1
|
Pizzi A, Terraneo G, Lo Iacono C, Beccaria R, Dhaka A, Resnati G. Taxonomy of Chemical Bondings: Opportunities and Challenges. Angew Chem Int Ed Engl 2025:e202506525. [PMID: 40401347 DOI: 10.1002/anie.202506525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
The concept of the chemical bond is fundamental to chemistry, governing atomic interactions that define all known matter. Despite this central role, the classification and most convenient naming of chemical bonds remain subjects of debate due to the diverse theoretical models and experimental observations. Modelings from quantum mechanical calculations and heuristic principles from experimental observations offer valuable and complementary insights, but sometimes the match and coalescence of these different approaches into a common terminology is not immediate. This paper describes a hierarchical categorization of noncovalent interactions based on the electrophilic atom involved, aligning with IUPAC definitions of hydrogen bonding (HB), halogen bonding (HaB), chalcogen bonding (ChB), and pnictogen bonding (PnB). The resulting taxonomy may avoid some ambiguities that arise from naming interactions based on single chemical/physical features. The proposed categorization that moves from more general and comprehensive terms to more specific and descriptive terms may ensure clarity, comprehensiveness, consistency with periodic trends, and invariancy over evolving understanding of the chemical bonds so that findings can be communicated and stored effectively via both human and machine based protocols.
Collapse
Affiliation(s)
- Andrea Pizzi
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Giancarlo Terraneo
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Cristina Lo Iacono
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Roberta Beccaria
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Arun Dhaka
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Giuseppe Resnati
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
2
|
Sak MH, Jacobsen EN. Selective Noncovalent Catalysis with Small Molecules. Chem Rev 2025. [PMID: 40373223 DOI: 10.1021/acs.chemrev.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
In catalysis, selectivity reflects the energetic preference for the formation of a single product out of multiple possible reaction outcomes. The classic steric biasing approach in small-molecule catalysis employs steric destabilization of the undesired competing transition states to achieve energetic differentiation. In contrast, enzymes achieve high levels of rate acceleration and selectivity by accelerating the pathway leading to the major product, often through networks of attractive, stabilizing noncovalent interactions. This Review showcases selective noncovalent catalysis (NCC) with small organic molecules and transition-metal complexes. We collect and highlight examples whereby selectivity was documented experimentally to arise from selective stabilization of the transition state leading to the major product. We also showcase how synergistic experimental and computational investigations have enabled the elucidation of specific noncovalent interactions responsible for selective stabilization.
Collapse
Affiliation(s)
- Marcus H Sak
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Chvojka M, Šindelář V, Valkenier H. Substituent effects of fluorinated bambusurils on their anion transport. Org Biomol Chem 2025. [PMID: 40235442 PMCID: PMC12001018 DOI: 10.1039/d5ob00400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Anionophores are molecules that can transport ions across membranes. Several structural design criteria must be met for anionophores to be highly active. Fluorinated anionophores are usually more potent than their non-fluorinated analogues due to their higher lipophilicity and increased affinity for anions. Clear structure-activity relationships have been described for small and relatively simple anionophores. However, such studies are more challenging for large and macrocyclic anionophores, as their preparation is usually more complicated, limiting the number of compounds tested in anion transport studies. Here we present a series of twelve macrocyclic bambusuril anion transporters to investigate how variations in fluorinated substituents affect their transport properties. Measurements of Cl-/HCO3- antiport activities in liposomes revealed links between parameters such as lipophilicity or substituent polarity and transport activity. For some bambusurils, an unusually large effect of the presence of cholesterol in the membrane on transport activity was found. Further studies showed that for very potent anion receptors, such as the bambusurils described here, the binding selectivity towards anions becomes more important than the absolute binding affinity to anions when considering anion exchange across the membrane.
Collapse
Affiliation(s)
- Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Engineering of Molecular NanoSystems, École Polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, École Polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Ma S, Zhao J, Xiao H, Gao Q, Li F, Song C, Li G. Modulating the Inner Helmholtz Plane towards Stable Solid Electrolyte Interphase by Anion-π Interactions for High-Performance Anode-Free Lithium Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202412955. [PMID: 39319374 DOI: 10.1002/anie.202412955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Anode-free lithium (Li) metal batteries (AFLBs) featured high energy density are viewed as the viable future energy storage technology. However, the irregular Li deposition and unstable solid electrolyte interphase (SEI) on anode current collectors reduce their cycling performance. Here, we propose a concept of anion-recognition electrodes enabled by anion-π interactions to regulate the inner Helmholtz plane (IHP) and electrolyte solvation chemistry for high-performance AFLBs. By engineering the electrodes with electron-deficient aromatic-π systems that possess high permanent quadrupole moment (Qzz), the anion-π interactions can be generated to concentrate the anions on the electrode surface and tune the IHP structure to construct a stable anion-derived SEI layer, thus achieving highly reversible Li plating/stripping process. Through designing various current collectors with different Qzz values, the intimate correlations among the surface charge of the electrode, competitive adsorption of the IHP, and SEI structures are demonstrated. Particularly, the modified carbon cloth current collector with a high Qzz value (+35.1) delivers a high average Li stripping/plating Coulombic efficiency of 99.1 % over 230 cycles in the carbonated electrolyte, enabling a long lifespan and high capacity retention of LiNi0.8Co0.1Mn0.1O2-based AFLBs with a commercial-level areal capacity (4.1 mAh cm-2).
