1
|
Zhang Q, Zhang X, Zou X, Ma F, Zhang CY. CRISPR/Cas-Based MicroRNA Biosensors. Chemistry 2023; 29:e202203412. [PMID: 36477884 DOI: 10.1002/chem.202203412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
As important post-transcriptional regulators, microRNAs (miRNAs) play irreplaceable roles in diverse cellular functions. Dysregulated miRNA expression is implicated in various diseases including cancers, and thus miRNAs have become the valuable biomarkers for disease monitoring. Recently, clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has shown great promise for the development of next-generation biosensors because of its precise localization capability, good fidelity, and high cleavage activity. Herein, we review recent advance in development of CRISPR/Cas-based biosensors for miRNA detection. We summarize the principles, features, and performance of these miRNA biosensors, and further highlight the remaining challenges and future directions.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Institution, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
2
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Jiang W, Aman R, Ali Z, Mahfouz M. Bio-SCAN V2: A CRISPR/dCas9-based lateral flow assay for rapid detection of theophylline. Front Bioeng Biotechnol 2023; 11:1118684. [PMID: 36741753 PMCID: PMC9893010 DOI: 10.3389/fbioe.2023.1118684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Rapid, specific, and robust diagnostic strategies are needed to develop sensitive biosensors for small molecule detection, which could aid in controlling contamination and disease transmission. Recently, the target-induced collateral activity of Cas nucleases [clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases] was exploited to develop high-throughput diagnostic modules for detecting nucleic acids and small molecules. Here, we have expanded the diagnostic ability of the CRISPR-Cas system by developing Bio-SCAN V2, a ligand-responsive CRISPR-Cas platform for detecting non-nucleic acid small molecule targets. The Bio-SCAN V2 consists of an engineered ligand-responsive sgRNA (ligRNA), biotinylated dead Cas9 (dCas9-biotin), 6-carboxyfluorescein (FAM)-labeled amplicons, and lateral flow assay (LFA) strips. LigRNA interacts with dCas9-biotin only in the presence of sgRNA-specific ligand molecules to make a ribonucleoprotein (RNP). Next, the ligand-induced ribonucleoprotein is exposed to FAM-labeled amplicons for binding, and the presence of the ligand (small molecule) is detected as a visual signal [(dCas9-biotin)-ligRNA-FAM labeled DNA-AuNP complex] at the test line of the lateral flow assay strip. With the Bio-SCAN V2 platform, we are able to detect the model molecule theophylline with a limit of detection (LOD) up to 2 μM in a short time, requiring only 15 min from sample application to visual readout. Taken together, Bio-SCAN V2 assay provides a rapid, specific, and ultrasensitive detection platform for theophylline.
Collapse
|
4
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
5
|
Li H, Lu H, Tang Y, Wang H, Xiao Y, Li B. A Rebuilding‐Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N‐in‐1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew Chem Int Ed Engl 2022; 61:e202209496. [DOI: 10.1002/anie.202209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Huiying Lu
- School of Life Sciences Northeast Normal University Changchun Jilin, 130024 China
| | - Yidan Tang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
| | - Huaning Wang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
6
|
Li H, Lu H, Tang Y, Wang H, Xiao Y, Li B. A Rebuilding‐Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N‐in‐1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry 130022 Changchun CHINA
| | - Huiying Lu
- Northeast Normal University School of Life Sciences CHINA
| | - Yidan Tang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry 5625 Remin StreetChangchun 130022 Changchun CHINA
| | - Huaning Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry CHINA
| | - Yao Xiao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry CHINA
| | - Bingling Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Science State Key Lab of Electroanalytical Chemistry 5625 Renmin Street 130022 Changchun CHINA
| |
Collapse
|
7
|
Newsham EI, Phillips EA, Ma H, Chang MM, Wereley ST, Linnes JC. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design. LAB ON A CHIP 2022; 22:2741-2752. [PMID: 35762978 PMCID: PMC9362854 DOI: 10.1039/d2lc00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Paper-fluidic devices are a popular platform for point-of-care diagnostics due to their low cost, ease of use, and equipment-free detection of target molecules. They are limited, however, by their lack of sensitivity and inability to incorporate more complex processes, such as nucleic acid amplification or enzymatic signal enhancement. To address these limitations, various valves have previously been implemented in paper-fluidic devices to control fluid obstruction and release. However, incorporation of valves into new devices is a highly iterative, time-intensive process due to limited experimental data describing the microscale flow that drives the biophysical reactions in the assay. In this paper, we tested and modeled different geometries of thermally actuated valves to investigate how they can be more easily implemented in an LFIA with precise control of actuation time, flow rate, and flow pattern. We demonstrate that bulk flow measurements alone cannot estimate the highly variable microscale properties and effects on LFIA signal development. To further quantify the microfluidic properties of paper-fluidic devices, micro-particle image velocimetry was used to quantify fluorescent nanoparticle flow through the membranes and demonstrated divergent properties from bulk flow that may explain additional variability in LFIA signal generation. Altogether, we demonstrate that a more robust characterization of paper-fluidic devices can permit fine-tuning of parameters for precise automation of multi-step assays and inform analytical models for more efficient design.
