1
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
2
|
Bryden N, McHugh CT, Kelley M, Branca RT. Longitudinal nuclear spin relaxation of 129 Xe in solution and in hollow fiber membranes at low and high magnetic field strengths. Magn Reson Med 2022; 88:2005-2013. [PMID: 35726363 PMCID: PMC9420755 DOI: 10.1002/mrm.29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To measure dissolved-phase 129 Xe T1 values at high and low magnetic fields and the field dependence of 129 Xe depolarization by hollow fiber membranes used to infuse hyperpolarized xenon in solution. METHODS Dissolved-phase T1 measurements were made at 11.7T and 2.1 mT by bubbling xenon in solution and by using a variable delay to allow spins to partially relax back to thermal equilibrium before probing their magnetization. At high field, relaxation values were compared to those obtained by using the small flip angle method. For depolarization studies, we probed the magnetization of the polarized gas diffusing through an exchange membrane module placed at different field strengths. RESULTS Total loss of polarization was observed for xenon diffusing through hollow fiber membranes at low field, while significant polarization loss (>20%) was observed at magnetic fields up to 2T. Dissolved-phase 129 Xe T1 values were found consistently shorter at 2.1 mT compared to 11.7T. In addition, both O2 and Xe gas concentrations in solution were found to significantly affect dissolved-phase 129 Xe T1 values. CONCLUSION Dissolved-phase 129 Xe measurements are feasible at low field, but to assess the feasibility of in vivo dissolved-phase imaging and spectroscopy the T1 of xenon in blood will need to be measured. Both O2 and Xe concentrations in solution are found to greatly affect dissolved-phase 129 Xe T1 values and may explain, along with RF miscalibration, the large discrepancy in previously reported results.
Collapse
Affiliation(s)
- Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian T McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
4
|
Niederländer B, Blümler P, Brotin T, van Dusschoten D, Offenhäusser A, Krause HJ, Heil W. Optimized Continuous Application of Hyperpolarized Xenon to Liquids. J Phys Chem A 2018; 122:9359-9369. [PMID: 30403866 DOI: 10.1021/acs.jpca.8b09479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g., cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e., molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129Xe continuously at small adjustable pressures and in a polarization-preserving way. The membrane unit enables a molecular solution of the HP-gas in aqueous liquids, avoiding the formation of bubbles or even foams. Two different types of compressors were tested in terms of function and useful materials. Special emphasis was put on a systematic reduction of transfer losses in the gas and liquid phase. In order to optimize the system parameters, several physical models were developed to describe the transport and the losses of nuclear polarization. Finally, the successful implementation was demonstrated in several experiments. HP-Xe was dissolved in an aqueous cryptophane-A-(OCH2COOH)6 solution, and stable Xe signals could be measured over 35 min, only limited by the size of the gas reservoir. Such long and stable experimental conditions enabled the study of chemical exchange of xenon between cryptophane and water environments even for a time-consuming 2D NMR experiment. The good signal stability over the measurement time allowed an exact determination of the residence time of the Xe atom inside the cryptophane, resulting in an average residence time of 44.5 ± 2.7 ms.
Collapse
Affiliation(s)
- B Niederländer
- Institute of Physics , University of Mainz , 55122 Mainz , Germany.,ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - P Blümler
- Institute of Physics , University of Mainz , 55122 Mainz , Germany
| | - T Brotin
- Laboratoire de Chimie, CNRS UMR 5182, Université Lyon 1 , Ecole Normale Supérieure de Lyon , 46 allée d'Italie , F69364 , Lyon , France
| | | | - A Offenhäusser
- ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - H-J Krause
- ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - W Heil
- Institute of Physics , University of Mainz , 55122 Mainz , Germany
| |
Collapse
|
5
|
Kiryutin AS, Sauer G, Hadjiali S, Yurkovskaya AV, Breitzke H, Buntkowsky G. A highly versatile automatized setup for quantitative measurements of PHIP enhancements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:26-36. [PMID: 29073504 DOI: 10.1016/j.jmr.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
The design and application of a versatile and inexpensive experimental extension to NMR spectrometers is described that allows to carry out highly reproducible PHIP experiments directly in the NMR sample tube, i.e. under PASADENA condition, followed by the detection of the NMR spectra of hyperpolarized products with high spectral resolution. Employing this high resolution it is feasible to study kinetic processes in the solution with high accuracy. As a practical example the dissolution of hydrogen gas in the liquid and the PHIP kinetics during the hydrogenation reaction of Fmoc-O-propargyl-l-tyrosine in acetone-d6 are monitored. The timing of the setup is fully controlled by the pulse-programmer of the NMR spectrometer. By flushing with an inert gas it is possible to efficiently quench the hydrogenation reaction in a controlled fashion and to detect the relaxation of hyperpolarization without a background reaction. The proposed design makes it possible to carry out PHIP experiments in an automatic mode and reliably determine the enhancement of polarized signals.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Grit Sauer
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Sara Hadjiali
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hergen Breitzke
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany.