Collapse
Affiliation(s)
- Shaobo Ma
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jingteng Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Huang Xiao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Qixin Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Fang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Congying Song
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
5
|
Singh A, Torres-Huerta A, Meyer F, Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem Sci 2024:d4sc04644g. [PMID: 39268212 PMCID: PMC11385378 DOI: 10.1039/d4sc04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Motivated by their potential biological applications, anion receptors are increasingly explored as transmembrane transporters for anions. The vast majority of the reported anion transporters rely on hydrogen bonding to interact with the anions. However, in recent decades, halogen, chalcogen, and pnictogen bonding, collectively referred to as sigma-hole interactions, have received increasing attention. Most research efforts on these interactions have focused on crystal engineering, anion sensing, and organocatalysis. In recent years, however, these sigma-hole interactions have also been explored more widely in synthetic anion transporters. This perspective shows why synthetic transporters are promising candidates for biological applications. We provide a comprehensive review of the compounds used to transport anions across membranes, with a particular focus on how the binding atoms and molecular design affect the anion transport activity and selectivity. Few cell studies have been reported for these transporters based on sigma-hole interactions and we highlight the critical need for further biological studies on the toxicity, stability, and deliverability of these compounds to explore their full potential in biological applications, such as the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Franck Meyer
- Université libre de Bruxelles (ULB), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy Boulevard du Triomphe 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| |
Collapse
|
6
|
Chattopadhayay S, Wanjari P, Talukdar P. Acylhydrazone-based reversibly photoswitchable ion pair transporter with OFF-ON cotransport activity. Chem Sci 2024; 15:d4sc02474e. [PMID: 39355225 PMCID: PMC11440441 DOI: 10.1039/d4sc02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The cellular membrane transport of physiologically important cations and anions is omnipresent and regulates different physiological functions. Whereas a notable number of cation-anion transporters are being developed to transport salts across the membrane, developing an artificial cation-anion symporter with stimulus-responsive activities is an immense obstacle. Herein, for the first time, we report reversibly photoswitchable acylhydrazone-based transporter 2 that has distinctive OFF-ON cation-anion co-transport abilities. The substituent was modified in 1a-1c and 2, to change the to-and-fro movement of the transporter to enhance the ion transport efficiency. Ion transport experiments across the lipid bilayer membrane demonstrate that 1a has the highest transport activity among the series with irreversible photoisomerization properties, whereas 2 has a unique reversible photoisomerization property. A detailed transport study indicated that the E-conformer of compound 2 facilitates Na+/Cl- transport via the symport process by following the carrier mode of ion transport. 23Na NMR and chloride selective electrode assays confirmed the OFF and ON state of ion transport of compound 2 with photoirradiation. An assembly of [(2 E )2 + NaCl] was subjected to geometry optimization to understand the responsible ion binding motif. Geometry optimization followed by the natural bond orbital analysis of 1a Z and 2 Z demonstrated that 1a Z forms comparatively stronger intramolecular H-bonding than 2 Z , making it accessible for reversible photoisomerization.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Paras Wanjari
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| |
Collapse
|
7
|
Sharma R, Sarkar S, Chattopadhayay S, Mondal J, Talukdar P. A Halogen-Bond-Driven Artificial Chloride-Selective Channel Constructed from 5-Iodoisophthalamide-based Molecules. Angew Chem Int Ed Engl 2024; 63:e202319919. [PMID: 38299773 DOI: 10.1002/anie.202319919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Despite considerable emphasis on advancing artificial ion channels, progress is constrained by the limited availability of small molecules with the necessary attributes of self-assembly and ion selectivity. In this study, a library of small molecules based on 5-haloisophthalamide and a non-halogenated isophthalamide were examined for their ion transport properties across the lipid bilayer membranes, and the finding demonstrates that the di-hexyl-substituted 5-iodoisophthalamide derivative exhibits the highest level of activity. Furthermore, it was established that the highest active compound facilitates the selective chloride transport that occurs via an antiport-mediated mechanism. The crystal structure of the compound unveils a distinctive self-assembly of molecules, forming a zig-zag channel pore that is well-suited for the permeation of anions. Planar bilayer conductance measurements proved the formation of chloride selective channels. A molecular dynamics simulation study, relying on the self-assembled component derived from the crystal structure, affirmed the paramount significance of intermolecular hydrogen bonding in the formation of supramolecular barrel-rosette structures that span the bilayer. Furthermore, it was demonstrated that the transport of chloride across the lipid bilayer membrane is facilitated by the synergistic effects of halogen bonding and hydrogen bonding within the channel.
Collapse
Affiliation(s)
- Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
8
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Mimicking the Shape and Function of the ClC Chloride Channel Selective Pore by Combining a Molecular Hourglass Shape with Anion-π Interactions. Chemistry 2024; 30:e202304222. [PMID: 38270386 DOI: 10.1002/chem.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
9
|
Ganguly T, Das S, Maity D, Baitalik S. Luminescent Ruthenium-Terpyridine Complexes Coupled with Stilbene-Appended Naphthalene, Anthracene, and Pyrene Motifs Demonstrate Fluoride Ion Sensing and Reversible Trans-Cis Photoisomerization. Inorg Chem 2024; 63:6883-6897. [PMID: 38567656 DOI: 10.1021/acs.inorgchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A new family of luminescent heteroleptic Ru(II)-terpyridine complexes coupled with stilbene-appended naphthalene, anthracene, and pyrene motifs is reported. Each of the complexes features moderately intense emission at room temperature having a lifetime of 16.7 ns for naphthalene and 11.4 ns for anthracene, while a substantially elevated lifetime of 8.3 μs was observed for the pyrene derivative. All the three complexes display a reversible couple in the positive potential window due to Ru2+/Ru3+ oxidation but multiple reversible and/or quasi-reversible peaks in the negative potential domain because of the reduction of the terpyridine moieties. All the complexes selectively sense F- among the studied anions via the intermediary of different noncovalent interactions. The interaction event is monitored through absorption, emission, and 1H and 19F NMR spectroscopy. Additionally, upon utilizing the stilbene motif, reversible trans-cis isomerization of the complexes has been undertaken upon alternate treatment of visible and UV light so that the complexes can act as potential photomolecular switches. We also carried out the anion sensing characterization of the cis form of the complexes. Theoretical calculation employing density functional theory is also executed for a selective complex (naphthalene derivative) to elucidate different noncovalent interactions that are operative during the complex-fluoride interplay.