Collapse
Affiliation(s)
- Emilie I Newsham
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Elizabeth A Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hui Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Megan M Chang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
9
|
Chi Y, Shi M, Wu Y, Wu Y, Chang Y, Liu M. Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2244-2248. [PMID: 35611869 DOI: 10.1039/d2ay00656a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We described a new system termed droplet DNAzyme-coupled rolling circle amplification (dDRCA) that can selectively detect bacteria from clinical urine samples with single-cell sensitivity within 1.5 h compared with the several hours needed for traditionally used culture-based methods.
Collapse
Affiliation(s)
- Yanchen Chi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Shi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yanfang Wu
- School of Chemistry and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| |
Collapse
|
10
|
Huang PY, Yin X, Huang YT, Ye QQ, Chen SQ, Cao XJ, Xie TA, Guo XG. Evaluation of CRISPR-Based Assays for Rapid Detection of SARS-CoV-2: A Systematic Review and Meta-Analysis. Yonsei Med J 2022; 63:480-489. [PMID: 35512751 PMCID: PMC9086695 DOI: 10.3349/ymj.2022.63.5.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen of coronavirus disease 2019. Diagnostic methods based on the clustered regularly interspaced short palindromic repeats (CRISPR) have been developed to detect SARS-CoV-2 rapidly. Therefore, a systematic review and meta-analysis were performed to assess the diagnostic accuracy of CRISPR for detecting SARS-CoV-2 infection. MATERIALS AND METHODS Studies published before August 2021 were retrieved from four databases, using the keywords "SARS-CoV-2" and "CRISPR." Data were collected from these publications, and the sensitivity, specificity, negative likelihood ratio (NLR), positive likelihood ratio (PLR), and diagnostic odds ratio (DOR) were calculated. The summary receiver operating characteristic curve was plotted for analysis with MetaDiSc 1.4. The Stata 15.0 software was used to draw Deeks' funnel plots to evaluate publication bias. RESULTS We performed a pooled analysis of 38 independent studies shown in 30 publications. The reference standard was reverse transcription-quantitative PCR. The results indicated that the sensitivity of CRISPR-based methods for diagnosis was 0.94 (95% CI 0.93-0.95), the specificity was 0.98 (95% CI 0.97-0.99), the PLR was 34.03 (95% CI 20.81-55.66), the NLR was 0.08 (95% CI 0.06-0.10), and the DOR was 575.74 (95% CI 382.36-866.95). The area under the curve was 0.9894. CONCLUSION Studies indicate that a diagnostic method based on CRISPR has high sensitivity and specificity. Therefore, this would be a potential diagnostic tool to improve the accuracy of SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Pei-Ying Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xin Yin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Pediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Yue-Ting Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Qi-Qing Ye
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Pediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Si-Qing Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Tian-Ao Xie
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Ardekani LS, Thulstrup PW. Gold Nanoparticle-Mediated Lateral Flow Assays for Detection of Host Antibodies and COVID-19 Proteins. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1456. [PMID: 35564165 PMCID: PMC9102158 DOI: 10.3390/nano12091456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
Abstract
Coronaviruses, that are now well-known to the public, include a family of viruses that can cause severe acute respiratory syndrome (SARS) and other respiratory diseases, such as Middle East respiratory syndrome (MERS). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the seventh member of this coronavirus family, was detected in 2019 and can cause a number of respiratory symptoms, from dry cough and fever to fatal viral pneumonia. Various diagnostic assays ranging from real-time polymerase chain reaction (RT-PCR) to point-of-care medical diagnostic systems have been developed for detection of viral components or antibodies targeting the virus. Point-of-care assays allow rapid diagnostic assessment of infectious patients. Such assays are ideally simple, low-cost, portable tests with the possibility for on-site field detection that do not require skilled staff, sophisticated equipment, or sample pretreatment, as compared to RT-PCR. Since early 2021 when new SARS-CoV-2 variants of concern increased, rapid tests became more crucial in the disease management cycle. Among rapid tests, gold nanoparticle (GNP)-based lateral flow assays (LFAs) have high capacity for performing at the bedside, paving the way to easy access to diagnosis results. In this review, GNP-based LFAs used for either COVID-19 proteins or human response antibodies are summarized and recommendations for their improvement have been suggested.
