacid generator in the confined space can drive the liposome-embedded enzyme ATPase towards ATP synthesis, which mimics the photophosphorylation process in vitro. The method enables fabrication of bioinspired nanoreactors for photobiocatalysis and provides insight for understanding sophisticated biochemical reactions.
Collapse
Affiliation(s)
- Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiyun Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Yunnan Normal University, Faculty of Chemistry and Chemical Engineering, Kunming, 650050, China
| | - Anhe Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingbing Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Li Y, Feng X, Wang A, Yang Y, Fei J, Sun B, Jia Y, Li J. Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology Beijing 100190 China
| | - Xiyun Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Yunnan Normal UniversityFaculty of Chemistry and Chemical Engineering Kunming 650050 China
| | - Anhe Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Bingbing Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academic of Sciences Beijing 100049 China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academic of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Lyu Y, Tian J, Li J, Chen P, Pu K. Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angew Chem Int Ed Engl 2018; 57:13484-13488. [PMID: 30109772 DOI: 10.1002/anie.201806973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/12/2018] [Indexed: 12/11/2022]
Abstract
An organic semiconducting polymer nanobiocatalyst (SPNB) composed of a semiconducting polymer core conjugated with microsomal cytochrome P450 (CYP) has been developed for photoactivation of intracellular redox. The core serves as the light-harvesting unit to initiate photoinduced electron transfer (PET) and facilitate the regeneration of dihydronicotinamide adenine dinucleotide phosphate (NADPH), while CYP is the catalytic center for intracellular redox. Under light irradiation, the semiconducting core can efficiently catalyze the generation of NADPH with a turnover frequency (TOF) 75 times higher than the reported nanosystems, ensuring the supply of the cofactor for intracellular redox. SPNB-mediated intracellular redox thus can be efficiently activated by light in living cells to convert the model substrate and also to trigger the bioactivation of anticancer drugs. This study provides an organic nanobiocatalytic system that allows light to remotely control intracellular redox in living systems.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingqi Tian
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
21
|
Lyu Y, Tian J, Li J, Chen P, Pu K. Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jingqi Tian
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
22
|
Senthilkumar T, Zhou L, Gu Q, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew Chem Int Ed Engl 2018; 57:13114-13119. [PMID: 30110129 DOI: 10.1002/anie.201807158] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Indexed: 01/15/2023]
Abstract
Carriers that can afford tunable physical and structural changes are envisioned to address critical issues in controlled drug delivery applications. Herein, photo-responsive conjugated polymer nanoparticles (CPNs) functionalized with donor-acceptor Stenhouse adduct (DASA) and folic acid units for controlled drug delivery and imaging are reported. Upon visible-light (λ=550 nm) irradiation, CPNs simultaneously undergo structure, color, and polarity changes that release encapsulated drugs into the cells. The backbone of CPNs favors FRET to DASA units boosting their fluorescence. Notably, drug-loaded CPNs exhibit excellent biocompatibility in the dark, indicating perfect control of the light trigger over drug release. Delivery of both hydrophilic and hydrophobic drugs with good loading efficiency was demonstrated. This strategy enables remotely controlled drug delivery with visible-light irradiation, which sets an example for designing delivery vehicles for non-invasive therapeutics.