Collapse
Affiliation(s)
- Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Min Tay H, Johnson TG, Docker A, Langton MJ, Beer PD. Exploiting the Catenane Mechanical Bond Effect for Selective Halide Anion Transmembrane Transport. Angew Chem Int Ed Engl 2023; 62:e202312745. [PMID: 37772928 DOI: 10.1002/anie.202312745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The first examples of [2]catenanes capable of selective anion transport across a lipid bilayer are reported. The neutral halogen bonding (XB) [2]catenanes were prepared via a chloride template-directed strategy in an unprecedented demonstration of using XB⋅⋅⋅anion interactions to direct catenane assembly from all-neutral components. Anion binding experiments in aqueous-organic solvent media revealed strong halide over oxoanion selectivity, and a marked enhancement in the chloride and bromide affinities of the catenanes relative to their constituent macrocycles. The catenanes additionally displayed an anti-Hofmeister binding preference for bromide over the larger iodide anion, illustrating the efficacy of employing sigma-hole interactions in conjunction with the mechanical bond effect to tune receptor selectivity. Transmembrane anion transport studies conducted in POPC LUVs revealed that the catenanes were more effective anion transporters than the constituent macrocycles, with high chloride over hydroxide selectivity, which is critical to potential therapeutic applications of anionophores. Remarkably these outperform existing acyclic halogen bonding anionophores with regards to this selectivity. Record chloride over nitrate anion transport selectivity was also observed. This represents a rare example of the direct translation of intrinsic anion binding affinities to anion transport behaviour, and demonstrates the key role of the catenane mechanical bond effect for enhanced anion transport selectivity.
Collapse
Affiliation(s)
- Hui Min Tay
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Toby G Johnson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Chattopadhayay S, Ghosh A, Kumar Mukhopadhyay T, Sharma R, Datta A, Talukdar P. Supramolecular Barrel-Rosette Ion Channel Based on 3,5-Diaminobenzoic Acid for Cation-Anion Symport. Angew Chem Int Ed Engl 2023; 62:e202313712. [PMID: 37732556 DOI: 10.1002/anie.202313712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(-)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+ /ClO4 - symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Å and single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio ofP C l - / P K + = 0 . 053 ± 0 . 02 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=0.053\pm 0.02}$ ,P C l O 4 - / P C l - = 2 . 1 ± 0 . 5 ${{P}_{{ClO}_{4}^{-}}/{P}_{{Cl}^{-}}=2.1\pm 0.5}$ , andP K + / P N a + = 1 . 5 ± 1 , ${{P}_{{K}^{+}}/{P}_{{Na}^{+}}=1.5\pm 1,}$ indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
13
|
Rosokha SV. Anion-π Interactions: What's in the Name? Chempluschem 2023; 88:e202300350. [PMID: 37526504 DOI: 10.1002/cplu.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
The studies of the anion-π interactions advanced during the last two decades from the discussion of the mere existence of this counter-intuitive bonding to its utilization for anion recognition and transport, catalysis, and other applications. Yet, there are substantial differences in the interpretation of nature and the driving forces of anion-π bonding. Most surprisingly, there are still different opinions about the meaning of this term (i. e., which associations can be considered anion-π complexes). After a brief overview of the studies in this area (including early examples of such complexes), we suggested that anion-π bonding occurs when there is evidence of a net attraction between a (close-shell) anion and the face of an electrophilic π-system. This definition encompasses fundamentally similar supramolecular complexes comprising diverse π-systems and anions and its general acceptance would facilitate a discussion of the nature and distinct driving forces of this fascinating interaction.
Collapse
Affiliation(s)
- Sergiy V Rosokha
- Chemistry Department, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
14
|
Parameswaran AM, James A, Aboobacker A, Srinivasamurthy Swathi R. Unfurling Anion-π Interactions Involving Graphynes. Chemphyschem 2023; 24:e202200548. [PMID: 36068988 DOI: 10.1002/cphc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 01/07/2023]
Abstract
Ever since the inception of anion-π interactions, their nature and functional relevance have intrigued researchers. We address the twin challenge of elucidation of the role of extended conjugation and design of all-carbon neutral anion receptors by computations on the anion-π complexes of the halide ions with graphynes. Leveraging on the extended π-conjugation effects, we unfurl the functional relevance of graphynes as anion receptors using descriptors such as electrostatic potential, quadrupole moments, molecular polarizabilities and binding energies. Further, employing natural energy decomposition analysis, we assert that anion-π interactions are not merely dominated by electrostatic interactions. The polarization components do indeed play a crucial role in governing the binding of the anions to the graphynes.