| |
Collapse
|
6
|
Flower C, Freeman MS, Plue M, Driehuys B. Electron microscopic observations of Rb particles and pitting in 129Xe spin-exchange optical pumping cells. JOURNAL OF APPLIED PHYSICS 2017; 122:024902. [PMID: 28804157 PMCID: PMC5505777 DOI: 10.1063/1.4991642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/07/2017] [Indexed: 05/13/2023]
Abstract
High-volume production of hyperpolarized 129Xe by spin-exchange optical pumping (SEOP) has historically fallen short of theoretical predictions. Recently, this shortfall was proposed to be caused by the formation of alkali metal clusters during optical pumping. However, this hypothesis has yet to be verified experimentally. Here, we seek to detect the presence of alkali particles using a combination of both transmission (TEM) and scanning (SEM) electron microscopy. From TEM studies, we observe the presence of particles exhibiting sizes ranging from approximately 0.2 to 1 μm and present at densities of order 10 s of particles per 100 square microns. Particle formation was more closely associated with extensive cell usage history than short-term ([Formula: see text]1 h) SEOP exposure. From the SEM studies, we observe pits on the cell surface. These pits are remarkably smooth, were frequently found adjacent to Rb particles, and located predominantly on the front face of the cells; they range in size from 1 to 5 μm. Together, these findings suggest that Rb particles do form during the SEOP process and at times can impart sufficient energy to locally alter the Pyrex surface.
Collapse
Affiliation(s)
- C Flower
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| | | | - M Plue
- Shared Materials Instrumentation Facility, Duke University, 101 Science Dr., Durham, North Carolina 27710, USA
| | - B Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| |
Collapse
|
7
|
Truxal AE, Slack CC, Gomes MD, Vassiliou CC, Wemmer DE, Pines A. Nondisruptive Dissolution of Hyperpolarized
129
Xe into Viscous Aqueous and Organic Liquid Crystalline Environments. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ashley E. Truxal
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Clancy C. Slack
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Muller D. Gomes
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Christophoros C. Vassiliou
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - David E. Wemmer
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Alexander Pines
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| |
Collapse
|
8
|
Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc Natl Acad Sci U S A 2016; 113:3164-8. [PMID: 26961001 DOI: 10.1073/pnas.1600379113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.
Collapse
|
9
|
Truxal AE, Slack CC, Gomes MD, Vassiliou CC, Wemmer DE, Pines A. Nondisruptive Dissolution of Hyperpolarized (129)Xe into Viscous Aqueous and Organic Liquid Crystalline Environments. Angew Chem Int Ed Engl 2016; 55:4666-70. [PMID: 26954536 DOI: 10.1002/anie.201511539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Indexed: 01/14/2023]
Abstract
Studies of hyperpolarized xenon-129 (hp-(129)Xe) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp-(129)Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy.
Collapse
Affiliation(s)
- Ashley E Truxal
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Clancy C Slack
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Muller D Gomes
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christophoros C Vassiliou
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - David E Wemmer
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA. .,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
10
|
Causier A, Carret G, Boutin C, Berthelot T, Berthault P. 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR. LAB ON A CHIP 2015; 15:2049-2054. [PMID: 25805248 DOI: 10.1039/c5lc00193e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissolution of hyperpolarized species in liquids of interest for NMR is often hampered by the presence of bubbles that degrade the field homogeneity. Here a device composed of a bubble pump and a miniaturized NMR cell both fitted inside the narrow bore of an NMR magnet is built by 3D printing. (129)Xe NMR experiments performed with hyperpolarized xenon reveal high and homogeneous dissolution of the gas in water.
Collapse
Affiliation(s)
- A Causier
- Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences, CEA Saclay, IRAMIS, NIMBE, UMR CEA/CNRS 3685, 91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
11
|
Witte C, Kunth M, Rossella F, Schröder L. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. J Chem Phys 2014; 140:084203. [PMID: 24588160 DOI: 10.1063/1.4865944] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of (129)Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.
