1
|
Mansuri S, Ojha S, Kanvah S. A red-emitting, microenvironment-insensitive fluorophore for lysosome-specific imaging in live cells. J Mater Chem B 2025. [PMID: 40337787 DOI: 10.1039/d5tb00296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Lysosomes and the endoplasmic reticulum (ER) are vital for cellular homeostasis, degradation, and signaling, making them key imaging targets. However, existing fluorescent probes suffer from limitations such as pH sensitivity, poor photostability, and cytotoxicity. To overcome these challenges, we developed two red-emitting fluorophores, DM and MM, based on a rigid DCM scaffold with morpholine linkers. DM rapidly localizes to lysosomes within 10 minutes, exhibiting exceptional photostability, pH insensitivity, and resilience in live and fixed cells. MM initially targets the ER before redistributing to lysosomes, enabling studies of inter-organelle dynamics and lysosomal maturation. Both probes, excitable at 561 nm, emit in the red spectral region, reducing autofluorescence and phototoxicity while allowing deep tissue imaging. DM efficiently tracks lysosomal dynamics under normal and stressed conditions, including mitophagy and lysosome-mitochondria interactions. MM's dual-targeting behavior provides insights into ER-lysosome crosstalk, crucial for cellular signaling. Both dyes exhibit negligible cytotoxicity (up to 100 μM), ensuring prolonged imaging without disrupting the cellular function. Their rigid scaffold imparts high stability, making them versatile tools for studying lysosomal and ER-associated processes. DM and MM set a new standard for dynamic organelle imaging, advancing biomedical research on lysosomal biology and disease mechanisms.
Collapse
Affiliation(s)
- Shabnam Mansuri
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, India.
| | - Subhadra Ojha
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, India.
| |
Collapse
|
2
|
Schad C, Ray C, Díaz-Norambuena C, Serrano-Buitrago S, Moreno F, Maroto BL, García-Moreno I, Muñoz-Úbeda M, López-Montero I, Bañuelos J, de la Moya S. Water-soluble BODIPY dyes: a novel approach for their sustainable chemistry and applied photonics. Chem Sci 2025; 16:8030-8039. [PMID: 40206553 PMCID: PMC11976447 DOI: 10.1039/d5sc01295c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
The BODIPY family of organic dyes has emerged as a cornerstone in photonics research development, driving innovation and advancement in various fields of high socio-economic interest. However, the majority of BODIPY dyes exhibit hydrophobic characteristics, resulting in poor solubility in water and other hydrophilic solvents. This solubility is paramount for their optimal utilization in a myriad of photonic applications, particularly in the realms of biology and medicine. Furthermore, it facilitates safer and more sustainable manipulation and chemical modification of these expansive dyes. Nevertheless, bestowing BODIPYs with water solubility while preserving their other essential properties, notably their photophysical signatures, poses a significant challenge. In this context, we present a straightforward general chemical modification aimed at converting conventional hydrophobic BODIPYs into highly hydrophilic variants, thus enabling their efficient solubilization in water and other hydrophilic solvents with minimal disruption to the dye's inherent photophysics. The efficacy of this methodology is demonstrated through the synthesis of a number of water-soluble BODIPY dyes featuring diverse substitution patterns. Furthermore, we showcase their utility in a spectrum of photonics-related applications, including in-water BODIPY chemistry and dye-laser technology, and fluorescence microscopy.
Collapse
Affiliation(s)
- Christopher Schad
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| | - Cesar Ray
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| | - Carolina Díaz-Norambuena
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco-EHU Bilbao 48080 Spain
| | - Sergio Serrano-Buitrago
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC) Serrano 119 Madrid 28006 Spain
| | - Mónica Muñoz-Úbeda
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n 28040 Madrid Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12) Avda. de Córdoba s/n 28041 Madrid Spain
| | - Iván López-Montero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n 28040 Madrid Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12) Avda. de Córdoba s/n 28041 Madrid Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid P° Juan XXIII 1 28040 Madrid Spain
| | - Jorge Bañuelos
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco-EHU Bilbao 48080 Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n Madrid 28040 Spain
| |
Collapse
|
3
|
Sterz KL, Müller B, Sakoparnig M, Galan I, Steinegger A, Grengg C, Mittermayr F, Borisov SM, Mayr T. Analysis of total- and water-soluble chloride in concrete using an optical sensor. Talanta 2025; 293:128124. [PMID: 40239591 DOI: 10.1016/j.talanta.2025.128124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
An optical chloride-sensitive film was prepared and utilized to measure the chloride content in powdered concrete samples. The sensor is composed of N,N'-dimethyl-9,9'-biacridiniumnitrat (Lucigenin), a phosphorescent ruthenium complex in dense silica microparticles and a custom-made poly(acrylonitrile-co-acrylamide) matrix, allowing utilization of the dual lifetime referencing (DLR) technique. No dependency on pH value was observed at pH values from 1.0 to 7.0. Among the relevant anions, the sensor did not show any cross-talk to sulphate, but the response towards chloride was reduced in presence of nitrate and acetate ions. The sensor remains stable in water and 50 % acetic acid, which enables measurements of water-soluble chloride and total chloride. The sensor was challenged with concrete samples of various origins and with strong differences in chloride contamination (0.02-0.38 %w/w). The results of the optical measurements are in excellent agreement with results obtained from potentiometric titrations. The divergent binder chemistry of the selected concrete samples and the reliability of the measured results suggest wide applicability of the sensor. The sensor also shows potential to be suitable for field measurements.
Collapse
Affiliation(s)
- Karl L Sterz
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010, Graz, Austria
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010, Graz, Austria
| | - Marlene Sakoparnig
- Institute for Technology and Testing of Building Materials, Graz University of Technology, 8010, Graz, Austria
| | - Isabel Galan
- Institute for Technology and Testing of Building Materials, Graz University of Technology, 8010, Graz, Austria; Institute for Applied Geosciences, Graz University of Technology, 8010, Graz, Austria
| | - Andreas Steinegger
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010, Graz, Austria
| | - Cyrill Grengg
- Institute for Applied Geosciences, Graz University of Technology, 8010, Graz, Austria
| | - Florian Mittermayr
- Unit of Material Technology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010, Graz, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010, Graz, Austria.