Collapse
Affiliation(s)
- Aiswarya M Parameswaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Adil Aboobacker
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
15
|
Tominaga M, Nanbara S, Hyodo T, Kawahata M, Yamaguchi K. Orientation of carbonyl groups in inclusion crystals formed from ketones with aromatic diimide-based macrocycles. CrystEngComm 2023. [DOI: 10.1039/d2ce01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inclusion crystals were formed from ketones with aromatic diimide-based macrocycles possessing adamantane units, where the oxygen atoms of guests interacted with the electron-deficient π-surfaces of the aromatic diimides through CO⋯π contacts.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sakito Nanbara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | | | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
16
|
Papagna R, Kutzinski D, Huber SM. Polymer‐Bound Halogen Bonding Organocatalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raffaella Papagna
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Chemie und Biochemie GERMANY
| | - Dana Kutzinski
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Chemie und Biochemie GERMANY
| | - Stefan Matthias Huber
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie NC 4/171Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
17
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
18
|
Yan B, Lv Z, Chen S, Xiang L, Gong L, Xiang J, Fan H, Zeng H. Probing Anion - π interactions between fluoroarene and carboxylate anion in aqueous solutions. J Colloid Interface Sci 2022; 615:778-785. [PMID: 35176544 DOI: 10.1016/j.jcis.2022.01.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Despite the much progress in developing π-conjugated fluoroarene moieties based functional materials in which anion - π interactions are commonly involved, it remains challenging to quantitatively characterize the nanomechanical interaction mechanism of these anion - π systems, particularly in aqueous solutions. In this study, we reported the first experimental quantification of the nanomechanics of anion - π interactions between π-conjugated fluoroarene moieties and carboxylate anions in aqueous solutions through direct molecular force measurements, with a special focus on the impact of the anion species, concentration and of the substitution effect of aromatic side group. The results using surface forces apparatus (SFA) and single-molecule force spectroscopy (SMFS) provide complementary evidences to demonstrate that the robust and reversible adhesion measured between the fluoroarene π systems and carboxylate anions was mainly attributed to anion - π interaction. Moreover, their nanomechanical properties were also systematically scrutinized, with the interaction strength being found to be significantly determined by the contact time, the type of fluoroarene systems (PFST > DFST) and the type of anions and ion concentration (HPO42- > CO32- > I- > Cl- ≈ NO3- > F-).
Collapse
Affiliation(s)
- Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhong Lv
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jun Xiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
19
|
Qian C, Han R, Shen Z, Li Q, Chen X. N-Iodosuccinimide (NIS) Promoted Synthesis of 3-Substituted Indole Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Malenov DP, Zarić SD. New Type of Aromatic π-Systems for Anion Recognition: Strong Anion-π and C-H⋅⋅⋅Anion Interactions Between Halides and Aromatic Ligands in Half-Sandwich Compounds. Chemistry 2021; 27:17862-17872. [PMID: 34719802 DOI: 10.1002/chem.202102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Half-sandwich compounds of benzene, cyclopentadienyl, pentamethylcyclopentadienyl, and indenyl were studied as a new type of aromatic π-systems for interactions with halide anions. Although uncoordinated benzene forms only C-H⋅⋅⋅anion interactions, and hexafluorobenzene forms only anion-π interactions, aromatic ligands in half-sandwich compounds can form both types of interactions, because their entire electrostatic potential surface is positive. These aromatic ligands can form stronger anion-π interactions than organic aromatic molecules, as a consequence of more pronounced dispersion and induction energy components. Moreover, C-H⋅⋅⋅anion interactions of aromatic ligands are stronger than anion-π interactions, and significantly stronger than C-H⋅⋅⋅anion interactions of benzene. Our study shows that transition-metal coordination can make aromatic moieties suitable for strong interactions with anions, and gives insight into the design of new anion receptors.
Collapse
Affiliation(s)
- Dušan P Malenov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
21
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
22
|
Bickerton LE, Docker A, Sterling AJ, Kuhn H, Duarte F, Beer PD, Langton MJ. Highly Active Halogen Bonding and Chalcogen Bonding Chloride Transporters with Non-Protonophoric Activity. Chemistry 2021; 27:11738-11745. [PMID: 34014001 PMCID: PMC8453555 DOI: 10.1002/chem.202101681] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Synthetic anion transporters show much promise as potential anti-cancer agents and therapeutics for diseases associated with mis-regulation of protein anion channels. In such applications high activity and anion selectivity are crucial to overcome competing proton or hydroxide transport which dissipates cellular pH gradients. Here, highly active bidentate halogen bonding and chalcogen bonding anion carriers based on electron deficient iodo- and telluromethyl-triazole derivatives are reported. Anion transport experiments in lipid bilayer vesicles reveal record nanomolar chloride transport activity for the bidentate halogen bonding anion carrier, and remarkably high chloride over proton/hydroxide selectivity for the chalcogen bonding anionophore. Computational studies provide further insight into the role of sigma-hole mediated anion recognition and desolvation at the membrane interface. Comparison with hydrogen bonding analogues demonstrates the importance of employing sigma-hole donor motifs in synthetic anionophores for achieving both high transport activity and selectivity.
Collapse
Affiliation(s)
- Laura E. Bickerton
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Andrew Docker
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Alistair J. Sterling
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Heike Kuhn
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Fernanda Duarte
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Matthew J. Langton
- Department of Chemistry Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
23
|
Kuzniak-Glanowska E, Kobylarczyk J, Jedrzejowska K, Glosz D, Podgajny R. Exploring the structure-property schemes in anion-π systems of d-block metalates. Dalton Trans 2021; 50:10999-11015. [PMID: 34296241 DOI: 10.1039/d1dt01713f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-π based compounds, materials, and processes have gained significant interest due to the diversity of their aesthetic non-covalent synthons, and thanks to their significance in biological systems, catalytic processes, anion binding and sensing, or the supramolecular organization of hierarchical architectures. While systems based on typical inorganic anions or organic residues have been widely reviewed in recent years, those involving anionic d metal comlexes as the main components have been treated with a rather secondary interest. However, actively exploring the new systems of the latter type we have recognized systematic advances in the field. As a result, in the current review we describe the landscape that has recently emerged. Focusing on the established groups of π-acidic species, i.e. polycarbonitirles, polyazines, polyazine N-oxides, diimide derivatives, fluoroarenes, and nitroarenes, we explore and discuss anion-π crystal engineering together with the structure-property schemes important from the standpoint of charge transfer (CT) and electron transfer (ET), magnetism, luminescence, reactivity and catalysis, and the construction of core-shell crystalline composites.
