1
|
Mondal TK, Bangaru AVB, Williams SJ. A Review on AC-Dielectrophoresis of Nanoparticles. MICROMACHINES 2025; 16:453. [PMID: 40283328 PMCID: PMC12029287 DOI: 10.3390/mi16040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Dielectrophoresis at the nanoscale has gained significant attention in recent years as a low-cost, rapid, efficient, and label-free technique. This method holds great promise for various interdisciplinary applications related to micro- and nanoscience, including biosensors, microfluidics, and nanomachines. The innovation and development of such devices and platforms could promote wider applications in the field of nanotechnology. This review aims to provide an overview of recent developments and applications of nanoparticle dielectrophoresis, where at least one dimension of the geometry or the particles being manipulated is equal to or less than 100 nm. By offering a theoretical foundation to understand the processes and challenges that occur at the nanoscale-such as the need for high field gradients-this article presents a comprehensive overview of the advancements and applications of nanoparticle dielectrophoresis platforms over the past 15 years. This period has been characterized by significant progress, as well as persistent challenges in the manipulation and separation of nanoscale objects. As a foundation for future research, this review will help researchers explore new avenues and potential applications across various fields.
Collapse
Affiliation(s)
| | | | - Stuart J. Williams
- Department of Mechanical Engineering, University of Louisville, Louisville, KY 40208, USA; (T.K.M.); (A.V.B.B.)
| |
Collapse
|
2
|
Zhu X, Zhang Y, Hanson BL, Wu DT, Wu N. Reconfigurable homochiral colloidal clusters assembled under orthogonally applied electric and magnetic fields. Proc Natl Acad Sci U S A 2025; 122:e2418006122. [PMID: 40168128 PMCID: PMC12002283 DOI: 10.1073/pnas.2418006122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/22/2025] [Indexed: 04/03/2025] Open
Abstract
Chiral structures assembled from colloids are of great interest for applications in metamaterials and micromachines. However, similar to their molecular counterparts, these assemblies often result in racemic mixtures. Achieving homochirality by breaking the symmetry remains a significant challenge. Here, we report an approach to obtain single-handed clusters from colloidal dimers using orthogonal electric and magnetic fields. Applying an alternating-current electric field perpendicular to the substrate generates a mixture of chiral clusters with both handedness. However, symmetry is broken by superimposing a planar rotating magnetic field, favoring one chirality over the other. The cluster's chirality can be precisely controlled in situ by adjusting the magnetic field's direction and strength, as well as the electric field frequency. Remarkably, this method also induces uniform chirality in initially achiral clusters when exposed solely to the electric field. Both experimental and numerical analyses reveal that the stability of specific handedness depends on the competition between forces and torques generated by the magnetic field, electric field, and electrohydrodynamic flow. Furthermore, we propose a strategy for producing colloidal clusters with uniform sizes and single-handedness through dynamic tuning of the electric and magnetic fields. This work not only demonstrates the potential of integrating external fields but also provides a viable way to create reconfigurable chiral colloidal structures.
Collapse
Affiliation(s)
- Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | - Yuanxing Zhang
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | | | - David T. Wu
- Institute of Chemistry, Academia Sinica, Taipei115201, Taiwan (Republic of China)
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| |
Collapse
|
3
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Biswas A, Lemcoff N, Shelonchik O, Baranov M, Gordon G, Ben Nun U, Weizmann Y. Molecular light-to-heat conversion promotes orthogonal synthesis and assembly of metal-organic frameworks. Nat Commun 2025; 16:2758. [PMID: 40113757 PMCID: PMC11926118 DOI: 10.1038/s41467-025-57933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Temperature is a fundamental parameter in any chemical process, affecting reaction rates, selectivity and more. In this regard, photon-assisted heat generation for chemical reactions utilizing photothermal materials is emerging as an exciting tool for innovative research. Herein, we develop a synthesis and in-situ assembly strategy for metal-organic frameworks (MOFs) based on the distinct heating of photothermal materials under visible light. A simple cobalt chloride molecular complex is utilized as an efficient and stable light-to-heat converter for initial MOF formation. A thorough investigation of the assembly mechanism reveals the key role photothermal conversion has in the synthesis of the superstructures. Finally, palladium nanoparticles (PdNPs) are utilized as competing photothermal agents (PTAs) shedding light on the dynamics between different heat sources within a reaction and resulting in MOF-NP composites. This work highlights the versatility of the photothermal approach in the synthesis of advanced materials introducing a promising route to the micro/nano assembly of different materials.
Collapse
Affiliation(s)
- Aritra Biswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofir Shelonchik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mark Baranov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gil Gordon
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Ben Nun
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Xue N, Li S, Yang H. Facile Fabrication of Robust Supraparticles for Spatially Orthogonal Cascade Catalysis. Angew Chem Int Ed Engl 2025:e202425342. [PMID: 40052920 DOI: 10.1002/anie.202425342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
Macroscopically sized supraparticles (SPs) are emerging as cutting-edge materials for industrial applications because of their unique properties unachievable for their nano-building blocks, but their effective methods are lacking. Here, a conceptually novel strategy is developed to assemble binary or ternary nanoparticles (NPs) within compartments of droplets through electrostatic interactions, making it possible to facilely fabricate millimeter-sized multicomponent ionic supraparticles (ISPs). The assembled ISPs possess unexpectedly high mechanical strength (50 N per bead), being amenable to practical applications. The key factors governing the assembly behavior of nano-building blocks within water droplet compartments are identified through regulating the size and charge density of NPs or ionic strength, providing key insights into the multileveled assembly of NPs beyond the conventional assembly. The strategy is demonstrated to be versatile since a library of tailor-made ISPs containing multicomponent, diversely shaped, and differently sized NPs can be facilely fabricated. As proof of this concept, it is showcased that this method enables the preparation of spatially orthogonal cascade catalysts by co-assembling acidic, basic, and metal sites in single millimeter-scaled particles. The catalysts exhibit significantly enhanced catalytic efficiency in a one-pot cascade synthesis of α-alkylated nitriles and high operational stability (200 h) in industrially preferred fixed-bed reactors.
Collapse
Affiliation(s)
- Nan Xue
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Shengjie Li
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hengquan Yang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Barros I, Ramachandran S, Chakraborty I. Structure, dynamics and phase transitions in electric field assembled colloidal crystals and glasses. SOFT MATTER 2025; 21:1884-1894. [PMID: 39935419 DOI: 10.1039/d4sm01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Field-induced assembly of colloidal particles into structures of desired configurations is extremely relevant from the viewpoint of producing field-assembled micro-swimmers and reconfigurable smart materials. However, the behaviour of colloidal particles under the influence of alternating current (AC) electric fields remains a topic of ongoing investigation due to the complex and nuanced effects of various control parameters. Here, we examine the role of several factors including particle size, zeta potential, voltage and frequency of the applied field in the formation of different structural configurations in an intermediate frequency range (5-50 kHz) and very low conductivity solutions. We observe a wide range of configurations ranging from crystals to glasses that are normally observed at frequency ranges below 1 kHz. Additionally, we investigate the dynamics: the nature of diffusion and active motion in these out-of-equilibrium systems and show how that is directly interlinked with the formation of close-packed or open (non close-packed) structures. Lastly, we investigate the frequency-driven disorder-order-disorder phase transition in colloidal crystals, which is a starting point for building reconfigurable systems. Our findings contribute to a deeper understanding of interlinked roles of various factors in electric field-induced assembly of colloidal particles in the intermediate frequency-low conductivity regime, which is significant for potential applications in micro-robotics and next generation materials.