Collapse
Affiliation(s)
- Leila Safaee Ardekani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron 2022; 211:114282. [DOI: 10.1016/j.bios.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 01/04/2023]
|
13
|
Cheng Y, Borum RM, Clark AE, Jin Z, Moore C, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. A Dual-Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain-like Proteases of SARS-CoV-2-Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angew Chem Int Ed Engl 2022; 61:e202113617. [PMID: 34889013 PMCID: PMC8854376 DOI: 10.1002/anie.202113617] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/15/2022]
Abstract
The main protease (Mpro ) and papain-like protease (PLpro ) play critical roles in SARS-CoV-2 replication and are promising targets for antiviral inhibitors. The simultaneous visualization of Mpro and PLpro is extremely valuable for SARS-CoV-2 detection and rapid inhibitor screening. However, such a crucial investigation has remained challenging because of the lack of suitable probes. We have now developed a dual-color probe (3MBP5) for the simultaneous detection of Mpro and PLpro by fluorescence (or Förster) resonance energy transfer (FRET). This probe produces fluorescence from both the Cy3 and Cy5 fluorophores that are cleaved by Mpro and PLpro . 3MBP5-activatable specificity was demonstrated with recombinant proteins, inhibitors, plasmid-transfected HEK 293T cells, and SARS-CoV-2-infected TMPRSS2-Vero cells. Results from the dual-color probe first verified the simultaneous detection and intracellular distribution of SARS-CoV-2 Mpro and PLpro . This is a powerful tool for the simultaneous detection of different proteases with value for the rapid screening of inhibitors.
Collapse
Affiliation(s)
- Yong Cheng
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Raina M. Borum
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Alex E. Clark
- Department of MedicineUniversity of California, San DiegoLa JollaCA 92093USA
| | - Zhicheng Jin
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Colman Moore
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCA 92093USA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCA 92093USA
| | - Aaron F. Carlin
- Department of MedicineUniversity of California, San DiegoLa JollaCA 92093USA
| | - Jesse V. Jokerst
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
- Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaCA 92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA 92093USA
| |
Collapse
|
14
|
Huang M, Xiong E, Wang Y, Hu M, Yue H, Tian T, Zhu D, Liu H, Zhou X. Fast microwave heating-based one-step synthesis of DNA and RNA modified gold nanoparticles. Nat Commun 2022; 13:968. [PMID: 35181653 PMCID: PMC8857241 DOI: 10.1038/s41467-022-28627-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
DNA/RNA-gold nanoparticle (DNA/RNA-AuNP) nanoprobes have been widely employed for nanobiotechnology applications. Here, we discover that both thiolated and non-thiolated DNA/RNA can be efficiently attached to AuNPs to achieve high-stable spherical nucleic acid (SNA) within minutes under a domestic microwave (MW)-assisted heating-dry circumstance. Further studies show that for non-thiolated DNA/RNA the conjugation is poly (T/U) tag dependent. Spectroscopy, test strip hybridization, and loading counting experiments indicate that low-affinity poly (T/U) tag mediates the formation of a standing-up conformation, which is distributed in the outer layer of SNA structure. In further application studies, CRISPR/Cas9-sgRNA (136 bp), SARS-CoV-2 RNA fragment (1278 bp), and rolling circle amplification (RCA) DNA products (over 1000 bp) can be successfully attached on AuNPs, which overcomes the routine methods in long-chain nucleic acid-AuNP conjugation, exhibiting great promise in biosensing and nucleic acids delivery applications. Current heating-dry strategy has improved traditional DNA/RNA-AuNP conjugation methods in simplicity, rapidity, cost, and universality. Simple methods for attaching polynucleotides to gold nanoparticles are of interest for simplifying conjugation in a range of applications. Here, the authors report a microwave heating-based method for the fast, one-step attachment of a range of thiolated or non-thiolated DNA and RNA to gold nanoparticles.