Collapse
|
24
|
|
25
|
Chowdhury B, Sinha S, Dutta R, Mondal S, Karmakar S, Ghosh P. Discriminative Behavior of a Donor-Acceptor-Donor Triad toward Cyanide and Fluoride: Insights into the Mechanism of Naphthalene Diimide Reduction by Cyanide and Fluoride. Inorg Chem 2020; 59:13371-13382. [PMID: 32870665 DOI: 10.1021/acs.inorgchem.0c01738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new molecular donor-acceptor-donor (D-A-D) triad, comprised of an electron deficient 1,4,5,8-naphthalene tetracarboxylic diimide (NDI) unit covalently connected to two flanking photosensitizers, i.e., a bis-heteroleptic Ru(II) complex of 1,10-phenanthroline and pyridine triazole hybrid ligand, is described. The single crystal X-ray structure of the perchlorate salt of the triad demonstrates that the electron deficient NDI unit can act as a host for anions via anion-π interaction. Detailed solution-state studies indicate that fluoride selectively interacts with the D-A-D triad to form a dianionic NDI, NDI2-, via a radical anion, NDI•-. On the contrary, cyanide reduces the NDI moiety to NDI•-, as confirmed by UV-vis, NMR, and EPR spectroscopy. Further, femtosecond transient absorption spectroscopic studies reveal a low luminescence quantum yield of the D-A-D triad attributable to the photoinduced electron transfer (PET) process from the photoactive Ru(II) center to the NDI unit. Interestingly, the triad displays "OFF-ON" luminescence behavior in the presence of fluoride by restoring the Ru(II) to phenanthroline/pyridine-triazole-based MLCT emission, whereas cyanide fails to show a similar property due to a different redox process operational in the latter. The reduction of NDI in the presence of fluoride and cyanide in different polar solvents indicates that involvement of such deprotonated solvents in the electron transfer mechanism may not be operative in our present system. Low-temperature kinetic studies support the formation of a charge transfer associative transient species, which likely allows overcoming the thermodynamically uphill barrier for the direct electron transfer mechanism.
Collapse
Affiliation(s)
- Bijit Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sanghamitra Sinha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ranjan Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Shreetama Karmakar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road Colaba, Mumbai 400005, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
26
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
27
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
28
|
Park G, Gabbaï FP. Redox-controlled chalcogen and pnictogen bonding: the case of a sulfonium/stibonium dication as a preanionophore for chloride anion transport. Chem Sci 2020; 11:10107-10112. [PMID: 34094272 PMCID: PMC8162396 DOI: 10.1039/d0sc04417b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Our interest in the chemistry of tunable chalcogen and pnictogen bond donors as Lewis acidic platforms for the complexation and transport of anions has led us to investigate examples of such compounds that can be activated by redox events. Here, we describe the synthesis of [o-MePhS(C6H4)SbPh3]2+ ([3]2+) and [o-MePhS(C6H4)Sb(p-Tol)3]2+ ([4]2+), two dicationic stibonium/sulfonium bifunctional Lewis acids which were obtained by methylation of the phenylthioether derivatives [o-PhS(C6H4)SbPh3]+ ([1]+) and [o-PhS(C6H4)Sb(p-Tol)3]+ ([2]+), respectively. An evaluation of the chloride anion transport properties of these derivatives using chloride-loaded POPC unilamellar vesicles shows that the activity of the monocations [1]+ and [2]+ greatly exceeds that of the dications [3]2+ and [4]2+, a phenomenon that we assign to the higher lipophilicity of the monocationic compounds. Harnessing this large transport activity differential, we show that [4]2+ can be used as a prechloridophore that is readily activated by reduction of the sulfonium moiety. Indeed, [4]2+ reacts with GSH to afford [2]+ as an active transporter. This activation, which has been monitored in aqueous solution, can also be carried out in situ, in the presence of the chloride-loaded POPC unilamellar vesicles.
Collapse
Affiliation(s)
- Gyeongjin Park
- Department of Chemistry, Texas A&M University College Station Texas 77843-3255 USA
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University College Station Texas 77843-3255 USA
| |
Collapse
|
29
|
Kutus B, Zhu J, Luo J, Wang Q, Lupan A, Attia AAA, Wang D, Hunger J. Enhancement of Ion Pairing of Sr(II) and Ba(II) Salts by a Tritopic Ion-Pair Receptor in Solution. Chemphyschem 2020; 21:1957-1965. [PMID: 32643260 PMCID: PMC7540308 DOI: 10.1002/cphc.202000507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/04/2020] [Indexed: 12/12/2022]
Abstract
Tritopic ion-pair receptors can bind bivalent salts in solution; yet, these salts have a tendency to form ion-pairs even in the absence of receptors. The extent to which such receptors can enhance ion pairing has however remained elusive. Here, we study ion pairing of M2+ (Ba2+ , Sr2+ ) and X- (I- , ClO4- ) in acetonitrile with and without a dichlorooxacalix[2]arene[2]triazine-related receptor containing a pentaethylene-glycol moiety. We find marked ion association already in receptor-free solutions. When present, most of the MX+ ion-pairs are bound to the receptor and the overall degree of ion association is enhanced due to coordinative, hydrogen-bonding, and anion-π interactions. The receptor shows higher selectivity for iodides but also stabilizes perchlorates, despite the latter are often considered as weakly coordinating anions. Our results show that ion-pair binding is strongly correlated to ion pairing in these solutions, thereby highlighting the importance of taking ion association in organic solvents into account.