Collapse
Affiliation(s)
- Indira Barros
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Sayanth Ramachandran
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
- Max-Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Indrani Chakraborty
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
7
|
Peng Y, Yasir Khan M, Gao Y, Wang W. Self-Generated Ions Modify the Pair Interaction and the Phase Separation of Chemically Active Colloids. Chem Asian J 2025; 20:e202400923. [PMID: 39533512 DOI: 10.1002/asia.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Chemically active colloids that release/consume ions are an important class of active matter, and exhibit interesting collective behaviors such as phase separation, swarming, and waves. Key to these behaviors is the pair-wise interactions mediated by the concentration gradient of self-generated ions. This interaction is often simplified as a pair-wise force decaying at 1/r2, where r is the interparticle distance. Here, we show that this simplification fails for isotropic and immotile active colloids with net ion production, such as Ag colloids in H2O2. Specifically, the production of ions on the surface of the Ag colloids increases the local ion concentration, c, and attenuates the pair-wise interaction force that scales with ∇c/c. As a result, the attractive force between an Ag colloid and its neighbor (active or passive) decays at 1/r or 1/r2 for small or large r, respectively. In a population, the attraction of a colloid by a growing cluster also scales with ∇c/c, so that medium-sized clusters grow fastest, and that the cluster coarsening slows with time. These results, supported by finite element and Brownian dynamic simulations, highlight the important role of self-generated ions in shaping the collective behavior of chemically active colloids.
Collapse
Affiliation(s)
- Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
8
|
Basharat M, Zhang J, Yu N, Li R, Zhang Y, Wang Y, Gao Y. In-situ isomerization and reversible self-assembly of photoresponsive polymeric colloidal molecules enabled by ON and OFF light control. J Colloid Interface Sci 2024; 680:278-285. [PMID: 39566415 DOI: 10.1016/j.jcis.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Photocatalytic colloids enable light-triggered nonequilibrium interactions and are emerging as key components for the self-assembly of colloidal molecules (CMs) out of equilibrium. However, the material choices have largely been limited to inorganic substances and the potential for reconfiguring structures through dynamic light control remains underexplored, despite light being a convenient handle for tuning nonequilibrium interactions. Here, we introduce photoresponsive N,O-containing covalent organic polymer (NOCOP) colloids, which display multi-wavelength triggered fluorescence and switchable diffusiophoretic interactions with the addition of triethanolamine. Our system can form various flexible structures, including ABn-type molecules and linear chains. By varying the relative sizes of active to passive colloids, we significantly increase the structural diversity of A2B2-type molecules. Most importantly, we demonstrate in-situ transitions between different isomeric configurations and the reversible assembly of various structures, enabled by on-demand light ON and OFF control of diffusiophoretic interactions. Our work introduces a new photoresponsive colloidal system and a novel strategy for constructing and reconfiguring colloidal assemblies, with promising applications in microrobotics, optical devices, and smart materials.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Jiayu Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Nan Yu
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Ruiyao Li
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yiyang Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yufeng Wang
- Department of Chemistry, the University of Hong Kong, Hong Kong 999077, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China.
| |
Collapse
|
9
|
Kim Y, Lee YK. Brownian dynamics simulation of the structural evolution in monodisperse hard-sphere suspensions during drying and sedimentation processes. J Chem Phys 2024; 161:184508. [PMID: 39540450 DOI: 10.1063/5.0238549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The drying behavior of monodisperse colloidal films, with a focus on the influence of process variables on film microstructures, is explored via Brownian dynamics (BD) simulations. In our model, hard-sphere colloidal particles are dispersed in a Newtonian liquid with an initial particle volume fraction of 0.1. The effects of the drying rate and sedimentation on the evolving microstructures are systematically investigated using two dimensionless numbers: the Péclet number (Pe), which represents the competition between evaporation and diffusion, and the sedimentation number (Ns), which reflects the relative influence of sedimentation on evaporation. First, we analyze the local particle volume fraction and film structure at various Pe and Ns. As Pe increases, particle accumulation occurs near the liquid-gas interface, whereas a high Ns promotes dense packing near the substrate owing to sedimentation. The BD simulation results, viz. the local volume fraction profiles and drying regime maps, are in good agreement with those of the continuum model proposed by Wang and Brady. Structural analysis of the dried films reveals that at a low Pe (Pe = 0.1), a face-centered cubic (FCC) structure dominates, primarily independent of the sedimentation effects. In contrast, a high Pe leads to hexagonal close-packed or amorphous structure formation. Notably, at intermediate drying rates (Pe = 10), an increase in Ns promotes additional FCC ordering in the final film structure. Our study provides new insights into the hitherto underexplored role of sedimentation in the structural evolution of drying colloidal films, revealing the mechanisms of drying-induced assembly in colloidal systems.
Collapse
Affiliation(s)
- Yeji Kim
- School of Food Biotechnology and Chemical Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Ki Lee
- School of Food Biotechnology and Chemical Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
10
|
Daware SV, Mondal R, Kothari M, Chowdhury A, Liu ACY, Prabhakar R, Kumaraswamy G. Synthesis and Characterization of Monolayer Colloidal Sheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23198-23208. [PMID: 39288076 DOI: 10.1021/acs.langmuir.4c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Sheet-like colloidal assemblies represent model systems to investigate the structure and properties of two-dimensional materials. Here, we report a simple yet versatile method for the preparation of colloidal monolayer sheet-like assemblies that affords control over the size, crystalline order, flexibility, and defect density. The protocol that we report relies on self-assembly of colloids as a sessile drop of dispersion is evaporated on an oil-covered substrate. In this case, the contact line continually moves as the drop shrinks. Polyethyleneimine polymer-covered micrometer-sized colloidal particles are transported to the air-water interface and assemble to form a monolayer sheet as the drop dries. Cross-linking the polymer renders the colloidal assembly permanent. Interestingly, monodisperse colloidal particles form disordered assemblies when dried from low concentration dispersions, while polycrystalline ordered assemblies form at higher concentrations. We demonstrate that increasing the cross-linker to polymer ratio decreases the flexibility of the assembly. Introduction of different-sized colloidal particles in a sheet leads to increased disorder. Removal of sacrificial particles from the sheet allowed the introduction of "holes" in the sheets. Thus, these colloidal sheets are models for probing the effects of disorder, doping, and vacancies in two-dimensional systems.
Collapse
Affiliation(s)
- Santosh Vasant Daware
- Department of Chemical Engineering, Indian Institute of Bombay, Mumbai 400076, India
- IITB Monash Research Academy, IIT Bombay, Powai 400076, India
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - Ranajit Mondal
- Department of Chemical Engineering, IIT Hyderabad, Kandi, Telangana 502284, India
| | - Mansi Kothari
- Department of Chemistry, Indian Institute of Bombay, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Bombay, Mumbai 400076, India
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Clayton 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - Guruswamy Kumaraswamy
- Department of Chemical Engineering, Indian Institute of Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Spatafora-Salazar A, Lobmeyer DM, Cunha LHP, Joshi K, Biswal SL. Aligned colloidal clusters in an alternating rotating magnetic field elucidated by magnetic relaxation. Proc Natl Acad Sci U S A 2024; 121:e2404145121. [PMID: 39348534 PMCID: PMC11474040 DOI: 10.1073/pnas.2404145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Precise control at the colloidal scale is one of the most promising bottom-up approaches to fabricating new materials and devices with tunable and precisely engineered properties. Magnetically driven colloidal assembly offers great versatility because of the ability to externally tune particle-particle interactions and to construct a host of particle arrangements. However, despite previous efforts to probe the parameter space, global orientational control in conjunction with two-dimensional microstructural control has remained out of reach. Furthermore, the magnetic relaxation time of superparamagnetic beads has been largely overlooked despite being a key feature of the magnetic response. Here, we take advantage of the magnetic relaxation time of superparamagnetic beads in an alternating rotating magnetic field and show how harnessing this feature facilitates the formation of oriented clusters. The orientation of these clusters can be controlled by field parameters. Using experiments, simulations, and theory, we probe a two-particle system (dimer) under this alternating rotating magnetic field and use its dynamics to provide insights into the collective response that forms clusters. We find that the type of field has significant implications for the dipolar interactions between the colloids because of the nonnegligible magnetic relaxation. Moreover, we find that the competing time scales of the magnetic relaxation and the alternating field generate an anisotropic interaction potential that drives cluster alignment. By exploiting the magnetic relaxation time of magnetic systems, we can tailor new types of interparticle interactions, thereby expanding the capabilities of colloidal assembly in engineering unique materials and devices.