| |
Collapse
|
4
|
Ozdemir N, Tan G, Tevlek A, Arslan G, Zengin G, Sargin I. Dead Cell Discrimination with Red Emissive Carbon Quantum Dots from the Medicinal and Edible Herb Echinophora tenuifolia. J Fluoresc 2025:10.1007/s10895-025-04286-y. [PMID: 40186814 DOI: 10.1007/s10895-025-04286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Accurately determining the viability of cells is crucial for in vitro cell research. Fluorescence-based live/dead cell staining is a highly desirable method to assess cell viability and survival in in vitro studies. We describe a green synthesis method to create red-emissive CQDs from the medicinal and edible herb Echinophora tenuifolia using microwave irradiation. We observed that the biocompatibility and photostability of the CQDs are superior. The antioxidant capacity of the CQDs and the plant extract were also investigated using different chemical methods (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA). The antioxidant capacity of the CQDs was similar to that of the extract of E. tenuifolia. Cytotoxicity studies indicate that while the CQDs are not toxic to L929, they exhibit significant toxicity towards HepG2 cells. The CQDs exhibited a strong negative zeta potential (-44.0 mV), which contributed to their selective interaction with dead cells while being repelled by viable cells with intact membrane potentials. The optimal concentration for effective, non-toxic imaging was determined to be 25 µg/mL, as lower concentrations did not produce detectable fluorescence. Differential staining experiments confirmed that CQDs selectively stained dead cells, with red fluorescence observed under the Texas Red filter. Moreover, CQDs exhibited favorable fluorescence intensity and stability, which may offer advantages for long-term and reliable bioimaging applications. In vitro studies on HepG2 and L929 cell lines revealed that the red-emissive CQDs from E. tenuifolia can be potentially used in bioimaging.
Collapse
Affiliation(s)
- Naciye Ozdemir
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gamze Tan
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, 68100, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06830, Turkey
| | - Gulsin Arslan
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Idris Sargin
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey.
| |
Collapse
|
5
|
Munthasir ATM, Rani P, Dhanalakshmi P, Geremia S, Hickey N, Thilagar P. Naphthalimide and Carbazole Based Mechanochromic Molecular Dyads and Triads for Selective Lysosome Imaging. Chem Asian J 2025; 20:e202401386. [PMID: 39817362 DOI: 10.1002/asia.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states. In the solid-state, the PL of these probes shows a bathochromic shift, which can be attributed to intermolecular interactions. In a water-rich medium, Probe 1, with a single NPI moiety, shows aggregation-caused quenching (ACQ) but retains a moderate quantum yield of 13.7 % (Φsoln=61.4 %). On the other hand, probe 2, with two NPI units, showed aggregation-induced enhanced emission AIEE, where the PLQY is increased nearly 4 times (Φsoln=3.5 %, Φagg=12.8 %). In-vitro cell studies revealed that these probes are non-toxic and effectively stain cells in green and red channels. Notably, Probe 1 demonstrated excellent cellular uptake and selectivity for lysosome, with a Pearson overlap coefficient of 0.91.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| |
Collapse
|
6
|
Yi Q, Pu C, Tang X, Liu M, Lin X, Lan W, Zhang X, Yang M, Wang M, Wang J. A near-infrared fluorescent probe toward β-Gal with dual-targeting potential of hepatocytes and lysosomes: Design, synthesis, and evaluation. Bioorg Chem 2025; 157:108266. [PMID: 39983404 DOI: 10.1016/j.bioorg.2025.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
In this work, a novel near-infrared fluorescent probe of benzopyranonitrile toward β-Gal was developed with high selectivity and low detection limits. DCM-Mor-Gal could effectively distinguish hepatocellular cells (HepG2) from SGC7901, HeLa, A549, and human normal liver cells (HL-7702) under the mediation of the galactose group, and effectively aggregate in the lysosomes under the acidity-alkalinity attraction, showing a notable dual-targeting potential of hepatocytes and lysosomes. The zebrafish experiments confirmed the utility of DCM-Mor-Gal in detecting β-Gal in vivo, which is expected to be an effective tool for the clinical detection of related diseases.
Collapse
Affiliation(s)
- Qingyuan Yi
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Chunxiao Pu
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiao Tang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Min Liu
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xia Lin
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xinyu Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Man Yang
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Jianyi Wang
- School of Medicine, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Tripathi D, Hardaniya M, Pande S, Maity D. Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging. J Imaging 2025; 11:87. [PMID: 40137199 PMCID: PMC11942650 DOI: 10.3390/jimaging11030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Optical imaging is an excellent non-invasive method for viewing visceral organs. Most importantly, it is safer as compared to ionizing radiation-based methods like X-rays. By making use of the properties of photons, this technique generates high-resolution images of cells, molecules, organs, and tissues using visible, ultraviolet, and infrared light. Moreover, optical imaging enables real-time evaluation of soft tissue properties, metabolic alterations, and early disease markers in real time by utilizing a variety of techniques, including fluorescence and bioluminescence. Innovative biocompatible fluorescent probes that may provide disease-specific optical signals are being used to improve diagnostic capabilities in a variety of clinical applications. However, despite these promising advancements, several challenges remain unresolved. The primary obstacle includes the difficulty of developing efficient fluorescent probes, and the tissue autofluorescence, which complicates signal detection. Furthermore, the depth penetration restrictions of several imaging modalities limit their use in imaging of deeper tissues. Additionally, enhancing biocompatibility, boosting fluorescent probe signal-to-noise ratios, and utilizing cutting-edge imaging technologies like machine learning for better image processing should be the main goals of future research. Overcoming these challenges and establishing optical imaging as a fundamental component of modern medical diagnoses and therapeutic treatments would require cooperation between scientists, physicians, and regulatory bodies.