Collapse
Affiliation(s)
- Mengqi Huang
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Erhu Xiong
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| | - Yan Wang
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, 510006, Guangzhou, China
| | - Menglu Hu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Huahua Yue
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Tian Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Debin Zhu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, 510006, Guangzhou, China
| | - Xiaoming Zhou
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
15
|
Wu P, Ye X, Wang D, Gong F, Wei X, Xiang S, Zhang J, Kai T, Ding P. A novel CRISPR/Cas14a system integrated with 2D porphyrin metal-organic framework for microcystin-LR determination through a homogeneous competitive reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127690. [PMID: 34799170 DOI: 10.1016/j.jhazmat.2021.127690] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Selective and sensitive detection of microcystin-LR (MC-LR) is of vital importance because of its high toxicity and broad distribution. Herein, a novel and versatile fluorescence sensor (Cas14-pMOFs fluorescence sensor) was developed by combining the CRISPR/Cas14a system with a 2D porphyrin metal-organic framework nanosheets (2D-pMOFs) for MC-LR determination. The designed CRISPR/Cas14a system was activated by the unbound complementary DNA (cDNA), which was positively correlated with MC-LR concentration. Furthermore, the activated Cas14a protein was utilized to indiscriminately cleave the FAM-labeled single-stranded DNA (ssDNA-FAM), which was pre-absorbed on Cu-TCPP(Fe) nanosheets. Because of the desorption of the cleaved ssDNA-FAM, the pre-quenched fluorescence signal was recovered. Owing to the excellent performance in quantifying cDNA using this Cas14-pMOFs fluorescence sensor with a limit of detection (LOD) of 0.12 nM, this Cas14-pMOFs fluorescence sensor was able to detect MC-LR in a range from 50 pg/mL to 1 μg/mL with the LOD of 19 pg/mL. This work not only provided a new insight for the exploration of fluorescence sensors based on 2D-pMOFs coupled with CRISPR/Cas14a, but also, demonstrated its universality in both nucleic acid and non-nucleic acid targets determination.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| |
Collapse
|
16
|
Cheng Y, Borum RM, Clark AE, Jin Z, Moore C, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. A Dual‐Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain‐like Proteases of SARS‐CoV‐2‐Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yong Cheng
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Alex E. Clark
- Department of Medicine University of California, San Diego La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Colman Moore
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Aaron F. Carlin
- Department of Medicine University of California, San Diego La Jolla CA 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California, San Diego La Jolla CA 92093 USA
- Department of Radiology University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
17
|
Liu Y, Zhan L, Shen JW, Baro B, Alemany A, Sackrison J, Mitjà O, Bischof JC. fM-aM Detection of the SARS-CoV-2 Antigen by Advanced Lateral Flow Immunoassay Based on Gold Nanospheres. ACS APPLIED NANO MATERIALS 2021; 4:13826-13837. [PMID: 34957379 PMCID: PMC8691201 DOI: 10.1021/acsanm.1c03217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 05/04/2023]
Abstract
The SARS-CoV-2 global pandemic created an unprecedented need for rapid, sensitive, and inexpensive point-of-care (POC) diagnostic tests to treat and control the disease. Many POC SARS-CoV-2 lateral flow immunoassays (LFAs) have been developed and/or commercialized, but with only limited sensitivity (μM-fM). We created an advanced LFA based on gold nanospheres (GNSs) with comprehensive assay redesign for enhanced specific binding and thermal contrast amplification (TCA) on GNSs for signal amplification, which enabled fM-aM detection sensitivity for SARS-CoV-2 spike receptor-binding domain (RBD) proteins within 30 min. The advanced LFA can visually detect RBD proteins down to 3.6 and 28.6 aM in buffer and human nasopharyngeal wash, respectively. This is the first reported LFA achieving sensitivity comparable to that of the PCR (aM-zM) by visual reading, which was much more sensitive than traditional LFAs. We also developed a fast (<1 min) TCA reading algorithm, with results showing that this TCA could distinguish 26-32% visual false negatives for clinical commercial LFAs. When our advanced LFAs were applied with this TCA, the sensitivities were further improved by eightfold to 0.45 aM (in buffer) and 3.6 aM (in the human nasopharyngeal wash) with a semiquantitative readout. Our proposed advanced LFA with a TCA diagnostic platform can help control the current SARS-CoV-2 pandemic. Furthermore, the simplicity and speed with which this assay was assembled may also facilitate preparedness for future pandemics.