Collapse
Affiliation(s)
| | - Dana M. Lobmeyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Lucas H. P. Cunha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Kedar Joshi
- School of Chemical and Materials Science, Indian Institute of Technology Goa, Farmagudi, Ponda403401, Goa
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| |
Collapse
|
12
|
Jung Y, Park S, Lee SS, Kim SH. Centrifugation-Mediated Crystal Growth of Attractive Colloids for Band Edge Lasing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402887. [PMID: 38895964 DOI: 10.1002/smll.202402887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Attractive depletion interactions are utilized to organize colloidal particles into crystalline arrays with high crystallinity through spontaneous phase separation. However, uncontrolled nucleation frequently leads to the formation of crystalline grains with varied crystal orientations, which hampers the optical performance of photonic crystals. Here, colloidal crystals have been engineered with uniform orientation and high surface coverage by applying centrifugal force during the depletion-induced assembly of polystyrene particles. The centrifugal force encourages the particles to move toward the bottom surface, which fosters heterogeneous nucleation and supports rapid crystal growth, yielding densely-packed and uniformly-arranged crystal grains with high reflectivity. This study has observed that the nucleation and crystal growth behavior is significantly influenced by the salt concentration. Based on the pair potentials, the transition boundary has been quantitatively analyzed between fluid and crystal phases and identified the threshold for homogeneous nucleation. Utilizing the high-reflectivity colloidal crystals, band-edge lasing is achieved by dissolving the water-soluble dye into the aqueous suspensions. Upon optical excitation, a lasing emission characterized is observed by a narrow spectral width at the short-wavelength band edge. Notably, the laser wavelength can be adjusted by altering the salt concentration or particle diameter, offering a versatile approach to tuning the optical properties.
Collapse
Affiliation(s)
- Yongseok Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Seok Lee
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
14
|
Wang Z, Wang Y, Zhang C, Zhu YJ, Song KP, Aikens CM, Tung CH, Sun D. Silvery fullerene in Ag 102 nanosaucer. Natl Sci Rev 2024; 11:nwae192. [PMID: 39071102 PMCID: PMC11282957 DOI: 10.1093/nsr/nwae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
Despite the discovery of a series of fullerenes and a handful of noncarbon clusters with the typical topology of I h-C60, the smallest fullerene with a large degree of curvature, C20, and its other-element counterparts are difficult to isolate experimentally. In coinage metal nanoclusters (NCs), the first all-gold fullerene, Au32, was discovered after a long-lasting pursuit, but the isolation of similar silvery fullerene structures is still challenging. Herein, we report a flying saucer-shaped 102-nuclei silver NC (Ag102) with a silvery fullerene kernel of Ag32, which is embraced by a robust cyclic anionic passivation layer of (KPO4)10. This Ag32 kernel can be viewed as a non-centered icosahedron Ag12 encaged into a dodecahedron Ag20, forming the silvery fullerene of Ag12@Ag20. The anionic layer (KPO4)10 is located at the interlayer between the Ag32 kernel and Ag70 shell, passivating the Ag32 silvery fullerene and templating the Ag70 shell. The t BuPhS- and CF3COO- ligands on the silver shell show a regioselective arrangement with the 60 t BuPhS- ligands as expanders covering the upper and lower of the flying saucer and 10 CF3COO- as terminators neatly encircling the edges of the structure. In addition, Ag102 shows excellent photothermal conversion efficiency (η) from the visible to near-infrared region (η = 67.1% ± 0.9% at 450 nm, 60.9% ± 0.9% at 660 nm and 50.2% ± 0.5% at 808 nm), rendering it a promising material for photothermal converters and potential application in remote laser ignition. This work not only captures silver kernels with the topology of the smallest fullerene C20, but also provides a pathway for incorporating alkali metal (M) into coinage metal NCs via M-oxoanions.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan 66506, USA
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Ke-Peng Song
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | | | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
15
|
Hayashi M, Sumi T, Inooka Y, Hamatake H, Kawakita H, Ohto K, Morisada S. Effect of Particle-Substrate Interactions on Colloidal Layer Structure Prepared by Convective Self-Assembly Using Polyelectrolyte-Grafted Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8493-8502. [PMID: 38602017 DOI: 10.1021/acs.langmuir.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cationic and anionic polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTA) and poly(sodium styrene sulfate) (PSSS), were grafted on the surface of the silica particles, respectively, and then these two types of polyelectrolyte-grafted silica particles were applied to the colloidal layer preparation by convective self-assembly (CSA) using hydrophilic or hydrophobic glass substrates to investigate the effect of the interactions between the particles and the substrate surface on the resultant layer structures. When the PVBTA-grafted silica particle (PVBTA-Si) was used, the colloidal monolayers with a non-close-packed (NCP) structure were formed on both hydrophilic and hydrophobic glass substrates, where the NCP colloidal layers on the hydrophobic glass substrate have a somewhat more ordered structure than those on the hydrophilic glass substrate. In the case of the PSSS-grafted silica particle (PSSS-Si), on the other hand, stripe patterns with close-packed (CP) colloidal layers were obtained on both types of the glass substrates. The number of layers of the stripes on the hydrophilic glass substrate was less than that on the hydrophobic glass substrate, while the spacing and width of the stripes on both substrates were similar to each other. The difference in the structures of the colloidal layers obtained here indicates that an attractive interaction, such as an electrostatic attraction and a hydrophobic interaction, between the particle and the substrate surface is necessary to achieve the NCP structure by the CSA process using polyelectrolyte-grafted silica particles.
Collapse
Affiliation(s)
- Miki Hayashi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Takahiro Sumi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yaya Inooka
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hiromu Hamatake
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Shintaro Morisada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
16
|
Chaâbani W, Lyu J, Marcone J, Goldmann C, Ten Veen EJM, Dumesnil C, Bizien T, Smallenburg F, Impéror-Clerc M, Constantin D, Hamon C. Prismatic Confinement Induces Tunable Orientation in Plasmonic Supercrystals. ACS NANO 2024; 18:9566-9575. [PMID: 38507585 DOI: 10.1021/acsnano.3c12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout history scientists have looked to Nature for inspiration and attempted to replicate intricate complex structures formed by self-assembly. In the context of synthetic supercrystals, achieving such complexity remains a challenge due to the highly symmetric nature of most nanoparticles (NPs). Previous works have shown intricate coupling between the self-assembly of NPs and confinement in templates, such as emulsion droplets (spherical confinement) or tubes (cylindrical confinement). This study focuses on the interplay between anisotropic NP shape and tunable "prismatic confinement" leading to the self-assembly of supercrystals in cavities featuring polygonal cross sections. A multiscale characterization strategy is employed to investigate the orientation and structure of the supercrystals locally and at the ensemble level. Our findings highlight the role of the mold interface in guiding the growth of distinct crystal domains: each side of the mold directs the formation of a monodomain that extends until it encounters another, leading to the creation of grain boundaries. Computer simulations in smaller prismatic cavities were conducted to predict the effect of an increased confinement. Comparison between prismatic and cylindrical confinements shows that flat interfaces are key to orienting the growth of supercrystals. This work shows a method of inducing orientation in plasmonic supercrystals and controlling their textural defects, thus offering insight into the design of functional metasurfaces and hierarchically structured devices.
Collapse
Affiliation(s)
- Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Jieli Lyu
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Jules Marcone
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Eleonora J M Ten Veen
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, 3584 CC Utrecht, Netherlands
| | - Clément Dumesnil
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Thomas Bizien
- SWING Beamline, SOLEIL Synchrotron, 91190 Gif-sur-Yvette, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
17
|
Chen SY, Lopez Rios HM, Olvera de la Cruz M, Driscoll M. Restructuring a passive colloidal suspension using a rotationally driven particle. SOFT MATTER 2024; 20:2151-2161. [PMID: 38351846 DOI: 10.1039/d4sm00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The interaction between passive and active/driven particles has introduced a new way to control colloidal suspension properties from particle aggregation to crystallization. Here, we focus on the hydrodynamic interaction between a single rotational driven particle and a suspension of passive particles near the floor. Using experiments and Stokesian dynamics simulations that account for near-field lubrication, we demonstrate that the flow induced by the driven particle can induce long-ranged rearrangement in a passive suspension. We observe an accumulation of passive particles in front of the driven particle and a depletion of passive particles behind the driven particle. This restructuring generates a pattern that can span a range more than 10 times the driven particles radius. We further show that size scale of the pattern is only a function of the particles height above the floor.