Collapse
Affiliation(s)
- Bence Kutus
- Department of Molecular SpectroscopyMax Planck Institute for Polymer Research55128MainzGermany
| | - Jun Zhu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Jian Luo
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Qi‐Qiang Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Alexandru Lupan
- Faculty of Chemistry and Chemical EngineeringBabeş-Bolyai University400028Cluj-NapocaRomania
| | - Amr A. A. Attia
- Faculty of Chemistry and Chemical EngineeringBabeş-Bolyai University400028Cluj-NapocaRomania
| | - De‐Xian Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Johannes Hunger
- Department of Molecular SpectroscopyMax Planck Institute for Polymer Research55128MainzGermany
| |
Collapse
|
30
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020; 59:15093-15097. [PMID: 32181559 DOI: 10.1002/anie.202000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto /kcat >104 m-1 ). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.
Collapse
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π‐Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
32
|
|
33
|
Ahmad M, Metya S, Das A, Talukdar P. A Sandwich Azobenzene-Diamide Dimer for Photoregulated Chloride Transport. Chemistry 2020; 26:8703-8708. [PMID: 32129531 DOI: 10.1002/chem.202000400] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/15/2022]
Abstract
There has been a tremendous evolution for artificial ion transport systems, especially gated synthetic systems, which closely mimic their natural congeners. Herein, we demonstrate a trans-azobenzene-based photoregulatory anionophoric system that transports chloride by forming a sandwich dimeric complex. Further studies confirmed a carrier-mediated chloride-anion antiport mechanism, and the supramolecular interactions involved in chloride recognition within the sandwich complex were revealed from theoretical studies. Reversible trans-cis photoisomerization of the azobenzene was achieved without any significant contribution from the thermal cis→trans isomerization at room temperature. Photoregulatory transport activity across the lipid bilayer membrane inferred an outstanding off-on response of the azobenzene photoswitch.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Surajit Metya
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Aloke Das
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
34
|
Zhou B, Gabbaï FP. Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties. Chem Sci 2020; 11:7495-7500. [PMID: 34123032 PMCID: PMC8159482 DOI: 10.1039/d0sc02872j] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our interests in the chemistry of atypical main group Lewis acids have led us to devise strategies that augment the affinity of chalcogen-bond donors for anionic guests. In this study, we describe the oxidative methylation of diaryltellurides as one such strategy along with its application to the synthesis of [Mes(C6F5)TeMe]+ and [(C6F5)2TeMe]+ starting from Mes(C6F5)Te and (C6F5)2Te, respectively. These new telluronium cations have been evaluated for their ability to complex and transport chloride anions across phospholipid bilayers. These studies show that, when compared to their neutral Te(ii) precursors, these Te(iv) cations display both higher Lewis acidity and transport activity. The positive attributes of these telluronium cations, which originate from a lowering of the tellurium-centered σ* orbitals and a deepening of the associated σ-holes, demonstrate that the redox state of the main group element provides a convenient handle over its chalcogen-bonding properties. The oxidative alkylation of diorganotellurides enhances the chalcogen-bond donor properties of the tellurium center, an effect manifested in the enhanced chloride anion affinity and transport properties of the resulting telluronium cations.![]()
Collapse
Affiliation(s)
- Benyu Zhou
- Department of Chemistry, Texas A&M University College Station Texas 77843-3255 USA
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University College Station Texas 77843-3255 USA
| |
Collapse
|
35
|
Sun B, Lux DM, Patterson EV, Goroff NS. Building Shape-Persistent Arylene Ethynylene Macrocycles as Scaffolds for 1,4-Diiodobutadiyne. J Org Chem 2020; 85:7641-7647. [PMID: 32470301 DOI: 10.1021/acs.joc.9b02859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two shape-persistent arylene ethynylene macrocycles have been designed and synthesized as scaffolds to bind the nonpolar molecule 1,4-diiodobutadiyne. Binding via halogen bonding interactions between the pyridine moieties of the macrocycle and 1,4-diiodobutadiyne is predicted by density functional theory calculations and has been demonstrated in solution by 13C NMR titrations. The binding constant for the macrocycle-monomer complex (K = 10.5 L mol-1) is much larger than for other comparable halogen bonds, strongly supporting cooperative binding of both ends of the diyne. These results demonstrate a fully inserted geometry of 1,4-diiodobutadiyne in the complex.
Collapse
Affiliation(s)
- Bin Sun
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Daniel M Lux
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Eric V Patterson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nancy S Goroff
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
36
|
Wilson J, Maxson T, Wright I, Zeller M, Rosokha SV. Diversity and uniformity in anion-π complexes of thiocyanate with aromatic, olefinic and quinoidal π-acceptors. Dalton Trans 2020; 49:8734-8743. [PMID: 32555839 DOI: 10.1039/d0dt01654c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the progress in the study of anion-π interactions, there are still inconsistencies in the use of this term and the experimental data about factors affecting the strength of such bonding are limited. To shed light on these issues, we explored supramolecular associations between NCS- anions and a series of aromatic, olefinic or quinoidal π-acceptors. Combined experimental and computational studies revealed that all these complexes were formed by an attraction of the anion to the face of the π-system, and the arrangements of thiocyanate followed the areas of the most positive potentials on the surfaces of the π-acceptors. The stabilities of the complexes increased with the π-acceptor strength (reflected by their reduction potentials), and were essentially independent of the magnitudes of the maximum electrostatic potentials on their surfaces. The complexes showed intense absorption bands in the UV-Vis range, and the energies of these bands were correlated with the difference of the redox potentials of the anions and π-acceptors. Such features, as well as results of atoms-in-molecules and non-covalent index analyses suggested that besides electrostatics, molecular orbital interactions play a substantial role in the formation of these complexes. The unified trends in variations of the characteristics of the complexes between thiocyanate and a variety of π-acceptors point to their common nature. To embrace diversity and uniformity of the anion-π associates, we suggest (following the halogen bond's definition) that anion-π bonding occurs when there is evidence of a net attraction between the anions and the face of the electrophilic π-system.