Collapse
Affiliation(s)
- Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Senthilkumar T, Zhou L, Gu Q, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles with Appended Photo‐Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lingyun Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
24
|
Abstract
Biophotonics as an interdisciplinary frontier plays an increasingly important role in modern biomedical science. Optical agents are generally involved in biophotonics to interpret biomolecular events into readable optical signals for imaging and diagnosis or to convert photons into other forms of energy (such as heat, mechanical force, or chemical radicals) for therapeutic intervention and biological stimulation. Development of new optical agents including metallic nanoparticles, quantum dots, up-conversion nanoparticles, carbon dots, and silica nanoparticles has contributed to the advancement of this field. However, most of these agents have their own merits and demerits, making them less effective as multimodal biophotonic platforms. In this Account, we summarize our recent work on the development of near-infrared (NIR) semiconducting polymer nanoparticles (SPNs) as multimodal light converters for advanced biophotonics. SPNs are composed of π-electron delocalized semiconducting polymers (SPs) and often possess the advantages of good biocompatibility, high photostability, and large absorption coefficients. Because the photophysical properties of SPNs are mainly determined by the molecular structures of the precursor polymers, molecular engineering allows us to fine tune their photophysical processes to obtain different optical responses, even to light in the second NIR window (1000-1700 nm). Meanwhile, the facile nanoformulation methods of SPNs enable alteration of their outer and inner structures for diverse biological interactions. The unique photophysical properties of SPNs have brought about ultrasensitive deep-tissue molecular imaging. NIR-absorbing SPNs with strong charge-transfer backbones can convert photoenergy into mechanical acoustic waves, permitting photoacoustic imaging that bypasses the issue of light scattering and reaches the centimeter tissue penetration depth. Differently, phenylenevinylene-containing SPNs can store photon energy via chemical defects and emit long-NIR afterglow luminescence with a half-life of ∼6 min after cessation of light excitation. Such an afterglow process avoids tissue autofluorescence, giving rise to ultrahigh signal-to-background ratios. So far, SPN-based molecular photoacoustic or afterglow probes have been developed to image disease tissues (tumors), biomarkers (biothiols and reactive oxygen species), and physiological indexes (pH and temperature) in different preclinical animal models. The synthetic flexibility of SPNs further permits light-modulated biological and therapeutic interventions. Till now, SPNs with high photothermal conversion efficiencies have been shaped into photothermal transducers to remotely regulate biological events including protein ion channels, enzymatic activity, and gene expression. In conjunction with the desired biodistribution and tumor-homing ability, SPNs have been doped or coated with other inorganic agents for amplified photothermal or self-regulated photodynamic cancer therapy. This Account thus demonstrates that SPNs serve as a multimodal biophotonic nanoplatform to provide unprecedented opportunities for molecular imaging, noninvasive bioactivation, and advanced therapy.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
25
|
Xu Y, Fei J, Li G, Yuan T, Xu X, Wang C, Li J. Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angew Chem Int Ed Engl 2018; 57:6532-6535. [PMID: 29655302 DOI: 10.1002/anie.201802555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 01/30/2023]
Abstract
A natural-artificial hybrid system was constructed to enhance photophosphorylation. The system comprises chloroplasts modified with optically matched quantum dots (chloroplast-QD) with a large Stokes shift. The QDs possess a unique optical property and transform ultraviolet light into available and highly effective red light for use by chloroplasts. This favorable feature enables photosystem II contained within the hybrid system to split more water and produce more protons than chloroplasts would otherwise do on their own. Consequently, a larger proton gradient is generated and photophosphorylation is improved. At optimal efficiency activity increased by up to 2.3 times compared to pristine chloroplasts. Importantly, the degree of overlap between emission of the QDs and absorption of chloroplasts exerts a strong influence on the photophosphorylation efficiency. The chloroplast-QD hybrid presents an efficient solar energy conversion route, which involves a rational combination of a natural system and an artificial light-harvesting nanomaterial.
Collapse
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Xu Y, Fei J, Li G, Yuan T, Xu X, Wang C, Li J. Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Han G, Shi G, Wang Y, Zhang B, Han S, Zhang F, Yang Z, Pan S. K
3
B
6
O
9
F
3
: A New Fluorooxoborate with Four Different Anionic Units. Chemistry 2018; 24:4497-4502. [DOI: 10.1002/chem.201705751] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Guopeng Han
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guoqiang Shi
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ying Wang
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| | - Bingbing Zhang
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| | - Fangfang Zhang
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials, and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 P. R. China
| |
Collapse
|
28
|