Collapse
Affiliation(s)
- Shih-Yuan Chen
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
| | - Hector Manuel Lopez Rios
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Monica Olvera de la Cruz
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Michelle Driscoll
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
| |
Collapse
|
18
|
Cai Y, Qi X, Boese J, Zhao Y, Hellner B, Chun J, Mundy CJ, Baneyx F. Towards predictive control of reversible nanoparticle assembly with solid-binding proteins. SOFT MATTER 2024; 20:1935-1942. [PMID: 38323470 DOI: 10.1039/d4sm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Although a broad range of ligand-functionalized nanoparticles and physico-chemical triggers have been exploited to create stimuli-responsive colloidal systems, little attention has been paid to the reversible assembly of unmodified nanoparticles with non-covalently bound proteins. Previously, we reported that a derivative of green fluorescent protein engineered with oppositely located silica-binding peptides mediates the repeated assembly and disassembly of 10-nm silica nanoparticles when pH is toggled between 7.5 and 8.5. We captured the subtle interplay between interparticle electrostatic repulsion and their protein-mediated short-range attraction with a multiscale model energetically benchmarked to collective system behavior captured by scattering experiments. Here, we show that both solution conditions (pH and ionic strength) and protein engineering (sequence and position of engineered silica-binding peptides) provide pathways for reversible control over growth and fragmentation, leading to clusters ranging in size from 25 nm protein-coated particles to micrometer-size aggregate. We further find that the higher electrolyte environment associated with successive cycles of base addition eventually eliminates reversibility. Our model accurately predicts these multiple length scales phenomena. The underpinning concepts provide design principles for the dynamic control of other protein- and particle-based nanocomposites.
Collapse
Affiliation(s)
- Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Julia Boese
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Yundi Zhao
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Brittney Hellner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York, New York, New York 10031, USA
| | - Christopher J Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
19
|
Kalapurakal RM, Rocha BC, Vashisth H. Self-Assembly in an Experimentally Realistic Model of Lobed Patchy Colloids. ACS APPLIED BIO MATERIALS 2024; 7:535-542. [PMID: 36698242 PMCID: PMC10880053 DOI: 10.1021/acsabm.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Colloids with lobed architectures have been shown to self-assemble into promising porous structures with potential biomedical applications. The synthesis of these colloids via experiments can be tuned to vary the number and the position of the lobes. However, the polydispersity involving the numbers, sizes, and the dispositions of lobes, that is often observed in particle designs, can significantly affect their self-assembled structures. In this work, we go beyond the uniform lobe size conditions commonly considered in molecular simulations, and probe the effect of polydispersity due to non-uniform lobe sizes by studying self-assembly in three experimentally observable designs of lobed particles (dumbbell, two lobes; trigonal planar, three lobes; and tetrahedral, four lobes), using coarse-grained Langevin dynamics simulations in the NVT ensemble. With increasing polydispersity, we observed the formation of a crystalline structure from a disordered state for the dumbbell system, and a loss of order in the crystalline structures for the trigonal planar system. The tetrahedral system retained a crystalline structure with only a minor loss in compactness. We observed that the effect of polydispersity on the self-assembled morphology of a given system can be minimized by increasing the number of lobes. The polydispersity in the lobe size may also be useful in tuning self-assemblies toward desired structures.
Collapse
Affiliation(s)
| | - Brunno C. Rocha
- Department of Chemical Engineering, University of New Hamphire, Durham, New Hampshire03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hamphire, Durham, New Hampshire03824, United States
| |
Collapse
|
20
|
Fujita M, Toyotama A, Okuzono T, Niinomi H, Yamanaka J. Formation of two-dimensional diamond-like colloidal crystals using layer-by-layer electrostatic self-assembly. SOFT MATTER 2024; 20:985-992. [PMID: 38197135 DOI: 10.1039/d3sm01278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We report here that a two-dimensional (2D) diamond-like structure of micron-sized colloidal particles can be obtained by layer-by-layer self-assembly. Positively and negatively charged silica particles, 1 μm in diameter, were used in the experiments. On a positively charged, flat glass substrate, the first layer of negatively charged particles was prepared to form a non-close-packed 2D crystal. Then the second and third layers were fabricated using electrostatic adsorption. The positions of adsorbed particles were controllable by tuning the zeta-potential of the particles and the salt concentration of the medium. The FDTD calculations show that the 2D diamond structures of particles with higher refractive index (titania) have an absorption band in the wavelength range corresponding to the photonic band gap of the 3D bulk crystal. We expect these findings to be useful for the fabrication of novel photonic materials.
Collapse
Affiliation(s)
- Minori Fujita
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Japan.
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Japan.
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Japan.
| | - Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Japan.
| |
Collapse
|
21
|
Chen X, Liu X, Khan MY, Yan Z, Cao D, Duan S, Fu L, Wang W. Reconfigurable Assembly of Planar Colloidal Molecules via Chemical Reaction and Electric Polarization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0490. [PMID: 39351072 PMCID: PMC11440515 DOI: 10.34133/research.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Colloidal molecules, ordered structures assembled from micro- and nanoparticles, serve as a valuable model for understanding the behavior of real molecules and for constructing materials with tunable properties. In this work, we introduce a universal strategy for assembling colloidal molecules consisting of a central active particle surrounded by several passive particles as ligands. During the assembly process, active particles attract the surrounding passive particles through phoresis and osmosis resulting from the chemical reactions on the surface of the active particles, while passive particles repel each other due to the electric polarization induced by an alternating current (AC) electric field. By carefully selecting particles of varying structures and sizes, we have assembled colloidal molecules of symmetric and asymmetric dimers, trimers, and multimers. Furthermore, the coordination number of these colloidal molecules can be regulated in real time and in situ by tuning the interaction forces between the constituent particles. Brownian dynamics simulations reproduced the formation of the colloidal molecules and validated that the self-assembly arises from chemically induced attraction and electrical dipolar repulsion. This strategy for reconfigurable colloidal assemblies poses the potential for designing adaptive micro-nanomachines.
Collapse
Affiliation(s)
- Xi Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianghong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Lingshan Fu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
22
|
Wei J, Yu Y, Matsuo Y, Zhang L, Mitomo H, Chen Y, Ijiro K, Zhang Z. Size Segregation of Gold Nanoparticles into Bilayer-like Vesicular Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38039385 DOI: 10.1021/acs.langmuir.3c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Size segregation of nanoparticles with different sizes into highly ordered, unique nanostructures is important for their practical applications. Herein, we demonstrate spontaneous self-assembly of the binary mixtures of small and large gold nanoparticles (GNPs; 5/15, 5/20, or 10/20 in diameter) in the presence of a tetra(ethylene glycol)-terminated octafluoro-4,4'-biphenol ligand, namely, TeOFBL, resulting in a size-segregated assembly. The outer single layer of large GNPs forming a gold nanoparticle vesicle (GNV) encapsulated the inner vesicle-like assembly composed of small GNPs, which is referred to as bilayer-like GNV and similar to the molecular bilayer structure of a liposome. The size segregation was driven by the solvophobic feature of the TeOFBLs on the surface of GNPs. A time-course study indicated that size segregation occurred instantaneously during the mixing stage of the self-organization process. The size-segregated precursors quickly fused with each other through the inner-inner and outer-outer layer fashion to form the bilayer-like GNV. This study provides a new approach to creating biomimetic bilayer capsules with different physical properties for potential applications such as surface-enhanced Raman scattering and drug delivery.