Collapse
Affiliation(s)
- Joshua Wilson
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.
| | | | | | | | | |
Collapse
|
37
|
Bickerton LE, Sterling AJ, Beer PD, Duarte F, Langton MJ. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores. Chem Sci 2020; 11:4722-4729. [PMID: 34122927 PMCID: PMC8159253 DOI: 10.1039/d0sc01467b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transmembrane ion transport by synthetic anionophores is typically achieved using polar hydrogen bonding anion receptors. Here we show that readily accessible halogen and hydrogen bonding 1,2,3-triazole derivatives can efficiently mediate anion transport across lipid bilayer membranes with unusual anti-Hofmeister selectivity. Importantly, the results demonstrate that the iodo-triazole systems exhibit the highest reported activity to date for halogen bonding anionophores, and enhanced transport efficiency relative to the hydrogen bonding analogues. In contrast, the analogous fluoro-triazole systems, which are unable to form intermolecular interactions with anions, are inactive. The halogen bonding anionophores also exhibit a remarkable intrinsic chloride over hydroxide selectivity, which is usually observed only in more complex anionophore designs, in contrast to the readily accessible acyclic systems reported here. This highlights the potential of iodo-triazoles as synthetically accessible and versatile motifs for developing more efficient anion transport systems. Computational studies provide further insight into the nature of the anion-triazole intermolecular interactions, examining the origins of the observed transport activity and selectivity of the systems, and revealing the role of enhanced charge delocalisation in the halogen bonding anion complexes. Halogen and hydrogen bonding 1,2,3-triazole derivatives efficiently mediate anion transport across lipid bilayer membranes with unusual anion selectivity profiles.![]()
Collapse
Affiliation(s)
- Laura E Bickerton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
38
|
Engelage E, Reinhard D, Huber SM. Is There a Single Ideal Parameter for Halogen-Bonding-Based Lewis Acidity? Chemistry 2020; 26:3843-3861. [PMID: 31943430 PMCID: PMC7154672 DOI: 10.1002/chem.201905273] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/08/2023]
Abstract
Halogen-bond donors (halogen-based Lewis acids) have now found various applications in diverse fields of chemistry. The goal of this study was to identify a parameter obtainable from a single DFT calculation that reliably describes halogen-bonding strength (Lewis acidity). First, several DFT methods were benchmarked against the CCSD(T) CBS binding data of complexes of 17 carbon-based halogen-bond donors with chloride and ammonia as representative Lewis bases, which revealed M05-2X with a partially augmented def2-TZVP(D) basis set as the best model chemistry. The best single parameter to predict halogen-bonding strengths was the static σ-hole depth, but it still provided inaccurate predictions for a series of compounds. Thus, a more reliable parameter, Ωσ* , has been developed through the linear combination of the σ-hole depth and the σ*(C-I) energy, which was further validated against neutral, cationic, halogen- and nitrogen-based halogen-bond donors with very good performance.
Collapse
Affiliation(s)
- Elric Engelage
- Organische Chemie IFakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Dominik Reinhard
- Organische Chemie IFakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Organische Chemie IFakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
39
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
40
|
Jalilov A, Deats S, Albukhari M, Zeller M, Rosokha SV. Intermolecular Interactions between Halogen‐Substituted
p
‐Benzoquinones and Halide Anions: Anion‐π Complexes versus Halogen Bonding. Chempluschem 2020; 85:441-449. [DOI: 10.1002/cplu.202000012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/25/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Almaz Jalilov
- Department of Chemistry King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia 31261
| | - Spencer Deats
- Department of Chemistry Ball State University Muncie IN USA 47306
| | - Muath Albukhari
- Department of Chemistry King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia 31261
| | - Matthias Zeller
- Department of Chemistry Purdue University West Lafayette IN USA 47907
| | | |
Collapse
|
41
|
Abstract
Using anions to induce molecular structure is a rapidly growing area of dynamic and switchable supramolecular chemistry. The emphasis of this review is on helical anion foldamers in solution, and many of the beautiful complexes described herein are accentuated by their crystal structures. Anion foldamers are defined as single- or multistrand complexes-often helical-that incorporate one or more anions. The review begins by discussing foldamer structure and nomenclature and follows with discourse on the anions which are employed. Recent advances in functional foldamers that bind a single anion are examined, including: induced chirality, stimuli-responsive dynamics, fluorescence changes, organocatalysis, anion transport, and halogen bonding. The review then inspects multianion foldamers, and this section is organized by the number of strands within the foldamer-from single- to triple-strand foldamers. Finally, the review is punctuated by recent hydrogen- and halogen-bonding triple-strand anion foldamers.