Collapse
Affiliation(s)
- Yilin Liu
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jesse W. Shen
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bàrbara Baro
- ISGlobal,
Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Spain
| | - Andrea Alemany
- Fight
AIDS and Infectious Diseases Foundation, Badalona 08916, Spain
- Hospital
Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | - James Sackrison
- 3984
Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - Oriol Mitjà
- Fight
AIDS and Infectious Diseases Foundation, Badalona 08916, Spain
- Hospital
Universitari Germans Trias i Pujol, Badalona 08916, Spain
- Lihir Medical
Centre − International SOS, Lihir Island, New Ireland 633, Papua New Guinea
| | - John C. Bischof
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Priya Swetha PD, Sonia J, Sapna K, Prasad KS. Towards CRISPR powered electrochemical sensing for smart diagnostics. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 30:100829. [PMID: 34909513 PMCID: PMC8660062 DOI: 10.1016/j.coelec.2021.100829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Even though global health has been steadily improved, the global disease burden associated with communicable and non-communicable diseases extensively increased healthcare expenditure. The present COVID-19 pandemic scenario has again ascertained the importance of clinical diagnostics as a basis to make life-saving decisions. In this context, there is a need for developing next-generation integrated smart real-time responsive biosensors with high selectivity and sensitivity. The emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas biosensing systems has shown remarkable potential for developing next-generation biosensors. CRISPR/Cas integrated electrochemical biosensors (E-CRISPR) stands out with excellent properties. In this opinionated review, we illustrate the rapidly evolving applications for E-CRISPR-integrated detection systems towards biosensing and the future scope associated with E-CRISPR based diagnostics.
Collapse
Affiliation(s)
- Poyye Dsouza Priya Swetha
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Jospeh Sonia
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| |
Collapse
|
19
|
Ren W, Irudayaraj J. Paper-Based Test for Rapid On-Site Screening of SARS-CoV-2 in Clinical Samples. BIOSENSORS 2021; 11:bios11120488. [PMID: 34940245 PMCID: PMC8699507 DOI: 10.3390/bios11120488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/17/2023]
Abstract
Detection methods for monitoring infectious pathogens has never been more important given the need to contain the spread of the COVID-19 pandemic. Herein we propose a highly sensitive magnetic-focus-enhanced lateral flow assay (mLFA) for the detection of SARS-CoV-2. The proposed mLFA is simple and requires only lateral flow strips and a reusable magnet to detect very low concentrations of the virus particles. The magnetic focus enhancement is achieved by focusing the SARS-CoV-2 conjugated magnetic probes in the sample placed in the lateral flow (LF) strips for improved capture efficiency, while horseradish peroxidase (HRP) was used to catalyze the colorimetric reaction for the amplification of the colorimetric signal. With the magnetic focus enhancement and HRP-based amplification, the mLFA could yield a highly sensitive technology for the recognition of SARS-CoV-2. The developed methods could detect as low as 400 PFU/mL of SARS-CoV-2 in PBS buffer based on the visible blue dots on the LF strips. The mLFA could recognize 1200 PFU/mL of SARS-CoV-2 in saliva samples. With clinical nasal swab samples, the proposed mLFA could achieve 66.7% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Wen Ren
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
20
|
Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, Cruz MT, Moreira FTC, Martins R, Fortunato E, Sales MGF. Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS OMEGA 2021; 6:29268-29290. [PMID: 34778604 PMCID: PMC8577188 DOI: 10.1021/acsomega.1c04012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - A. Rita Cardoso
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Cristina E. A. Sousa
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Ana C. Marques
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - Ana P. M. Tavares
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Ana Miguel Matos
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical
Engineering Processes and Forest Products Research Center, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Faculty
of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, Coimbra 3004-504, Portugal
| | - Felismina T. C. Moreira
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Rodrigo Martins
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - M. Goreti F. Sales
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| |
Collapse
|
21
|
Hillary VE, Ignacimuthu S, Ceasar SA. Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection. Expert Rev Mol Diagn 2021; 21:1179-1189. [PMID: 34409907 PMCID: PMC8607542 DOI: 10.1080/14737159.2021.1970535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Emerging novel infectious diseases and persistent pandemics with potential to destabilize normal life remain a public health concern for the whole world. The recent outbreak of pneumonia caused by Coronavirus infectious disease-2019 (COVID-19) resulted in high mortality due to a lack of effective drugs or vaccines. With a constantly increasing number of infections with mutated strains and deaths across the globe, rapid, affordable and specific detections with more accurate diagnosis and improved health treatments are needed to combat the spread of this novel pathogen COVID-19. AREAS COVERED Researchers have started to utilize the recently invented clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR/Cas)-based tools for the rapid detection of novel COVID-19. In this review, we summarize the potential of CRISPR/Cas system for the diagnosis and enablement of efficient control of COVID-19. EXPERT OPINION Multiple groups have demonstrated the potential of utilizing CRISPR-based diagnosis tools for the detection of SARS-CoV-2. In coming months, we expect more novel and rapid CRISPR-based kits for mass detection of COVID-19-infected persons within a fraction of a second. Therefore, we believe science will conquer COVID-19 in the near future.