Collapse
Affiliation(s)
- Divya Tripathi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mayurakshi Hardaniya
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Suchita Pande
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Wang H, Li K, Zhang L, Han T, Mu S, Song Y, Han Z, Zhao H, Liu X, Zhang H. Novel HOCl-Responsive Theranostic Prodrug for the Early Diagnosis and Therapy of Ischemic Stroke. J Med Chem 2025; 68:4951-4960. [PMID: 39937574 DOI: 10.1021/acs.jmedchem.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this work, a hypochlorous acid (HOCl)-responsive prodrug MB-R for diagnosis and therapy of ischemic stroke (IS) was constructed using the near-infrared fluorophore methylene blue linked to riluzole by the urea bond. MB-R exhibits good biocompatibility, fast response (<1 min), and high selectivity toward HOCl. MB-R was successfully utilized to visualize the HOCl levels, as well as the distribution of HOCl in the brains of IS mice to determine the progression of the disease. Meanwhile, the treatment with MB-R could reduce the cerebral infarction volume and improve the motor function in IS mice. Most importantly, MB-R could be utilized in the treatment of stroke through antioxidant, anti-inflammatory, and neuroprotective effects, further suggesting that riluzole was a potentially therapeutic agent for IS. Thus, this work paves the way for the development of intelligent theranostic agent for the early diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Huayu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Youwei Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zehua Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Lahiri H, Basu K. Sensing Microorganisms Using Rapid Detection Methods: Supramolecular Approaches. BIOSENSORS 2025; 15:130. [PMID: 40136927 PMCID: PMC11940469 DOI: 10.3390/bios15030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Supramolecular chemistry relies on the dynamic association/dissociation of molecules through non-covalent interactions. These interactions of a self-assembled system can be strategically exploited for sensing several microorganisms. Moreover, supramolecular systems can also be combined with other functional components like nanoparticles, self-assembled monolayers, and microarray systems to produce multicomponent sensors with higher sensitivity and lower detection time. In this review, we will discuss how cutting-edge supramolecular chemistry has enabled scientists to develop microbial biosensors with high reliability and rapid detection time. Moreover, they produce high-throughput operations, real-time monitoring, extensive operation platforms, and cost-effective production. This review can serve as a conceptual background for understanding state-of-the-art rapid detection methods of microbial biosensing.
Collapse
|
10
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2025; 13:763-801. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Li X, Zhang R, Yang Y, Huang W. Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0534. [PMID: 39801503 PMCID: PMC11717998 DOI: 10.34133/research.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications. This review aims to introduce the recent progress of CSMNs for NIR imaging, therapy, and synergistic PTs with a comprehensive summary of their molecular structures, structure types, and optical properties. Moreover, the working principles of CSMNs are illustrated from photophysical and photochemical mechanisms and light-tissue interactions. In addition, molecular engineering and nanomodulation approaches of CSMs are discussed, with an emphasis on strategies for improving performances and extending absorption and emission wavelengths to the NIR range. Furthermore, the in vivo investigation of CSMNs is illustrated with solid examples from imaging in different scenarios, therapy in 2 modes, and synergistic PTs in combinational functionalities. This review concludes with a brief conclusion, current challenges, and future outlook of CSMNs.
Collapse
Affiliation(s)
- Xiaozhen Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Ruohan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Yanlong Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Pham TA, Boquet-Pujadas A, Mondal S, Unser M, Barbastathis G. Deep-prior ODEs augment fluorescence imaging with chemical sensors. Nat Commun 2024; 15:9172. [PMID: 39448575 PMCID: PMC11502814 DOI: 10.1038/s41467-024-53232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
To study biological signalling, great effort goes into designing sensors whose fluorescence follows the concentration of chemical messengers as closely as possible. However, the binding kinetics of the sensors are often overlooked when interpreting cell signals from the resulting fluorescence measurements. We propose a method to reconstruct the spatiotemporal concentration of the underlying chemical messengers in consideration of the binding process. Our method fits fluorescence data under the constraint of the corresponding chemical reactions and with the help of a deep-neural-network prior. We test it on several GCaMP calcium sensors. The recovered concentrations concur in a common temporal waveform regardless of the sensor kinetics, whereas assuming equilibrium introduces artifacts. We also show that our method can reveal distinct spatiotemporal events in the calcium distribution of single neurons. Our work augments current chemical sensors and highlights the importance of incorporating physical constraints in computational imaging.
Collapse
Affiliation(s)
- Thanh-An Pham
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland.
| | - Sandip Mondal
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael Unser
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland
| | - George Barbastathis
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
13
|
Schwendt G, Kalinichev AV, Borisov SM, Koren K. Simultaneous Imaging of Temperature and Oxygen by Utilizing Thermally Activated Delayed Fluorescence and Phosphorescence of a Single Indicator. ACS MEASUREMENT SCIENCE AU 2024; 4:568-576. [PMID: 39430963 PMCID: PMC11487778 DOI: 10.1021/acsmeasuresciau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Chemical gradients are essential in biological systems, affecting processes like microbial activity in soils and nutrient cycling. Traditional tools, such as microsensors, offer high-resolution data but are limited to one-dimensional measurements. Planar optodes allow for two-dimensional (2D) and three-dimensional (3D) chemical imaging but are often sensitive to temperature changes. This study presents an advanced dual-emission optical sensor that simultaneously measures temperature and oxygen using a modified platinum(II) meso-tetrakis(3,5-ditert-butylphenyl)-tetra(2-tert-butyl-1,4-naphthoquinono)porphyrin. The ratio between thermally activated delayed fluorescence and phosphorescence was optimized by modifying platinum(II) naphthoquinonoporphyrin with tert-butyl groups which simultaneously improved solubility in apolar solvents and polymer matrix (polystyrene). This dual-function sensor enables two-parameter chemical imaging with a consumer-grade RGB camera or a hyperspectral camera. We demonstrated 2D visualization of temperature and oxygen distribution in a model soil system. The RGB camera provided rapid and cost-effective imaging, while the hyperspectral camera offered more detailed spectral information despite some limitations. Our findings revealed the formation of a stable temperature gradient and oxygen depletion, driven by water content and temperature-sensitive microbial activity. This dual O2/T sensor, with further potential improvements, shows considerable promise for advanced multiparameter sensing in complex biological and environmental studies, providing deeper insights into dynamic microenvironments.
Collapse
Affiliation(s)
- Georg Schwendt
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Andrey V. Kalinichev
- Department
of Biology—Microbiology, Aarhus University
Centre for Water Technology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Koren
- Department
of Biology—Microbiology, Aarhus University
Centre for Water Technology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
You Y, Lin S, Tang C, Li Y, Yan D, Wang D, Chen X. Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications. J Mater Chem B 2024; 12:8812-8824. [PMID: 39150370 DOI: 10.1039/d4tb01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan You
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Songling Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Chengwei Tang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuchao Li
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
15
|
Jain S, Lamba BY, Dubey SK. Recent advancements in the sensors for food analysis to detect gluten: A mini-review [2019-2023]. Food Chem 2024; 449:139204. [PMID: 38613992 DOI: 10.1016/j.foodchem.2024.139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
People with celiac disease or gluten sensitivity may experience an immune reaction to the protein called gluten, which is present in wheat, barley, and rye. A strict gluten-free diet is the sole cure for these ailments. There are chances of food fraud about the claim of being gluten-free food items. As a result, there is a rising need for trustworthy and precise ways to identify gluten. There are many methods to detect gluten in food samples viz., enzyme-linked immunosorbent assay 1 Surface plasmon resonance (SPR), Electrochemical sensors, Fluorescence-based sensors, etc. The use of sensors is one of the most promising methods for gluten detection. For detecting gluten, a variety of sensors, including optical, electrochemical, and biosensors, have been developed with different limits of detection and sensitivity. The present review reports the recent advancements (2019-2023) in the development of sensors for gluten detection in food. We may conclude that sensitivity and limit of detection are not related to the type of sensor used (aptamer or antibody-based), however, there are advancements, with the year, on the simplicity of the material used like paper-based sensors and paradigm shift to reagent free sensors by the spectral analysis. Also, recent work shows the potential of IoT-based studies for gluten detection.