Collapse
Affiliation(s)
- Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P. R. China
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
23
|
Jiang L, Mao X, Liu C, Guo X, Deng R, Zhu J. 2D superlattices via interfacial self-assembly of polymer-grafted Au nanoparticles. Chem Commun (Camb) 2023; 59:14223-14235. [PMID: 37962523 DOI: 10.1039/d3cc04587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanoparticle (NP) superlattices are periodic arrays of nanoscale building blocks. Because of the collective effect between functional NPs, NP superlattices can exhibit exciting new properties that are distinct from those of individual NPs or corresponding bulk materials. In particular, two-dimensional (2D) NP superlattices have attracted increasing attention due to their emerging applications in micro/opto-electronics, catalysis, sensing, and other fields. Among various preparation methods, evaporation-induced interfacial self-assembly has become the most popular method for preparing 2D NP superlattices because it is a simple, low-cost, and scalable process that can be widely applied to various NPs. Introducing soft ligands, such as polymers, can not only provide convenience in controlling the self-assembly process and tuning superlattice structures but also improve the properties of 2D NP superlattices. This feature article focuses on the methods of evaporation-induced self-assembly of polymer-grafted Au NPs into free-standing 2D NP superlattice films at air/liquid interfaces and 2D NP superlattice coatings on substrates, followed by studies on in situ tracking of the self-assembly evolution process through small-angle X-ray scattering. Their application in nano-floating gate memory devices is also included. Finally, the challenges and perspectives of this direction are discussed.
Collapse
Affiliation(s)
- Liangzhu Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Changxu Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaodan Guo
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Sun M, Yang S, Jiang J, Jiang S, Sitti M, Zhang L. Bioinspired self-assembled colloidal collectives drifting in three dimensions underwater. SCIENCE ADVANCES 2023; 9:eadj4201. [PMID: 37948530 PMCID: PMC10637755 DOI: 10.1126/sciadv.adj4201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Active matter systems feature a series of unique behaviors, including the emergence of collective self-assembly structures and collective migration. However, realizing collective entities formed by synthetic active matter in spaces without wall-bounded support makes it challenging to perform three-dimensional (3D) locomotion without dispersion. Inspired by the migration mechanism of plankton, we propose a bimodal actuation strategy in the artificial colloidal systems, i.e., combining magnetic and optical fields. The magnetic field triggers the self-assembly of magnetic colloidal particles to form a colloidal collective, maintaining numerous colloids as a dynamically stable entity. The optical field allows the colloidal collectives to generate convective flow through the photothermal effect, enabling them to use fluidic currents for 3D drifting. The collectives can perform 3D locomotion underwater, transit between the water-air interface, and have a controlled motion on the water surface. Our study provides insights into designing smart devices and materials, offering strategies for developing synthetic active matter capable of controllable collective movement in 3D space.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Physical Intelligence Department, Max Planck Institute for Instelligent Systems, Heisenbergstr. 3, Stuttgart 70569, Germany
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Jiang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Instelligent Systems, Heisenbergstr. 3, Stuttgart 70569, Germany
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Vu-Minh T, Dao-Hong A, Bui-Bich P, Nguyen-Tran-Thanh N, Tran-Manh C, Tran-Phan-Thuy L, Doan-Thi H, Luc-Huy H, Pham-Van H. Evaporation-driven assembly of colloidal nanoparticles into clusters: A dissipative particle dynamics study. Phys Rev E 2023; 108:014602. [PMID: 37583241 DOI: 10.1103/physreve.108.014602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 08/17/2023]
Abstract
In this work we consider a simulation strategy for assembling Janus nanoparticles in oil-in-water emulsion droplets by evaporation based on the dissipative particle dynamics method. Our simple method reproduces all the observed cluster configurations that have been explored experimentally. In addition, the kinetic process of cluster formation is systematically investigated. We observe a structural transition from spherical packings to minimal second-moment configurations via visual inspection and a simple angle parameter. We reveal that the critical volume at which the transition occurs is a cubic function of the number of particles, N. Our approach also allows us to anticipate higher-order clusters, overcoming the limitations of the standard methods in the literature. Similarly to small N values, we find that for each N in the range of 16-39, all final clusters have a unique configuration.
Collapse
Affiliation(s)
- Tu Vu-Minh
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Anh Dao-Hong
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Phuong Bui-Bich
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Nam Nguyen-Tran-Thanh
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Cuong Tran-Manh
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Linh Tran-Phan-Thuy
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Hien Doan-Thi
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Hoang Luc-Huy
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| | - Hai Pham-Van
- Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay, Hanoi, Vietnam
| |
Collapse
|
26
|
Lyu D, Xu W, Zhou N, Duan W, Wang Z, Mu Y, Zhou R, Wang Y. Biomimetic thermoresponsive superstructures by colloidal soft-and-hard co-assembly. SCIENCE ADVANCES 2023; 9:eadh2250. [PMID: 37390212 PMCID: PMC10313167 DOI: 10.1126/sciadv.adh2250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Soft-and-hard hybrid structures are ubiquitous in biological systems and have inspired the design of man-made mechanical devices, actuators, and robots. The realization of these structures, however, has been challenging at microscale, where material integration and actuation become exceedingly less practical. Here, through simple colloidal assembly, we create microscale superstructures consisting of soft and hard materials, which, serving as microactuators, have thermoresponsive shape-transforming properties. In this case, anisotropic metal-organic framework (MOF) particles as the hard components are integrated with liquid droplets, forming spine-mimicking colloidal chains via valence-limited assembly. The chains, with alternating soft and hard segments, are referred to as MicroSpine and can reversibly change shape, switching between straight and curved states through a thermoresponsive swelling/deswelling mechanism. By solidification of the liquid parts within a chain with prescribed patterns, we design various chain morphologies, such as "colloidal arms," with controlled actuating behaviors. The chains are further used to build colloidal capsules, which encapsulate and release guests by the temperature-programmed actuation.
Collapse
Affiliation(s)
- Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Nansen Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
27
|
Shelke Y, Camerin F, Marín-Aguilar S, Verweij RW, Dijkstra M, Kraft DJ. Flexible Colloidal Molecules with Directional Bonds and Controlled Flexibility. ACS NANO 2023. [PMID: 37363931 DOI: 10.1021/acsnano.3c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Colloidal molecules are ideal model systems for mimicking real molecules and can serve as versatile building blocks for the bottom-up self-assembly of flexible and smart materials. While most colloidal molecules are rigid objects, the development of colloidal joints has made it possible to endow them with conformational flexibility. However, their unrestricted range of motion does not capture the limited movement and bond directionality that is instead typical of real molecules. In this work, we create flexible colloidal molecules with an in situ controllable motion range and bond directionality by assembling spherical particles onto cubes functionalized with complementary surface-mobile DNA. By varying the sphere-to-cube size ratio, we obtain colloidal molecules with different coordination numbers and find that they feature a constrained range of motion above a critical size ratio. Using theory and simulations, we show that the particle shape together with the multivalent bonds creates an effective free-energy landscape for the motion of the sphere on the surface of the cube. We quantify the confinement of the spheres on the surface of the cube and the probability to change facet. We find that temperature can be used as an extra control parameter to switch in situ between full and constrained flexibility. These flexible colloidal molecules with a temperature switching motion range can be used to investigate the effect of directional yet flexible bonds in determining their self-assembly and phase behavior, and may be employed as constructional units in microrobotics and smart materials.
Collapse
Affiliation(s)
- Yogesh Shelke
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Ruben W Verweij
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| |
Collapse
|
28
|
Wittmann R, Monderkamp PA, Löwen H. Statistics of carrier-cargo complexes. Phys Rev E 2023; 107:064602. [PMID: 37464670 DOI: 10.1103/physreve.107.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/17/2023] [Indexed: 07/20/2023]
Abstract
We explore the statistics of assembling soft-matter building blocks to investigate the uptake and encapsulation of cargo particles by carriers engulfing their load. While the such carrier-cargo complexes are important for many applications out of equilibrium, such as drug delivery and synthetic cell encapsulation, we uncover here the basic statistical physics in minimal hard-core-like models for particle uptake. Introducing an exactly solvable equilibrium model in one dimension, we demonstrate that the formation of carrier-cargo complexes can be largely tuned by both the cargo concentration and the carriers' interior size. These findings are intuitively explained by interpreting the internal free space (partition function) of the cargo inside a carrier as its engulfment strength, which can be mapped to an external control parameter (chemical potential) of an additional effective particle species. Assuming a hard carrier membrane, such a mapping can be exactly applied to account for multiple cargo uptake involving various carrier or cargo species and even attractive uptake mechanisms, while soft interactions require certain approximations. We further argue that the Boltzmann occupation law identified within our approach is broken when particle uptake is governed by nonequilibrium forces. Speculating on alternative occupation laws using effective parameters, we put forward a Bose-Einstein-like phase transition associated with polydisperse carrier properties.