Collapse
Affiliation(s)
- C Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - M Kunth
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - F Rossella
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - L Schröder
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
12
|
Taratula O, Bai Y, D'Antonio EL, Dmochowski IJ. Enantiopure Cryptophane- 129Xe Nuclear Magnetic Resonance Biosensors Targeting Carbonic Anhydrase. Supramol Chem 2014; 27:65-71. [PMID: 25506191 DOI: 10.1080/10610278.2014.906601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The (+) and (-) enantiomers for a cryptophane-7-bond-linker-benzenesulfonamide biosensor (C7B) were synthesized and their chirality confirmed by electronic circular dichroism (ECD) spectroscopy. Biosensor binding to carbonic anhydrase II (CAII) was characterized for both enantiomers by hyperpolarized (hp) 129Xe NMR spectroscopy. Our previous study of the racemic (+/-) C7B biosensor-CAII complex [Chambers, et al., J. Am. Chem. Soc. 2009, 131, 563-569], identified two "bound" 129Xe@C7B peaks by hp 129Xe NMR (at 71 and 67 ppm, relative to "free" biosensor at 64 ppm), which led to the initial hypothesis that (+) and (-) enantiomers produce diastereomeric peaks when coordinated to Zn2+ at the chiral CAII active site. Unexpectedly, the single enantiomers complexed with CAII also identified two "bound" 129Xe@C7B peaks: (+) 72, 68 ppm and (-) 68, 67 ppm. These results are consistent with X-ray crystallographic evidence for benzenesulfonamide inhibitors occupying a second site near the CAII surface. As illustrated by our studies of this model protein-ligand interaction, hp 129Xe NMR spectroscopy can be useful for identifying supramolecular assemblies in solution.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Yubin Bai
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Edward L D'Antonio
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| |
Collapse
|
13
|
Bai Y, Wang Y, Goulian M, Driks A, Dmochowski IJ. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR. Chem Sci 2014; 5:3197-3203. [PMID: 25089181 DOI: 10.1039/c4sc01190b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures.
Collapse
Affiliation(s)
- Yubin Bai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanfei Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
15
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl 2013; 52:4849-53. [PMID: 23554263 DOI: 10.1002/anie.201300170] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/09/2013] [Indexed: 02/02/2023]
|
16
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular Imaging of Cancer Cells Using a Bacteriophage-Based129Xe NMR Biosensor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Buljubasich L, Franzoni MB, Münnemann K. Parahydrogen Induced polarization by homogeneous catalysis: theory and applications. Top Curr Chem (Cham) 2013; 338:33-74. [PMID: 23536243 DOI: 10.1007/128_2013_420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alignment of the nuclear spins in parahydrogen can be transferred to other molecules by a homogeneously catalyzed hydrogenation reaction resulting in dramatically enhanced NMR signals. In this chapter we introduce the involved theoretical concepts by two different approaches: the well known, intuitive population approach and the more complex but more complete density operator formalism. Furthermore, we present two interesting applications of PHIP employing homogeneous catalysis. The first demonstrates the feasibility of using PHIP hyperpolarized molecules as contrast agents in (1)H MRI. The contrast arises from the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via PHIP. It allows for the discrimination of a small amount of hyperpolarized molecules from a large background signal and may open up unprecedented opportunities to use the standard MRI nucleus (1)H for, e.g., metabolic imaging in the future. The second application shows the possibility of continuously producing hyperpolarization via PHIP by employing hollow fiber membranes. The continuous generation of hyperpolarization can overcome the problem of fast relaxation times inherent in all hyperpolarization techniques employed in liquid-state NMR. It allows, for instance, the recording of a reliable 2D spectrum much faster than performing the same experiment with thermally polarized protons. The membrane technique can be straightforwardly extended to produce a continuous flow of a hyperpolarized liquid for MRI enabling important applications in natural sciences and medicine.
Collapse
Affiliation(s)
- Lisandro Buljubasich
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | | |
Collapse
|
18
|
Bai Y, Hill PA, Dmochowski IJ. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements. Anal Chem 2012; 84:9935-41. [PMID: 23106513 DOI: 10.1021/ac302347y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hyperpolarized (129)Xe chemical exchange saturation transfer ((129)Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized (129)Xe and rapid accumulation of depolarized (129)Xe in bulk solution. The cryptophane effectively "catalyzes" this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T(1) ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, k(on) ≈ 1.5 × 10(6) M(-1) s(-1) and k(off) = 45 s(-1), which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR line width measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, k(off) was estimated to be 1.1 × 10(3) s(-1). In Hyper-CEST NMR experiments, the rate of (129)Xe depolarization achieved by 14 pM TAAC in the presence of radio frequency (RF) pulses was calculated to be 0.17 μM·s(-1). On a per cryptophane basis, this equates to 1.2 × 10(4)(129)Xe atoms s(-1) (or 4.6 × 10(4) Xe atoms s(-1), all Xe isotopes), which is more than an order of magnitude faster than k(off), the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk (129)Xe depolarization, which provide at least 10(7)-fold sensitivity enhancements over directly detected hyperpolarized (129)Xe NMR signals.