Collapse
Affiliation(s)
- V. Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | | | - S. Antony Ceasar
- Department of Biosciences, Bharath Institute of Higher Education and Research, Chennai, India
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, India
| |
Collapse
|
22
|
Tian T, Qiu Z, Jiang Y, Zhu D, Zhou X. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosens Bioelectron 2021; 196:113701. [PMID: 34653714 DOI: 10.1016/j.bios.2021.113701] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/14/2022]
Abstract
Although CRISPR-Cas12a and CRISPR-Cas13a systems work individually effective on gene detection, their multiplex detection capability is limited due to the lack of specific probe cleavage mechanism. Herein we present a high-efficient dual-gene diagnostic technique based on the orthogonal DNA/RNA collateral cleavage mechanism of Cas12a/Cas13a system. In this design, dual-gene amplified products from the multiplex recombinase polymerase amplification (RPA) were simultaneously detected by Cas12a and Cas13a assay in a single tube. The resulting orthogonal DNA/RNA collateral cleavage can specifically illuminate two spectral differentiated DNA and RNA probes, respectively. By integrating with the smartphone-based fluorescence readout, a portable detection platform is achieved. As a proof-of-concept, reliable dual-gene detection of SARS-CoV-2 and African Swine fever virus (ASFV) were demonstrated, exhibiting 100% sensitivity and specificity for clinical samples analysis (32 swab specimens for SARS-CoV-2 and 35 ASFV suspected swine blood samples). This developed portable dual-gene detection platform can provide accurate point-of-care screening of infectious diseases in resources-limited settings.
Collapse
Affiliation(s)
- Tian Tian
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiqiang Qiu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, PR China
| | - Debin Zhu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Xiaoming Zhou
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
23
|
Yin K, Ding X, Li Z, Sfeir MM, Ballesteros E, Liu C. Autonomous lab-on-paper for multiplexed, CRISPR-based diagnostics of SARS-CoV-2. LAB ON A CHIP 2021; 21:2730-2737. [PMID: 34100058 PMCID: PMC8277744 DOI: 10.1039/d1lc00293g] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has become a public health emergency and widely spread around the world. Rapid, accurate and early diagnosis of COVID-19 infection plays a crucial role in breaking this pandemic. However, the detection accuracy is limited for current single-gene diagnosis of SARS-CoV-2. Herein, we develop an autonomous lab-on-paper platform for multiplex gene diagnosis of SARS-CoV-2 by combining reverse transcription recombinase polymerase amplification (RT-RPA) and CRISPR-Cas12a detection. The autonomous lab-on-paper is capable of simultaneously detecting nucleoprotein (N) gene and spike (S) gene of SARS-CoV-2 virus as well as human housekeeping RNAse P gene (an internal control) in a single clinical sample. With the developed platform, 102 copies viral RNA per test can be detected within one hour. Also, the lab-on-paper platform has been used to detect 21 swab clinical samples and obtains a comparable performance to the conventional RT-PCR method. Thus, the developed lab-on-paper platform holds great potential for rapid, sensitive, reliable, multiple molecular diagnostics of COVID-19 and other infectious diseases in resource-limited settings.
Collapse
Affiliation(s)
- Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Maroun M Sfeir
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Enrique Ballesteros
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|