Collapse
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Herranz M, Pedrosa C, Martínez-Fernández D, Foteinopoulou K, Karayiannis NC, Laso M. Fine-tuning of colloidal polymer crystals by molecular simulation. Phys Rev E 2023; 107:064605. [PMID: 37464607 DOI: 10.1103/physreve.107.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
Through extensive molecular simulations we determine a phase diagram of attractive, fully flexible polymer chains in two and three dimensions. A rich collection of distinct crystal morphologies appear, which can be finely tuned through the range of attraction. In three dimensions these include the face-centered cubic, hexagonal close packed, simple hexagonal, and body-centered cubic crystals and the Frank-Kasper phase. In two dimensions the dominant structures are the triangular and square crystals. A simple geometric model is proposed, based on the concept of cumulative neighbors of ideal crystals, which can accurately predict most of the observed structures and the corresponding transitions. The attraction range can thus be considered as an adjustable parameter for the design of colloidal polymer crystals with tailored morphologies.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Clara Pedrosa
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
30
|
Wen Y, Liu Y. Controlled stretching and splitting behaviors of nanodroplets by designing surface wettability patterns. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
31
|
Khawas S, Srivastava S. Anisotropic nanocluster arrays to a diminished zone: different regimes of surface deposition of gold nanocolloids. SOFT MATTER 2023; 19:3580-3589. [PMID: 37161512 DOI: 10.1039/d2sm01625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Evaporation-induced assembly of nanoparticles has emerged as a versatile technique for the production of large-scale ordered structures and materials with complex features. In this study, we show that a dried particulate of an anisotropic nanocolloid undergoes non-ubiquitous surface morphological transitions at varying particle concentrations. Below 5 nM, deposits reveal the formation of linear arrays of AuNR clusters outside of the coffee ring and an annular CTAB-rich depletion zone in the inner vicinity of the coffee ring. For nanoparticle concentrations ≥5 nM, the outer cluster deposits disappear and a region of reduced AuNR density, sandwiched between the coffee ring and the depletion zone, analogous to the diminished zone, is observed. Within the coffee-ring deposits, nanoscale smectic AuNR assembly occurs via the expulsion of the cetyltrimethyl ammonium bromide (CTAB) bilayer, which contributes to the inward solutal Marangoni flow. An enhanced inward solutal Marangoni flow at high particle concentrations assists in the formation of a wider depletion zone, the emergence of the diminished zone and suppression of the width of the coffee-ring deposits. Through detailed analysis of data from ex situ (scanning electron microscopy, SEM) and in situ (contact angle and confocal imaging) measurements, we establish a direct correlation between the different evaporation modes and the various deposition regimes. A detailed mechanism for the surface morphology modulation of AuNR deposits by tuning the nanoparticle concentration in the drying sessile drop is discussed.
Collapse
Affiliation(s)
- Sanjoy Khawas
- Department of Physics, Indian Institute of Technology Bombay, Powai, Maharashtra-400076, India.
| | - Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Powai, Maharashtra-400076, India.
| |
Collapse
|
32
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
33
|
Miki H, Ishigami T, Yamanaka J, Okuzono T, Toyotama A, Mata J, Komazawa H, Takeda Y, Minami M, Fujita M, Doi M, Higuchi T, Takase H, Adachi S, Sakashita T, Shimaoka T, Nagai M, Watanabe Y, Fukuyama S. Clustering of charged colloidal particles in the microgravity environment of space. NPJ Microgravity 2023; 9:33. [PMID: 37120425 PMCID: PMC10148850 DOI: 10.1038/s41526-023-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
We conducted a charge-charge clustering experiment of positively and negatively charged colloidal particles in aqueous media under a microgravity environment at the International Space Station. A special setup was used to mix the colloid particles in microgravity and then these structures were immobilized in gel cured using ultraviolet (UV) light. The samples returned to the ground were observed by optical microscopy. The space sample of polystyrene particles with a specific gravity ρ (=1.05) close to the medium had an average association number of ~50% larger than the ground control and better structural symmetry. The effect of electrostatic interactions on the clustering was also confirmed for titania particles (ρ ~ 3), whose association structures were only possible in the microgravity environment without any sedimentation they generally suffer on the ground. This study suggests that even slight sedimentation and convection on the ground significantly affect the structure formation of colloids. Knowledge from this study will help us to develop a model which will be used to design photonic materials and better drugs.
Collapse
Affiliation(s)
- Hiroyuki Miki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Teruyoshi Ishigami
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan.
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
| | - Honoka Komazawa
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Yushi Takeda
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Madoka Minami
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Minori Fujita
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Maho Doi
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho, Nagoya, Japan
| | - Satoshi Adachi
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Japan
| | - Tetsuya Sakashita
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Japan
| | - Taro Shimaoka
- Japan Space Forum (JSF), 3-2-1 Kandasurugadai, Chiyoda, Tokyo, Japan
| | - Masae Nagai
- Japan Space Forum (JSF), 3-2-1 Kandasurugadai, Chiyoda, Tokyo, Japan
| | - Yuki Watanabe
- Advanced Engineering Services (AES) Co., Ltd., 1-6-1 Takezono, Tsukuba, Japan
| | - Seijiro Fukuyama
- Advanced Engineering Services (AES) Co., Ltd., 1-6-1 Takezono, Tsukuba, Japan
| |
Collapse
|
34
|
Cheddah S, Xia Z, Wang Y, Yan C. Effect of Hydrophobic Moieties on the Assembly of Silica Particles into Colloidal Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5655-5669. [PMID: 37021773 DOI: 10.1021/acs.langmuir.2c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To boost the implementation of colloidal crystals (CCs) in separation science, the effects of the most common chromatographic reversed phases, that is, butyl and octadecyl, on the assembly of silica particles into CCs and on the optical properties of CCs are investigated. Interestingly, particle surface modification can cause phase separation during sedimentation because the assembly is highly sensitive to minute changes in surface characteristics. Solvent-induced surface charge generation through acid-base interactions of acidic residual silanol groups with the solvent is enough to promote colloidal crystallization of modified silica particles. In addition, solvation forces at small interparticle distances are also involved in colloidal assembly. The characterization of CCs formed during sedimentation or via evaporative assembly revealed that C4 particles can form CCs more easily than C18 particles because of their low hydrophobicity; the latter can only form CCs in tetrahydrofuran when C18 chains with a high bonding density have extra hydroxyl side groups. These groups can only be hydrolyzed from trifunctional octadecyl silane but not from a monofunctional one. Moreover, after evaporative assembly, CCs formed from particles with different surface moieties exhibit different lattice spacings because their surface hydrophobicity and chemical heterogeneity can modulate interparticle interactions during the two main stages of assembly: the wet stage of crystal growth and the late stage of nano dewetting (evaporation of interparticle solvent bridges). Finally, short, alkyl-modified CCs were effectively assembled inside silica capillaries with a 100 μm inner diameter, laying the foundation for future chromatographic separation using capillary columns.
Collapse
Affiliation(s)
- Soumia Cheddah
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihang Xia
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Roemling LJ, Bleyer G, Goerlitzer ESA, Onishchukov G, Vogel N. Quantitative Optical and Structural Comparison of 3D and (2+1)D Colloidal Photonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5211-5221. [PMID: 36989210 DOI: 10.1021/acs.langmuir.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals. 3D colloidal crystals produced by convective assembly are well-ordered and periodically arranged but show microscopic cracks. (2+1)D colloidal crystals fabricated by stacking individual monolayers show a decreased hexagonal order and limited crystal registration between single monolayers in the z-direction. We investigate the optical properties of both systems by comparing identical numbers of layers using correlative microspectroscopy. These measurements show that the less ordered (2+1)D colloidal crystals exhibit higher reflected light intensities. Macroscopic reflection integrating all angles shows that the reflected light intensity levels out with an increasing number of layers, whereas incoherent scattering increases. Although both types of colloidal crystal show similar angle-dependent color shifts in specular reflection, the less-ordered structure of the (2+1)D colloidal crystal scatters light within a larger angular range under diffusive illumination. Our results suggest that structural coloration is surprisingly robust toward local defects and irregularities.