Collapse
Affiliation(s)
- Sapna Jain
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India.
| | - Bhawna Yadav Lamba
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| | - Sanjeev Kumar Dubey
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| |
Collapse
|
16
|
Ma X, Lan Q, Pan S, Han Y, Liu Y, Wu Y. Biothiols-activated near-infrared frequency up-conversion luminescence probe for early evaluation of drug-induced hepatotoxicity. Anal Chim Acta 2024; 1312:342768. [PMID: 38834271 DOI: 10.1016/j.aca.2024.342768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Qingchun Lan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Shufen Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Yuting Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yongquan Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China.
| |
Collapse
|
17
|
Şahin ME, Biryan F, Çalışkan E, Koran K. Coumarin-Phosphazenes: Enhanced Photophysical Properties from Hybrid Materials. Inorg Chem 2024; 63:11006-11020. [PMID: 38822816 DOI: 10.1021/acs.inorgchem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Phosphazenes have drawn a great deal of interest over the past 20 years as a potentially useful building block for the fabrication of fluorescent materials. The main objective of this work is to explore novel derivatives produced by coumarins, a class of chemicals well-known for their photophysical importance, and cyclophosphazenes. UV absorbance, fluorescence emission, quantum yield, and lifetime measurements were conducted to comprehend the optical properties. Furthermore, single-crystal X-ray analysis and theoretical calculations were carried out to confirm the structure of the molecule. The obtained findings collectively confirm the commendable optical properties exhibited by the studied compounds. Moreover, a detailed study of the crystal packing arrangement of DPP-Et-Kum-Et compound crystallized in the P21/n monoclinic space group revealed the presence of stacking interactions between the nonplanar conjugated benzene rings of the coumarins and the rigid diphenyl groups attached to the phosphazene ring. The crystal structure of the DPP-Kum-Me-Me compound is mainly based on classical C-H···O intermolecular hydrogen bonding interactions with an average distance of 2.52 Å. Importantly, the calculated absorption spectra of the compounds are in close agreement with the experimental data, further supporting their interesting electronic properties. Given that the DPP-Et-Kum-Et and DPP-Kum-Et compounds have the theoretically lowest band gaps (4.31 and 4.30 eV, respectively), the activation energies of these compounds were determined by an impedance analyzer using dc conductance values measured at different temperatures. The calculated activation energies for DPP-Et-Kum-Et and DPP-Kum-Et are 104.49 and 100.92 meV, respectively. The results demonstrate that both theoretical and experimental calculations are in agreement with each other and that the DPP-Kum-Et compound has the lowest conductivity.
Collapse
Affiliation(s)
| | - Fatih Biryan
- Department of Chemistry, Fırat University, Elazig 23119, Turkey
| | - Eray Çalışkan
- Department of Chemistry, Bingol University, Bingol 12000, Turkey
| | - Kenan Koran
- Department of Chemistry, Fırat University, Elazig 23119, Turkey
| |
Collapse
|
18
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
19
|
Ranishenka B, Lamekina Y, Seviarynchyk T, Bugaenko D, Shmanai V, Karchava A. N-Aryl-DABCO Salts as an Unprecedented Sensing Platform for the Detection of Thiols and Selenols. Chemistry 2024; 30:e202400229. [PMID: 38369579 DOI: 10.1002/chem.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles. A dramatic increase in fluorescence intensity is achieved through the selective cleavage of the quaternized DABCO-ring, yielding a piperazine derivatives with a high fluorescence quantum yield (~72 %). Moreover, stability of the probe to the most used reducing agents DTT and TCEP was demonstrated. The limits of detection for p-thiocresol and phenyl selenide were evaluated to be 22 nM and 6 nM, respectively.
Collapse
Affiliation(s)
- Bahdan Ranishenka
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Yuliya Lamekina
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Tatsiana Seviarynchyk
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Dmitry Bugaenko
- Department of Chemistry., Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Alexander Karchava
- Department of Chemistry., Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
20
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Kalinichev AV, Zieger SE, Koren K. Optical sensors (optodes) for multiparameter chemical imaging: classification, challenges, and prospects. Analyst 2023; 149:29-45. [PMID: 37975528 DOI: 10.1039/d3an01661g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chemical gradients and uneven distribution of analytes are common in natural and artificial systems. As a result, the ability to visualize chemical distributions in two or more dimensions has gained significant importance in recent years. This has led to the integration of chemical imaging techniques into all domains of analytical chemistry. In this review, we focus on the use of optical sensors, so-called optodes, to obtain real-time and multidimensional images of two or more parameters simultaneously. It is important to emphasize that multiparameter imaging in this context is not confined solely to multiple chemical parameters (analytes) but also encompasses physical (e.g., temperature or flow) or biological (e.g., metabolic activity) parameters. First, we discuss the technological milestones that have paved the way for chemical imaging using optodes. Later, we delve into various strategies that can be taken to enable multiparameter imaging. The latter spans from developing novel receptors that enable the recognition of multiple parameters to chemometrics and machine learning-based techniques for data analysis. We also explore ongoing trends, challenges, and prospects for future developments in this field. Optode-based multiparameter imaging is a rapidly expanding field that is being fueled by cutting-edge technologies. Chemical imaging possesses the potential to provide novel insights into complex samples, bridging not only across various scientific disciplines but also between research and society.