Zhen X, Xie C, Jiang Y, Ai X, Xing B, Pu K. Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. NANO LETTERS 2018; 18:1498-1505. [PMID: 29342359 DOI: 10.1021/acs.nanolett.7b05292] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanomedicine have shown success in cancer therapy, but the pharmacological actions of most nanomedicine are often nonspecific to cancer cells because of utilization of the therapeutic agents that induce cell apoptosis from inner organelles. We herein report the development of semiconducting photothermal nanoagonists that can remotely and specifically initiate the apoptosis of cancer cells from cell membrane. The organic nanoagonists comprise semiconducting polymer nanoparticles (SPNs) and capsaicin (Cap) as the photothermally responsive nanocarrier and the agonist for activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), respectively. Under multiple NIR laser irradiation at the time scale of seconds, the nanoagonists can repeatedly and locally release Cap to multiply activate TRPV1 channels on the cellular membrane; the cumulative effect is the overinflux of ions in mitochondria followed by the induction of cell apoptosis specifically for TRPV1-postive cancer cells. Multiple transient activation of TRPV1 channels is essential to induce such a cell death both in vitro and in vivo because both free Cap and simple Cap-encapsulated nanoparticles fail to do so. The photothermally triggered release also ensures a high local concentration of the TRPV1 agonist at tumor site, permitting specific cancer cell therapy at a low systemic administration dosage. Our study thus demonstrates the first example of ion-channel-specific and remote-controlled drug-delivery system for cancer cell therapy.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
29
|
Wang Y, Wei D, Zhang W. Recent Advances on Computational Investigations ofN-Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem 2017. [DOI: 10.1002/cctc.201701119] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Science Avenue Zhengzhou Henan Province 450001 P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Science Avenue Zhengzhou Henan Province 450001 P.R. China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Science Avenue Zhengzhou Henan Province 450001 P.R. China
| |
Collapse
|
30
|
Xu Y, Fei J, Li G, Yuan T, Li Y, Wang C, Li X, Li J. Enhanced Photophosphorylation of a Chloroplast-Entrapping Long-Lived Photoacid. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| |
Collapse
|
31
|
Xu Y, Fei J, Li G, Yuan T, Li Y, Wang C, Li X, Li J. Enhanced Photophosphorylation of a Chloroplast-Entrapping Long-Lived Photoacid. Angew Chem Int Ed Engl 2017; 56:12903-12907. [PMID: 28834071 DOI: 10.1002/anie.201706368] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/04/2017] [Indexed: 01/09/2023]
Abstract
Enhancing solar energy conversion efficiency is very important for developing renewable energy, protecting the environment, and producing agricultural products. Efficient enhancement of photophosphorylation is demonstrated by coupling artificial photoacid generators (PAGs) with chloroplasts. The encapsulation of small molecular long-lived PAGs in the thylakoid lumen is improved greatly by ultrasonication. Under visible-light irradiation, a fast intramolecular photoreaction of the PAG occurs and produces many protons, remarkably enhancing the proton gradient in situ. Consequently, compared to pure chloroplasts, the assembled natural-artificial hybrid demonstrates approximately 3.9 times greater adenosine triphosphate (ATP) production. This work will provide new opportunities for constructing enhanced solar energy conversion systems.
Collapse
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Ko JW, Choi WS, Kim J, Kuk SK, Lee SH, Park CB. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules 2017; 18:3551-3556. [DOI: 10.1021/acs.biomac.7b00889] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jong Wan Ko
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Woo Seok Choi
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Jiang Y, Upputuri PK, Xie C, Lyu Y, Zhang L, Xiong Q, Pramanik M, Pu K. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. NANO LETTERS 2017; 17:4964-4969. [PMID: 28654292 DOI: 10.1021/acs.nanolett.7b02106] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoacoustic (PA) imaging holds great promise for preclinical research and clinical practice. However, most studies rely on the laser wavelength in the first near-infrared (NIR) window (NIR-I, 650-950 nm), while few studies have been exploited in the second NIR window (NIR-II, 1000-1700 nm), mainly due to the lack of NIR-II absorbing contrast agents. We herein report the synthesis of a broadband absorbing PA contrast agent based on semiconducting polymer nanoparticles (SPN-II) and apply it for PA imaging in NIR-II window. SPN-II can absorb in both NIR-I and NIR-II regions, providing the feasibility to directly compare PA imaging at 750 nm with that at 1064 nm. Because of the weaker background PA signals from biological tissues in NIR-II window, the signal-to-noise ratio (SNR) of SPN-II resulted PA images at 1064 nm can be 1.4-times higher than that at 750 nm when comparing at the imaging depth of 3 cm. The proof-of-concept application of NIR-II PA imaging is demonstrated in in vivo imaging of brain vasculature in living rats, which showed 1.5-times higher SNR as compared with NIR-I PA imaging. Our study not only introduces the first broadband absorbing organic contrast agent that is applicable for PA imaging in both NIR-I and NIR-II windows but also reveals the advantages of NIR-II over NIR-I in PA imaging.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Lulu Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| |
Collapse
|