Collapse
Affiliation(s)
- Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georgy Onishchukov
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
36
|
Zhang J, Fu Y, Li L, Yan L, Wu X, Lei C. Ratiometric Electrochemical Determination of Ascorbic Acid Using a Copper Nanoparticle@Resin Nanosphere (CuNPs@RNS) Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jie Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yulin Fu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Liqiang Yan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiongzhi Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Chenghong Lei
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
37
|
Thedford RP, Yu F, Tait WRT, Shastri K, Monticone F, Wiesner U. The Promise of Soft-Matter-Enabled Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203908. [PMID: 35863756 DOI: 10.1002/adma.202203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The field of quantum materials has experienced rapid growth over the past decade, driven by exciting new discoveries with immense transformative potential. Traditional synthetic methods to quantum materials have, however, limited the exploration of architectural control beyond the atomic scale. By contrast, soft matter self-assembly can be used to tailor material structure over a large range of length scales, with a vast array of possible form factors, promising emerging quantum material properties at the mesoscale. This review explores opportunities for soft matter science to impact the synthesis of quantum materials with advanced properties. Existing work at the interface of these two fields is highlighted, and perspectives are provided on possible future directions by discussing the potential benefits and challenges which can arise from their bridging.
Collapse
Affiliation(s)
- R Paxton Thedford
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Fei Yu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - William R T Tait
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Kunal Shastri
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Francesco Monticone
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
38
|
Fang W, Xiong T, Pak OS, Zhu L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205382. [PMID: 36538743 PMCID: PMC9929134 DOI: 10.1002/advs.202205382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Indexed: 05/30/2023]
Abstract
Automated manipulation of small particles using external (e.g., magnetic, electric and acoustic) fields has been an emerging technique widely used in different areas. The manipulation typically necessitates a reduced-order physical model characterizing the field-driven motion of particles in a complex environment. Such models are available only for highly idealized settings but are absent for a general scenario of particle manipulation typically involving complex nonlinear processes, which has limited its application. In this work, the authors present a data-driven architecture for controlling particles in microfluidics based on hydrodynamic manipulation. The architecture replaces the difficult-to-derive model by a generally trainable artificial neural network to describe the kinematics of particles, and subsequently identifies the optimal operations to manipulate particles. The authors successfully demonstrate a diverse set of particle manipulations in a numerically emulated microfluidic chamber, including targeted assembly of particles and subsequent navigation of the assembled cluster, simultaneous path planning for multiple particles, and steering one particle through obstacles. The approach achieves both spatial and temporal controllability of high precision for these settings. This achievement revolutionizes automated particle manipulation, showing the potential of data-driven approaches and machine learning in improving microfluidic technologies for enhanced flexibility and intelligence.
Collapse
Affiliation(s)
- Wen‐Zhen Fang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
- Key Laboratory of Thermo‐Fluid Science and EngineeringMOE, Xi'an Jiaotong UniversityXi'an710049China
| | - Tongzhao Xiong
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - On Shun Pak
- Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraCA95053USA
| | - Lailai Zhu
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
39
|
Lee J, Lee J, Kim M. Multiscale micro-/nanofluidic devices incorporating self-assembled particle membranes for bioanalysis: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Functional polymers-assisted confined pyrolysis strategy to transform MOF into hierarchical Co/N-doped carbon for peroxymonosulfate advanced oxidation processes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Yoshinaga N, Tokuda S. Bayesian modeling of pattern formation from one snapshot of pattern. Phys Rev E 2022; 106:065301. [PMID: 36671103 DOI: 10.1103/physreve.106.065301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Partial differential equations (PDEs) have been widely used to reproduce patterns in nature and to give insight into the mechanism underlying pattern formation. Although many PDE models have been proposed, they rely on the pre-request knowledge of physical laws and symmetries, and developing a model to reproduce a given desired pattern remains difficult. We propose a method, referred to as Bayesian modeling of PDEs (BM-PDEs), to estimate the best dynamical PDE for one snapshot of a objective pattern under the stationary state without ground truth. We apply BM-PDEs to nontrivial patterns, such as quasicrystals (QCs), a double gyroid, and Frank-Kasper structures. We also generate three-dimensional dodecagonal QCs from a PDE model. This is done by using the estimated parameters for the Frank-Kasper A15 structure, which closely approximates the local structures of QCs. Our method works for noisy patterns and the pattern synthesized without the ground-truth parameters, which are required for the application toward experimental data.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Satoru Tokuda
- MathAM-OIL, AIST, Sendai 980-8577, Japan
- Research Institute for Information Technology, Kyushu University, Kasuga 816-8580, Japan
| |
Collapse
|
42
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
43
|
Horvath I, Wales DJ, Fejer SN. Design of self-assembling mesoscopic Goldberg polyhedra. NANOSCALE ADVANCES 2022; 4:4272-4278. [PMID: 36321154 PMCID: PMC9552754 DOI: 10.1039/d2na00447j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Palladium ions complexed with nonlinear bidentate ligands have been shown to form hollow, spherical shells with high symmetries. We show that such structures can be reproduced using model anisotropic mesoscale building blocks featuring excluded volume and long-range ionic interactions. A linear building block with a central charged particle, in combination with a bent 'ligand' particle with opposite charges at the ends is sufficient to drive the system towards planar coordination, and the charge ratio determines the coordination number. Similar to the molecular systems, the bend in the 'ligand' particle determines the curvature of the shells that these building blocks prefer. Besides reproducing exotic structures such as M30L60 and M48L96 tetravalent Goldberg polyhedra, we identify highly cooperative single transition state rearrangements between low-energy competing structures as well, corresponding to rotatory motions of a planar subunit within the spherical shell.
Collapse
Affiliation(s)
- Istvan Horvath
- Provitam Foundation Caisului Street 16 Cluj-Napoca Romania
- University of Pécs, Institute of Chemistry 6 Ifjúság Street Pécs Hungary
| | - David J Wales
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Szilard N Fejer
- Provitam Foundation Caisului Street 16 Cluj-Napoca Romania
- University of Pécs, Institute of Chemistry 6 Ifjúság Street Pécs Hungary
| |
Collapse
|
44
|
Eren ED, Moradi MA, van Rijt MMJ, Oosterlaken BM, Friedrich H, de With G. From binary AB to ternary ABC supraparticles. MATERIALS HORIZONS 2022; 9:2572-2580. [PMID: 35894556 DOI: 10.1039/d2mh00574c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Control over the assembly and morphology of nanoscale functional building blocks is of great importance to hybrid and porous nanomaterials. In this paper, by combining different types of spherical nanoparticles with different size ratios in a hierarchical assembly process which allows us to control the final structure of multi-component assemblies, we discuss self-assembly of an extensive range of supraparticles, labelled as AB particles, and an extension to novel ternary particles, labelled as ABC particles. For supraparticles, the organization of small nanoparticles is known to be inherently related to the size ratio of building blocks. Therefore, we studied the formation of supraparticles prepared by colloidal self-assembly using small silica nanoparticles (SiO2 NPs) attached on the surface of large polystyrene latex nanoparticles (PSL NPs) with a wide size ratio range for complete and partial coverage, by controlling the electrostatic interactions between the organic and inorganic nanoparticles and their concentrations. In this way hierarchically ordered, stable supraparticles, either fully covered or partially covered, were realized. The partially covered, stable AB supraparticles offer the option to create ABC supraparticles of which the fully covered shell contains two different types of nanoparticles. This has been experimentally confirmed using iron oxide (Fe3O4) nanoparticles together with silica nanoparticles as shell particles on polystyrene core particles. Cryo-electron tomography was used to visualize the AB binary and ABC ternary supraparticles and to determine the three-dimensional structural characteristics of supraparticles formed under different conditions.