Collapse
Affiliation(s)
- Yubin Bai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
19
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
20
|
Cleveland ZI, Möller HE, Hedlund LW, Nouls JC, Freeman MS, Qi Y, Driehuys B. In vivo MR imaging of pulmonary perfusion and gas exchange in rats via continuous extracorporeal infusion of hyperpolarized 129Xe. PLoS One 2012; 7:e31306. [PMID: 22363613 PMCID: PMC3283644 DOI: 10.1371/journal.pone.0031306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP (129)Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP (129)Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP (129)Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP (129)Xe signal. METHODS AND PRINCIPAL FINDINGS Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse (129)Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase (129)Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm(3). We also show that the (129)Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. CONCLUSIONS Extracorporeal infusion of HP (129)Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow (129)Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP (129)Xe.
Collapse
Affiliation(s)
- Zackary I. Cleveland
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Harald E. Möller
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Laurence W. Hedlund
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John C. Nouls
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew S. Freeman
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Graduate Program in Medical Physics, Duke University, Durham, North Carolina, United States of America
| | - Yi Qi
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bastiaan Driehuys
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
21
|
Duewel M, Vogel N, Weiss CK, Landfester K, Spiess HW, Münnemann K. Online Monitoring of Styrene Polymerization in Miniemulsion by Hyperpolarized 129Xenon NMR Spectroscopy. Macromolecules 2012. [DOI: 10.1021/ma202605n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathis Duewel
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Nicolas Vogel
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Clemens K. Weiss
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Hans-Wolfgang Spiess
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
22
|
Amor N, Hamilton K, Küppers M, Steinseifer U, Appelt S, Blümich B, Schmitz-Rode T. NMR and MRI of blood-dissolved hyperpolarized Xe-129 in different hollow-fiber membranes. Chemphyschem 2011; 12:2941-7. [PMID: 21994161 DOI: 10.1002/cphc.201100446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Indexed: 11/08/2022]
Abstract
Magnetic resonance of hyperpolarized (129)Xe has found a wide field of applications in the analysis of biologically relevant fluids. Recently, it has been shown that the dissolution of hyperpolarized gas into the fluid via hollow-fiber membranes leads to bubble-free (129)Xe augmentation, and thus to an enhanced signal. In addition, hollow-fiber membranes permit a continuous operation mode. Herein, a quantitative magnetic resonance imaging and spectroscopy analysis of a customized hollow-fiber membrane module is presented. Different commercial hollow-fiber membrane types are compared with regard to their (129)Xe dissolution efficiency into porcine blood, its constituents, and other fluids. The presented study gives new insight into the suitability of these hollow-fiber membrane types for hyperpolarized gas dissolution setups.
Collapse
Affiliation(s)
- Nadia Amor
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Roth M, Kindervater P, Raich HP, Bargon J, Spiess HW, Münnemann K. Continuous 1H and 13C Signal Enhancement in NMR Spectroscopy and MRI Using Parahydrogen and Hollow-Fiber Membranes. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002725] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Roth M, Kindervater P, Raich HP, Bargon J, Spiess HW, Münnemann K. Continuous 1H and 13C Signal Enhancement in NMR Spectroscopy and MRI Using Parahydrogen and Hollow-Fiber Membranes. Angew Chem Int Ed Engl 2010; 49:8358-62. [DOI: 10.1002/anie.201002725] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Amor N, Zänker PP, Blümler P, Meise FM, Schreiber LM, Scholz A, Schmiedeskamp J, Spiess HW, Münnemann K. Magnetic resonance imaging of dissolved hyperpolarized 129Xe using a membrane-based continuous flow system. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 201:93-99. [PMID: 19729327 DOI: 10.1016/j.jmr.2009.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
A technique for continuous production of solutions containing hyperpolarized (129)Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized (129)Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of (129)Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized (129)Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.
Collapse
Affiliation(s)
- N Amor
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou X, Graziani D, Pines A. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction. Proc Natl Acad Sci U S A 2009; 106:16903-6. [PMID: 19805177 PMCID: PMC2749000 DOI: 10.1073/pnas.0909147106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Indexed: 11/18/2022] Open
Abstract
A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is approximately 10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas.