Collapse
Affiliation(s)
- Andrey V Kalinichev
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Silvia E Zieger
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Fu D, Yang F, Zhang J, Xiang Z, Wang Y. Near-Infrared Rechargeable Persistent Luminescence Nanoparticles for Biomedical Implants In Vivo Noninvasive Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53310-53317. [PMID: 37947316 DOI: 10.1021/acsami.3c12947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Luminescent imaging has garnered significant attention for in vivo tracking of biomedical implants during and after surgery due to its human friendliness, affordability, and high sensitivity. However, conventional fluorescent probes are susceptible to background autofluorescence interference from living tissues, often resulting in poor signal-to-noise ratios. Herein, we report a background interference-free persistent luminescent implant (PLI) with excellent persistent luminescence (PL) performance, which can be clearly and long-term detected by an optical imaging system after implantation. Rechargeable near-infrared persistent luminescence nanoparticles (PLNPs) were prepared first via a simple hydrothermal approach and then modified by PEGylation to improve their hydrophilicity, biocompatibility, and compatibility with polymer substrates. The PEGylated PLNPs were facilely complexed into a polymer matrix to fabricate the PLI. The obtained PLIs can well inherit the PL properties of PLNPs, exhibiting good PL optical imaging performance without tissue autofluorescence interference. Furthermore, both PLNPs and PLIs possess good biocompatibility, and the addition of PLNPs has no negative impact on the biocompatibility of the polymer matrix. This work fully utilizes the luminescent properties of PLNPs and adapts this PL to the field of biomedical implant imaging, which provides new insight for designing biomedical imaging systems.
Collapse
Affiliation(s)
- Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fan Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jiayi Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhen Xiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Bonnefond S, Reynaud A, Cazareth J, Abélanet S, Vassalli M, Brau F, Lippi GL. Nanoscatterer-Assisted Fluorescence Amplification Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2875. [PMID: 37947721 PMCID: PMC10648225 DOI: 10.3390/nano13212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 μmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.
Collapse
Affiliation(s)
- Sylvain Bonnefond
- Université Côte d’Azur, UMR 7010 CNRS, Institut de Physique de Nice, 06560 Valbonne, France;
| | - Antoine Reynaud
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Julie Cazareth
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Sophie Abélanet
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Frédéric Brau
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Gian Luca Lippi
- Université Côte d’Azur, UMR 7010 CNRS, Institut de Physique de Nice, 06560 Valbonne, France;
| |
Collapse
|
24
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
25
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Mondal IC, Rawat P, Galkin M, Deka S, Karmakar A, Mondal P, Ghosh S. Julolidine-based small molecular probes for fluorescence imaging of RNA in live cells. Org Biomol Chem 2023; 21:7831-7840. [PMID: 37728395 DOI: 10.1039/d3ob01314f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Intracellular RNA imaging with organic small molecular probes has been an intense topic, although the number of such reported dyes, particularly dyes with high quantum yields and long wavelength excitation/emission, is quite limited. The present work reports the design and synthesis of three cationic julolidine-azolium conjugates (OX-JLD, BTZ-JLD and SEZ-JLD) as turn-on fluorescent probes with appreciably high quantum yields and brightness upon interaction with RNA. A structure-efficiency relationship has been established for their potential for the interaction and imaging of intracellular RNA. Given their chemical structure, the free rotation between the donor and the acceptor gets restricted when the probes bind with RNA resulting in strong fluorescence emission towards a higher wavelength upon photoexcitation. A detailed investigation revealed that the photophysical properties and the optical responses of two probes, viz. BTZ-JLD and SEZ-JLD, towards RNA are very promising and qualify them to be suitable candidates for biological studies, particularly for cellular imaging applications. The probes allow imaging of intracellular RNA with prominent staining of nucleoli in live cells under a range of physiological conditions. The results of the cellular digest test established the appreciable RNA selectivity of BTZ-JLD and SEZ-JLD inside the cellular environment. Moreover, a comparison between the relative intensity profile of SEZ-JLD before and after the RNA-digestion test inside the cellular environment indicated that the interference of cellular viscosity in fluorescence enhancement is insignificant, and hence, SEZ-JLD can be used as a cell membrane permeable cationic molecular probe for deep-red imaging of intracellular RNA with a good degree of selectivity.
Collapse
Affiliation(s)
- Iswar Chandra Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Priya Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Maksym Galkin
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Prosenjit Mondal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| |
Collapse
|
27
|
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers (Basel) 2023; 15:3935. [PMID: 37835984 PMCID: PMC10575272 DOI: 10.3390/polym15193935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.
Collapse
Affiliation(s)
- José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
28
|
Sundaresan S, Becker JG, Eppelsheimer J, Sedykh AE, Carrella LM, Müller-Buschbaum K, Rentschler E. Synergetic spin singlet-quintet switching and luminescence in mononuclear Fe(II) 1,3,4-oxadiazole tetradentate chelates with NCBH 3 co-ligand. Dalton Trans 2023; 52:13181-13189. [PMID: 37664901 DOI: 10.1039/d3dt02420b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report the multi-step synthesis of the tetradentate 2-(naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole ligand (LTetra-ODA) along with its corresponding [FeII(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex, which is the first mononuclear 1,3,4-oxadiazole based Fe(II) spin crossover (SCO) complex, and its zinc analogue [ZnII(LTetra-ODA)(NCBH3)2]·0.5H2O (C2). The spin transition is followed by variable temperature (VT-) X-ray crystallography of [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) at 120 and 220 K. The magnetic susceptibility measurements on the bulk sample recorded from 2 to 300 K show that the complex exhibits a complete abrupt reversible spin transition with a T1/2 of 207 K. The loss of the lattice solvent methanol shifts the T1/2 slightly to around 210 K. The spin transition in solution for [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) was followed using the VT-1H-NMR Evans method in CD3CN, with a T1/2 of 357 K. Solid state VT luminescence studies provide some preliminary evidence of interplay of luminescence and spin transition in the [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Jens-Georg Becker
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Julian Eppelsheimer
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander E Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Luca M Carrella
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Eva Rentschler
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
29
|
Köckenberger J, Thurston R, Sauer C, Oppl J, Heinrich MR. Connecting Ruthenium Photocatalysis to 1,2-Dioxetane-Mediated Chemiluminescence: a Versatile Combination for Optical Detection and Read-Out. Angew Chem Int Ed Engl 2023; 62:e202304474. [PMID: 37184155 DOI: 10.1002/anie.202304474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