Collapse
Affiliation(s)
- E Deniz Eren
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mohammad-Amin Moradi
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mark M J van Rijt
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bernette M Oosterlaken
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Heiner Friedrich
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
45
|
Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat Commun 2022; 13:5549. [PMID: 36138015 PMCID: PMC9500018 DOI: 10.1038/s41467-022-33125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal liquid crystals are an emerging class of soft materials that naturally combine the unique properties of both liquid crystal molecules and colloidal particles. Chiral liquid crystal blue phases are attractive for use in fast optical displays and electrooptical devices, but the construction of blue phases is limited to a few chiral building blocks and the formation of blue phases from achiral ones is often counterintuitive. Herein we demonstrate that achiral dumbbell-shaped colloids can assemble into a rich variety of characteristic liquid crystal phases, including nematic phases with lock structures, smectic phase, and particularly experimental observation of blue phase III with double-twisted chiral columns. Phase diagrams from experiments and simulations show that the existence and stable regions of different liquid crystal phases are strongly dependent on the geometrical parameters of dumbbell-shaped colloids. This work paves a new route to the design and construction of blue phases for photonic applications. Colloidal liquid crystals account for various applications due to the combination of characteristics relevant for liquid crystals and colloids. The authors elaborate the impact of concave geometry on the properties of colloidal liquid crystals for development of functional materials.
Collapse
|
46
|
Wang L, Petrescu FIT, Liu J, Li H, Shi G. Synthesis of Dimpled Particles by Seeded Emulsion Polymerization and Their Application in Superhydrophobic Coatings. MEMBRANES 2022; 12:876. [PMID: 36135896 PMCID: PMC9504608 DOI: 10.3390/membranes12090876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Dimpled particles are synthesized through the seeded polymerization of fluoroacrylate and styrene on swelled polystyrene spheres. The morphologies of the particles can be controlled by the polymerization temperature, the amount of solvent swelling the seeds or the ratio of the fluoroacrylate monomer over styrene. Golf-ball-like particles with many small dimples on their surfaces are obtained at low polymerization temperatures or with a small amount of solvent. Particles with a large single dimple are formed at higher polymerization temperatures, with larger solvent amounts or a higher ratio of fluoroacrylate over styrene. The morphology formation mechanism of these dimpled particles is proposed and the application of these particles in the fabrication of superhydrophobic coatings is demonstrated.
Collapse
Affiliation(s)
- Likui Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Jing Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongping Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Mazetyte-Stasinskiene R, Freiberger E, Täuscher E, Köhler JM. Four-Level Structural Hierarchy: Microfluidically Supported Synthesis of Polymer Particle Architectures Incorporating Fluorescence-Labeled Components and Metal Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8794-8804. [PMID: 35833738 DOI: 10.1021/acs.langmuir.2c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hierarchical assemblies of functional polymer particles are promising due to their surface as well as physicochemical properties. However, hierarchical composites are complex and challenging to form due to the many steps necessary for integrating different components into one system. Highly structured four-level composite particles were formed in a four-step process. First of all, gold (Au) nanoparticles, poly(methyl methacrylate) (PMMA) nanoparticles, and poly(tripropylene glycol diacrylate) (poly-TPGDA) microparticles were individually synthesized. By applying microfluidic techniques, polymer nano- and microparticles were formed with tunable size and surface properties. Afterwards, the negatively charged gold nanoparticles and PMMA particles functionalized with a positively charged surface were mixed to form Au/PMMA assemblies. The Au/PMMA composites were mixed and incubated with poly-TPGDA microparticles to form ternary Au/PMMA/poly-TPGDA assemblies. For the formation of composite-containing microparticles, Au/PMMA/poly-TPGDA composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution. Monomer droplets were formed in a co-flow microfluidic device and photopolymerized by UV light. In this way, hierarchically structured four-level composites consisting of four different size ranges─0.025/0.8/30/1000 μm─were obtained. By functionalizing polymer nano- and microparticles with different fluorescent dyes, it was possible to visualize the same composite particle under two different excitation modes (λex = 395-440 and λex = 510-560 nm). The Au/PMMA/poly-TPGDA composite-embedded polyacrylamide microparticles can be potentially used as a model for the creation of composite particles for sensing, catalysis, multilabeling, and biomedical applications.
Collapse
Affiliation(s)
- Raminta Mazetyte-Stasinskiene
- Institute for Chemistry and Bioengineering, Group for Physical Chemistry/Microreaction Technology, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Emma Freiberger
- Institute for Chemistry and Bioengineering, Chemistry Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Eric Täuscher
- Institute for Chemistry and Bioengineering, Chemistry Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Johann Michael Köhler
- Institute for Chemistry and Bioengineering, Group for Physical Chemistry/Microreaction Technology, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
48
|
Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy. Nat Commun 2022; 13:3980. [PMID: 35810163 PMCID: PMC9271095 DOI: 10.1038/s41467-022-31651-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Assembling metal-organic framework (MOF)-based particles is an emerging approach for creating colloidal superstructures and hierarchical functional materials. However, realization of this goal requires strategies that not only regulate particle interactions but also harness the anisotropic morphologies and functions of various frameworks. Here, by exploiting depletion interaction induced by ionic amphiphiles, we show the assembly of a broad range of low-dimensional MOF colloidal superstructures, including 1D straight chains, alternating or bundled chains, 2D films of hexagonal, square, centered rectangular, and snowflake-like architectures, and quasi-3D supercrystals. With well-defined polyhedral shapes, the MOF particles are mutually oriented upon assembly, producing super-frameworks with hierarchically coordinated crystallinity and micropores. We demonstrate this advantage by creating functional MOF films with optical anisotropy, in our cases, birefringence and anisotropic fluorescence. Given the variety of MOFs available, our technique should allow access to advanced materials for sensing, optics, and photonics. Colloidal self-assembly is a powerful strategy for designing materials, and MOFs offer wide structural and functional diversity. Here, authors present the self-assembly of MOF microcrystals using depletion interactions to form low-dimensional MOF colloidal superstructures with anisotropic properties.
Collapse
|
49
|
Verloy S, Vankeerberghen B, Jimidar ISM, Gardeniers H, Desmet G. Wafer-Scale Particle Assembly in Connected and Isolated Micromachined Pockets via PDMS Rubbing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7709-7719. [PMID: 35616629 PMCID: PMC9245185 DOI: 10.1021/acs.langmuir.2c00593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Indexed: 05/23/2023]
Abstract
The present contribution reports on a study aiming to find the most suitable rubbing method for filling arrays of separated and interconnected micromachined pockets with individual microspheres on rigid, uncoated silicon substrates without breaking the particles or damaging the substrate. The explored dry rubbing methods generally yielded unsatisfactory results, marked by very large percentages of empty pockets and misplaced particles. On the other hand, the combination of wet rubbing with a patterned rubbing tool provided excellent results (typically <1% of empty pockets and <5% of misplaced particles). The wet method also did not leave any damage marks on the silicon substrate or the particles. When the pockets were aligned in linear grooves, markedly the best results were obtained when the ridge pattern of the rubbing tool was moved under a 45° angle with respect to the direction of the grooves. The method was tested for both silica and polystyrene particles. The proposed assembly method can be used in the production of medical devices, antireflective coatings, and microfluidic devices with applications in chemical analysis and/or catalysis.
Collapse
Affiliation(s)
- Sandrien Verloy
- Department
of Chemical Engineering CHIS, Vrije Universiteit
Brussel, Brussels 1050, Belgium
- Mesoscale
Chemical Systems, University of Twente, Enschede 7522 NB, The Netherlands
| | - Bert Vankeerberghen
- Department
of Chemical Engineering CHIS, Vrije Universiteit
Brussel, Brussels 1050, Belgium
| | - Ignaas S. M. Jimidar
- Department
of Chemical Engineering CHIS, Vrije Universiteit
Brussel, Brussels 1050, Belgium
- Mesoscale
Chemical Systems, University of Twente, Enschede 7522 NB, The Netherlands
| | - Han Gardeniers
- Mesoscale
Chemical Systems, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gert Desmet
- Department
of Chemical Engineering CHIS, Vrije Universiteit
Brussel, Brussels 1050, Belgium
| |
Collapse
|
50
|
Wen Y, Liu Y. Wetting Behavior of Sessile Droplet Affected by Chemical Heterogeneity Size: A Theoretical and Simulative Analysis with Consideration of Contact Line Width. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|