Collapse
Affiliation(s)
- Xin Zhou
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720
| | - Dominic Graziani
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720
| | - Alexander Pines
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|
27
|
Cleveland ZI, Möller HE, Hedlund LW, Driehuys B. Continuously infusing hyperpolarized 129Xe into flowing aqueous solutions using hydrophobic gas exchange membranes. J Phys Chem B 2009; 113:12489-99. [PMID: 19702286 PMCID: PMC2747043 DOI: 10.1021/jp9049582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperpolarized (HP) (129)Xe yields high signal intensities in nuclear magnetic resonance (NMR) and, through its large chemical shift range of approximately 300 ppm, provides detailed information about the local chemical environment. To exploit these properties in aqueous solutions and living tissues requires the development of methods for efficiently dissolving HP (129)Xe over an extended time period. To this end, we have used commercially available gas exchange modules to continuously infuse concentrated HP (129)Xe into flowing liquids, including rat whole blood, for periods as long as one hour and have demonstrated the feasibility of dissolved-phase MR imaging with submillimeter resolution within minutes. These modules, which exchange gases using hydrophobic microporous polymer membranes, are compatible with a variety of liquids and are suitable for infusing HP (129)Xe into the bloodstream in vivo. Additionally, we have developed a detailed mathematical model of the infused HP (129)Xe signal dynamics that should be useful in designing improved infusion systems that yield even higher dissolved HP (129)Xe signal intensities.
Collapse
|
28
|
Driehuys B, Möller HE, Cleveland ZI, Pollaro J, Hedlund LW. Pulmonary perfusion and xenon gas exchange in rats: MR imaging with intravenous injection of hyperpolarized 129Xe. Radiology 2009; 252:386-93. [PMID: 19703880 PMCID: PMC2753782 DOI: 10.1148/radiol.2513081550] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE To develop and demonstrate a method for regional evaluation of pulmonary perfusion and gas exchange based on intravenous injection of hyperpolarized xenon 129 ((129)Xe) and subsequent magnetic resonance (MR) imaging of the gas-phase (129)Xe emerging in the alveolar airspaces. MATERIALS AND METHODS Five Fischer 344 rats that weighed 200-425 g were prepared for imaging according to an institutional animal care and use committee-approved protocol. Rats were ventilated, and a 3-F catheter was placed in the jugular (n = 1) or a 24-gauge catheter in the tail (n = 4) vein. Imaging and spectroscopy of gas-phase (129)Xe were performed after injecting 5 mL of half-normal saline saturated with (129)Xe hyperpolarized to 12%. Corresponding ventilation images were obtained during conventional inhalation delivery of hyperpolarized (129)Xe. RESULTS Injections of (129)Xe-saturated saline were well tolerated and produced a strong gas-phase (129)Xe signal in the airspaces that resulted from (129)Xe transport through the pulmonary circulation and diffusion across the blood-gas barrier. After a single injection, the emerging (129)Xe gas could be detected separately from (129)Xe remaining in the blood and was imaged with an in-plane resolution of 1 x 1 mm and a signal-to-noise ratio of 25. Images in one rat revealed a matched ventilation-perfusion deficit, while images in another rat showed that xenon gas exchange was temporarily impaired after saline overload, with recovery of function 1 hour later. CONCLUSION MR imaging of gas-phase (129)Xe emerging in the pulmonary airspaces after intravenous injection has the potential to become a sensitive and minimally invasive new tool for regional evaluation of pulmonary perfusion and gas exchange. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/2513081550/DC1.
Collapse
Affiliation(s)
- Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
29
|
Fusaro L, Locci E, Lai A, Luhmer M. Probing Systems in Solution by NMR Using Sulfur Hexafluoride as a Spy Molecule. J Phys Chem B 2009; 113:7599-605. [DOI: 10.1021/jp9008042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Fusaro
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Emanuela Locci
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Adolfo Lai
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Michel Luhmer
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
30
|
Fusaro L, Locci E, Lai A, Luhmer M. NMR Study of the Reversible Trapping of SF6 by Cucurbit[6]uril in Aqueous Solution. J Phys Chem B 2008; 112:15014-20. [DOI: 10.1021/jp806685z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Fusaro
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 Bivio per Sestu, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Emanuela Locci
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 Bivio per Sestu, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Adolfo Lai
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 Bivio per Sestu, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| | - Michel Luhmer
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 Bivio per Sestu, 09042 Monserrato (CA), Italy, and Laboratoire de RMN haute résolution CP 160/08, Université Libre de Bruxelles, 50 Av. F.-D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
31
|
|
32
|
|
33
|
Coleman AW, Jebors S, Shahgaldian P, Ananchenko GS, Ripmeester JA. para-Acylcalix[n]arenes: from molecular to macroscopic assemblies. Chem Commun (Camb) 2008:2291-303. [DOI: 10.1039/b717495k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
|