Optical storage and photon quantification systems based on sensitive photoreactions have numerous applications. Herein, we report a highly efficient photocatalytic reaction, in which ruthenium photoredox catalysis is combined with a 1,2-dioxetane from which chemiluminescence can be triggered. In this system, blue light irradiation as optical input enables a defined inverse correlation with base-triggered, blue light emission as optical output. Comparison of readout by 1 H NMR and chemiluminescence, relative to previous optical input, underlines the reliability and usefulness of the ruthenium-dioxetane system for optical storage, sensing and ruthenium detection.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Ryan Thurston
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Caroline Sauer
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Janina Oppl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
30
|
Guan L, Zhou Y, Li X, Mao Y, Li A, Fu Y, Liu W, Dong S, Liang Z, Zhang Y, Zhao Q, Zhang L. ON-OFF Fluorescent Cyanine Dye Based on a Benzothiophenyl Rotor Enables Selective Illumination of G-Quadruplexes in Mitochondria. Anal Chem 2023. [PMID: 37290004 DOI: 10.1021/acs.analchem.3c01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional cyanine dyes exist as "always-on" fluorescent probes leading to inevitable background signals which often limit their performance and scope of applications. To develop specific fluorescent probes with high sensitivity and robust OFF/ON switching for targeting G4s, we introduced aromatic heterocycles through conjugation with polymethine chains to construct a rotor-π system. Here, a universal strategy is presented to synthesize pentamethine cyanines with different aromatic heterocycle substituents on the meso-polymethine chain. In these probes, SN-Cy5-S is self-quenched in aqueous solution due to H-aggregation. The structure indicates that SN-Cy5-S with a flexible meso-benzothiophenyl rotor conjugated to the cyanine backbone matches adaptively with G-tetrad planes, enhancing π-π stacking and resulting in triggered fluorescence. This allows recognition of G-quadruplexes due to the synergy of disaggregation-induced emission (DIE) and inhibited twisted intramolecular charge-transfer effects. This combination leads to a robust lighting-up fluorescence response for c-myc G4 with superior fluorescence enhancement (98-fold), allowing for a low detection limit of 1.51 nM, which is much more sensitive than the previously reported DIE-based G4 probes (22-83.5 nM). In addition, the superior imaging properties and rapid internalization time (5 min) in mitochondria allow SN-Cy5-S to also have a high potential for mitochondrially targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanyan Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbao Mao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sheying Dong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Honeyman AS, Merl T, Spear JR, Koren K. Optode-based chemical imaging of laboratory burned soil reveals millimeter-scale heterogeneous biogeochemical responses. ENVIRONMENTAL RESEARCH 2023; 224:115469. [PMID: 36773636 DOI: 10.1016/j.envres.2023.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soil spatial responses to fire are unclear. Using optical chemical sensing with planar 'optodes', pH and dissolved O2 concentration were tracked spatially with a resolution of 360 μm per pixel for 72 h after burning soil in the laboratory with a butane torch (∼1300 °C) and then sprinkling water to simulate a postfire moisture event. Imaging data from planar optodes correlated with microbial activity (quantified via RNA transcripts). Post-fire and post-wetting, soil pH increased throughout the entire ∼13 cm × 17 cm × 20 cm rectangular cuboid of sandy loam soil. Dissolved O2 concentrations were not impacted until the application of water postfire. pH and dissolved O2 both negatively correlated (p < 0.05) with relative transcript expression for galactose metabolism, the degradation of aromatic compounds, sulfur metabolism, and narH. Additionally, dissolved O2 negatively correlated (p < 0.05) with the relative activity of carbon fixation pathways in Bacteria and Archaea, amoA/amoB, narG, nirK, and nosZ. nifH was not detected in any samples. Only amoB and amoC correlated with depth in soil (p < 0.05). Results demonstrate that postfire soils are spatially complex on a mm scale and that using optode-based chemical imaging as a chemical navigator for RNA transcript sampling is effective.
Collapse
Affiliation(s)
- Alexander S Honeyman
- Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Theresa Merl
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA; Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Bleeker J, Kahn AP, Baumgartner LM, Grozema FC, Vermaas DA, Jager WF. Quinolinium-Based Fluorescent Probes for Dynamic pH Monitoring in Aqueous Media at High pH Using Fluorescence Lifetime Imaging. ACS Sens 2023; 8:2050-2059. [PMID: 37128994 DOI: 10.1021/acssensors.3c00316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spatiotemporal pH imaging using fluorescence lifetime imaging microscopy (FLIM) is an excellent technique for investigating dynamic (electro)chemical processes. However, probes that are responsive at high pH values are not available. Here, we describe the development and application of dedicated pH probes based on the 1-methyl-7-amino-quinolinium fluorophore. The high fluorescence lifetime and quantum yield, the high (photo)stability, and the inherent water solubility make the quinolinium fluorophore well suited for the development of FLIM probes. Due to the flexible fluorophore-spacer-receptor architecture, probe lifetimes are tunable in the pH range between 5.5 and 11. An additional fluorescence lifetime response, at tunable pH values between 11 and 13, is achieved by deprotonation of the aromatic amine at the quinolinium core. Probe lifetimes are hardly affected by temperature and the presence of most inorganic ions, thus making FLIM imaging highly reliable and convenient. At 0.1 mM probe concentrations, imaging at rates of 3 images per second, at a resolution of 4 μm, while measuring pH values up to 12 is achieved. This enables the pH imaging of dynamic electrochemical processes involving chemical reactions and mass transport.
Collapse
Affiliation(s)
- Jorrit Bleeker
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Aron P Kahn
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Lorenz M Baumgartner
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Ferdinand C Grozema
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - David A Vermaas
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Wolter F Jager
- Faculty of Applied Sciences, Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands
| |
Collapse
|
33
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
34
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
35
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
36
|
Xu S, Pan W, Song ZL, Yuan L. Molecular Engineering of Near-Infrared Fluorescent Probes for Cell Membrane Imaging. Molecules 2023; 28:1906. [PMID: 36838896 PMCID: PMC9960866 DOI: 10.3390/molecules28041906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cell membrane (CM) is a phospholipid bilayer that maintains integrity of a whole cell and relates to many physiological and pathological processes. Developing CM imaging tools is a feasible method for visualizing membrane-related events. In recent decades, small-molecular fluorescent probes in the near-infrared (NIR) region have been pursued extensively for CM staining to investigate its functions and related events. In this review, we summarize development of such probes from the aspect of design principles, CM-targeting mechanisms and biological applications. Moreover, at the end of this review, the challenges and future research directions in designing NIR CM-targeting probes are discussed. This review indicates that more efforts are required to design activatable NIR CM-targeting probes, easily prepared and biocompatible probes with long retention time regarding CM, super-resolution imaging probes for monitoring CM nanoscale organization and multifunctional probes with imaging and phototherapy effects.