Collapse
Affiliation(s)
- Eric A John
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Casey J Massena
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| |
Collapse
|
42
|
Bulfield D, Engelage E, Mancheski L, Stoesser J, Huber SM. Crystal Engineering with Multipoint Halogen Bonding: Double Two-Point Donors and Acceptors at Work. Chemistry 2020; 26:1567-1575. [PMID: 31638284 PMCID: PMC7028063 DOI: 10.1002/chem.201904322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 12/19/2022]
Abstract
The combination of singly or doubly bidentate halogen-bond donors with double bidentate acceptors was investigated as a supramolecular synthon in crystal engineering. The crystal topologies obtained feature novel halogen-bonding motifs like double two-point recognition and infinite chains or networks based on two-point interactions. Induced conformational changes in the double bidentate halogen-bond donors could be exploited to obtain different 1D and 2D networks. All solid-state studies were accompanied by DFT calculations to predict and rationalize the outcome.
Collapse
Affiliation(s)
- David Bulfield
- Faculty of Chemistry and BiochemistryRuhr-Universität-BochumUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Faculty of Chemistry and BiochemistryRuhr-Universität-BochumUniversitätsstraße 15044801BochumGermany
| | - Lucas Mancheski
- Faculty of Chemistry and BiochemistryRuhr-Universität-BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Stoesser
- Faculty of Chemistry and BiochemistryRuhr-Universität-BochumUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Faculty of Chemistry and BiochemistryRuhr-Universität-BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
43
|
Malla JA, Umesh RM, Vijay A, Mukherjee A, Lahiri M, Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M +/Cl - channel. Chem Sci 2020; 11:2420-2428. [PMID: 34084406 PMCID: PMC8157539 DOI: 10.1039/c9sc06520b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Synthetic transmembrane ion transport systems are emerging as new tools for anticancer therapy. Here, a series of 2-hydroxy-N 1,N 3-diarylisophthalamide-based fluorescent ion channel-forming compounds are reported. Ion transport studies across large unilamellar vesicles confirmed that the compound with two 3,5-bis(trifluoromethyl)phenyl arms is the most efficient transporter among the series and it facilitates M+/Cl- symport. The compound formed supramolecular ion channels with a single-channel conductance of 100 ± 2 pS, a diameter of 5.06 ± 0.16 Å and a permeability ratio, P Cl- /P K+ , of 8.29 ± 1. The molecular dynamics simulations of the proposed M2.11 channel (i.e. 11 coaxial layers of a dimeric rosette) with K+ and Cl- in the preequilibrated POPC lipid bilayer with water molecules illustrated various aspects of channel formation and ion permeation. Cell viability assay with the designed compounds indicated that cell death is being induced by the individual compounds which follow the order of their ion transport activity and chloride and cations play roles in cell death. The inherent fluorescence of the most active transporter was helpful to monitor its permeation in cells by confocal microscopy. The apoptosis-inducing activity upon perturbation of intracellular ionic homeostasis was established by monitoring mitochondrial membrane depolarization, generation of reactive oxygen species, cytochrome c release, activation of the caspase 9 pathway, and finally the uptake of the propidium iodide dye in the treated MCF7 cells.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
44
|
Berger G, Frangville P, Meyer F. Halogen bonding for molecular recognition: new developments in materials and biological sciences. Chem Commun (Camb) 2020; 56:4970-4981. [DOI: 10.1039/d0cc00841a] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights recent developments of halogen bonding in materials and biological sciences with a short discussion on the nature of the interaction.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Pierre Frangville
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Bruxelles
- Belgium
| |
Collapse
|
45
|
Yu XH, Hong XQ, Mao QC, Chen WH. Biological effects and activity optimization of small-molecule, drug-like synthetic anion transporters. Eur J Med Chem 2019; 184:111782. [DOI: 10.1016/j.ejmech.2019.111782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
|
46
|
Savastano M, García-Gallarín C, López de la Torre MD, Bazzicalupi C, Bianchi A, Melguizo M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019; 58:12465-12468. [DOI: 10.1002/anie.201905965] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|
48
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|
49
|
Govindaraj V, Ungati H, Jakka SR, Bose S, Mugesh G. Directing Traffic: Halogen‐Bond‐Mediated Membrane Transport. Chemistry 2019; 25:11180-11192. [DOI: 10.1002/chem.201902243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Vijayakumar Govindaraj
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Harinarayana Ungati
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Surendar R. Jakka
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Sritama Bose
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560012 India
| |
Collapse
|
50
|
Huang WL, Wang XD, Li S, Zhang R, Ao YF, Tang J, Wang QQ, Wang DX. Anion Transporters Based on Noncovalent Balance including Anion-π, Hydrogen, and Halogen Bonding. J Org Chem 2019; 84:8859-8869. [PMID: 31203616 DOI: 10.1021/acs.joc.9b00561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Anion transmembrane transport mediated by novel noncovalent interactions is of central interest in supramolecular chemistry. In this work, a series of oxacalix[2]arene[2]triazine-derived transporters 1 and 2 bearing anion-π-, hydrogen-, and halogen-bonding sites in rational proximity were designed and synthesized by a one-pot strategy starting from gallic acid ester derivatives and mono- or di-halogen-substituted triazines. 1H NMR titrations demonstrated efficient binding of 1 and 2 toward Cl- and Br- in solution, giving association constants in the range of 102-104 M-1. Cooperation of anion-π, hydrogen, and halogen bonding was revealed as a driving force for anion binding by single-crystal structures of two complexes and density functional theory calculations. Fluorescence assays indicated that compounds 1 are efficient chloride transporters with effective concentrations (EC50) falling in the range of 3.1-7.4 μM and following an order of 1a > 1b > 1c > 1d. The contribution of halogen bonding and cooperative noncovalent bonds to ion transport was then discussed. Significantly, transporters 1 exhibit high anticancer activity. In the presence of 1 and KCl (60 mM), the cell survival of HCT116 reduces to 11.9-24.9% with IC50 values in the range of 52.3-66.4 μM.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Sen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|