Collapse
Affiliation(s)
- Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenjing Pan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha 410082, China
| |
Collapse
|
37
|
Kitagawa Y, Nakai T, Hosoya S, Shoji S, Hasegawa Y. Luminescent Lanthanide Complexes for Effective Oxygen-Sensing and Singlet Oxygen Generation. Chempluschem 2023:e202200445. [PMID: 36756816 DOI: 10.1002/cplu.202200445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Oxygen quantification using luminescence has attracted considerable attention in various fields, including environmental monitoring and clinical analysis. Among the reported luminophores, trivalent lanthanide complexes have displayed characteristic narrow emission bands with high brightness. This bright emission is based on photo-sensitized energy transfer via organic triplet states. The organic triplet states in lanthanide complexes effectively react with the triplet oxygen, enabling oxygen quantification by lanthanide luminescence. Some TbIII and EuIII complexes with slow deactivation processes have also formed the excited state equilibrium, thus resulting in the emission-lifetime based oxygen sensing property. The combination of TbIII /EuIII emission, EuIII /SmIII emission, EuIII /ligand phosphorescence, and ligand fluorescence/ligand phosphorescence provide the ratiometric oxygen-sensing properties. Moreover, the reaction generates singlet oxygen species which exhibit numerous applications in the photo-medical field. The ligands with large π-conjugated aromatic systems, such as porphyrin, phthalocyanine, and polyaromatic compounds, induces highly efficient oxygen generation. The combination of effective luminescence with singlet-oxygen generation by the lanthanide complexes render them suitable for photo-driven theranostics. This review summarizes the research progress of lanthanide complexes with efficient oxygen-sensing and singlet-oxygen generation properties.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Takuma Nakai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Shota Hosoya
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Sunao Shoji
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
38
|
Srivastava P, Tavernaro I, Scholtz L, Genger C, Welker P, Schreiber F, Meyer K, Resch-Genger U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci Rep 2023; 13:1321. [PMID: 36693888 PMCID: PMC9873940 DOI: 10.1038/s41598-023-28203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Klas Meyer
- Division Process Analytical Technology, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
39
|
Martin SM, Repa GM, Hamburger RC, Pointer CA, Ward K, Pham TN, Martin MI, Rosenthal J, Fredin LA, Young ER. Elucidation of complex triplet excited state dynamics in Pd(II) biladiene tetrapyrroles. Phys Chem Chem Phys 2023; 25:2179-2189. [PMID: 36594369 DOI: 10.1039/d2cp04572a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 μs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Kaytlin Ward
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| |
Collapse
|
40
|
Shen Y, Yuan L, Wu G, Yuan W, Cheng Z, Yan J, Zhang J, Tao Y, Yu Z. Microdroplet-Facilitated Assembly of Thermally Activated Delayed Fluorescence-Encoded Microparticles with Non-interfering Color Signals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:591-598. [PMID: 36542734 DOI: 10.1021/acsami.2c18870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encoded microparticles (EMPs) have shown demonstrative value for multiplexed high-throughput bioassays such as drug discovery and diagnostics. Herein, we propose for the first time the incorporation of thermally activated delayed fluorescence (TADF) dyes with low-cost, heavy metal-free, and long-lived luminescence properties into polymer matrices via a microfluidic droplet-facilitated assembly technique. Benefiting from the uniform droplet template sizes and polymer-encapsulated structures, the resulting composite EMPs are highly monodispersed, efficiently shield TADF dyes from singlet oxygen, well preserve TADF emission, and greatly increase the delayed fluorescence lifetime. Furthermore, by combining with phase separation of polymer blends in the drying droplets, TADF dyes with distinct luminescent colors can be spatially separated within each EMP. It eliminates optical signal interference and generates multiple fluorescence colors in a compact system. Additionally, in vitro studies reveal that the resulting EMPs show good biocompatibility and allow cells to adhere and grow on the surface, thereby making them promising optically EMPs for biolabeling.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Lingfeng Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Wenbo Yuan
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhengxiang Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Jing Yan
- Holosensor Medical Ltd., Building 12, 1798 West Zhonghuayuan Road, Suzhou City, Jiangsu 215300, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
41
|
Huber A, Dubbert J, Scherz TD, Voskuhl J. Design Concepts for Solution and Solid-State Emitters - A Modern Viewpoint on Classical and Non-Classical Approaches. Chemistry 2023; 29:e202202481. [PMID: 36193996 PMCID: PMC10099667 DOI: 10.1002/chem.202202481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Abstract
For a long time, luminescence phenomena were strictly distinguished between the emission of isolated molecules in dilute solutions or close-packed structures such as in powders or aggregates. This changed with the breakthrough observation of dual-state efficient materials, which led to a rapid boost of publications examining the influence of structural features to achieve balanced emission with disregarded molecular surroundings. Some first general structural design concepts have already been proposed based on reoccurring patterns and pivotal motifs. However, we have found another way to classify these solution and solid-state emitters (SSSEs). Hence, this minireview aims to present an overview of published structural features of SSSEs while shining light on design concepts from a more generalized perspective. Since SSSEs are believed to bridge the gap of hitherto known aggregation-sensitive compound classes, we hope to give future scientists a versatile tool in hand to efficiently design novel luminescent materials.
Collapse
Affiliation(s)
- Alexander Huber
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Justin Dubbert
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Tim D Scherz
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
42
|
de la Cruz-Martínez F, Bresolí-Obach R, Bravo I, Alonso-Moreno C, Hermida-Merino D, Hofkens J, Lara-Sánchez A, Castro-Osma JA, Martín C. Unexpected luminescence of non-conjugated biomass-based polymers: new approach in photothermal imaging. J Mater Chem B 2023; 11:316-324. [PMID: 36353924 DOI: 10.1039/d2tb02033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Population growth, depletion of world resources and persistent toxic chemical production underline the need to seek new smart materials from inexpensive, biodegradable, and renewable feedstocks. Hence, "metal-free" ring-opening copolymerization to convert biomass carvone-based monomers into non-conventional luminescent biopolymers is considered a sustainable approach to achieve these goals. The non-conventional emission was studied in terms of steady-state and time-resolved spectroscopy in order to unravel the structure-properties for different carvone-based copolymers. The results highlighted the importance of the final copolymer folding structure as well as its environment in luminescent behavior (cluster-triggered emission). In all cases, their luminescent behavior is sensitive to small temperature fluctuations (where the minimum detected temperature is Tm ∼ 2 °C and relative sensitivity is Sr ∼ 6% °C) even at the microscopic scale, which endows these materials a great potential as thermosensitive smart polymers for photothermal imaging.
Collapse
Affiliation(s)
- Felipe de la Cruz-Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-la Mancha, Avda. Camilo José Cela, 10, Ciudad Real 13071, Spain.
| | - Roger Bresolí-Obach
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium.,AppLightChem, Institut Quimic de Sarria, Universitat Ramon Lull, Via Augusta 390, Barcelona 08007, Catalunya, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Carlos Alonso-Moreno
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Daniel Hermida-Merino
- CINBIO, Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Johan Hofkens
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-la Mancha, Avda. Camilo José Cela, 10, Ciudad Real 13071, Spain.
| | - José A Castro-Osma
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| | - Cristina Martín
- Chem&Tech - Molecular Imaging and Photonics, KU Leuven, C/Celestijnenlaan 200F, Leuven 3001, Belgium.,Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-la Mancha, Avda. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
43
|
The Detection and Imaging of pH Values in Living Cells with Hemicyanine Based Colorimetric Mitochondria-Targeted Fluorescent Probe. J Fluoresc 2023; 33:393-399. [PMID: 36434442 DOI: 10.1007/s10895-022-03080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
pH plays a crucial role in cells, especially mitochondria, an important organelle. Developing probes with well-performance for pH detection is still in great demand. Therefore, we first synthesized an indole-based probe (MC-ID-OL) to detect mitochondrial pH changes. The emission wavelength of MC-ID-OL is 649 nm, which does not reach the near-infrared region (650-900 nm). To further enlarge the emission wavelength, probe MC-BI-OL was developed by replacing indolenine with benzoindole. As expected, the emission wavelength changed from 649 to 656 nm. MC-BI-OL probes could also detect pH changes and mitochondria's highly reversible proportional fluorescence localization. In addition, the fluorescence imaging of the MC-BI-OL in HeLa cells demonstrated that this probe could sense changes in the pH of mitochondria in cells.
Collapse
|
44
|
Li J, Ling J, Yao C. Recent advances in NIR-II fluorescence based theranostic approaches for glioma. Front Chem 2022; 10:1054913. [PMID: 36438867 PMCID: PMC9682463 DOI: 10.3389/fchem.2022.1054913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Gliomas are among the most common malignant tumors in the central nervous system and lead to poor life expectancy. However, the effective treatment of gliomas remains a considerable challenge. The recent development of near infrared (NIR) II (1000-1700 nm) theranostic agents has led to powerful strategies in diagnosis, targeted delivery of drugs, and accurate therapy. Because of the high capacity of NIR-II light in deep tissue penetration, improved spatiotemporal resolution can be achieved to facilitate the in vivo detection of gliomas via fluorescence imaging, and high contrast fluorescence imaging guided surgery can be realized. In addition to the precise imaging of tumors, drug delivery nano-platforms with NIR-II agents also allow the delivery process to be monitored in real-time. In addition, the combination of targeted drug delivery, photodynamic therapy, and photothermal therapy in the NIR region significantly improves the therapeutic effect against gliomas. Thus, this mini-review summarizes the recent developments in NIR-II fluorescence-based theranostic agents for glioma treatment.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nosocomial Infection Management, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chaoyi Yao
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
45
|
Eriksson R, Gren P, Sjödahl M, Ramser K. Investigation of the Spatial Generation of Stimulated Raman Scattering Using Computer Simulation and Experimentation. APPLIED SPECTROSCOPY 2022; 76:1307-1316. [PMID: 36281542 DOI: 10.1177/00037028221123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stimulated Raman scattering is a phenomenon with potential use in providing real-time molecular information in three-dimensions (3D) of a sample using imaging. For precise imaging, the knowledge about the spatial generation of stimulated Raman scattering is essential. To investigate the spatial behavior in an idealized case, computer simulations and experiments were performed. For the computer simulations, diffraction theory was used for the beam propagation complemented with nonlinear phase modulation describing the interaction between the light and matter. For the experiments, a volume of ethanol was illuminated by an expanded light beam and a plane inside the volume was imaged in transmission. For generating stimulated Raman scattering, a pump beam was focused into this volume and led to a beam dump after passing the volume. The pulse duration of the two beams were 6 ns and the pump beam energy ranged from 1 to 27 mJ. The effect of increasing pump power on the spatial distribution of the Raman gain and the spatial growth of the signal at different interaction lengths between the beam and the sample was investigated. The spatial width of the region where the stimulated Raman scattering signal was generated for experiments and simulation was 0.21 and 0.09 mm, respectively. The experimental and simulation results showed that most of the stimulated Raman scattering is generated close to the pump beam focus and the maximum peak of the Stokes intensity spatially comes shortly after the peak of the pump intensity.
Collapse
Affiliation(s)
- Ronja Eriksson
- Department of Engineering Science and Mathematics, 407846Luleå University of Technology, Luleå, Sweden
| | - Per Gren
- Department of Engineering Science and Mathematics, 407846Luleå University of Technology, Luleå, Sweden
| | - Mikael Sjödahl
- Department of Engineering Science and Mathematics, 407846Luleå University of Technology, Luleå, Sweden
| | - Kerstin Ramser
- Department of Engineering Science and Mathematics, 407846Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
46
|
Wang K, Jiao Y, Ma Q, Shu W, Xiao H, Zhang T, Liu Y. Construction and Application of a New Polarity‐Sensitive Fluorescent Probe Based on the Excited‐State Intramolecular Proton Transfer Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kai Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Qingqing Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Wei Shu
- School of Life Sciences and Medicine Shandong University of Technology Zibo 255049 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
47
|
Recent advance of fluorescent probes for detection of drug-induced liver injury markers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Ozsan C, Kailass K, Digby EM, Almammadov T, Beharry AA, Kolemen S. Selective detection of carboxylesterase 2 activity in cancer cells using an activity-based chemiluminescent probe. Chem Commun (Camb) 2022; 58:10929-10932. [PMID: 36065979 DOI: 10.1039/d2cc03309g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxylesterase 2 (CES2) has crucial roles in both xenobiotic metabolism and formation of pathogenic states including cancer. Thus, it is highly critical to monitor intracellular CES2 activity in living cancer cells. Here, we report a CES2 activatable phenoxy 1,2-dioxetane based chemiluminescent agent (CL-CES2). The probe exhibited a selective turn-on response in the presence of CES2 enzyme and enabled detection of CES2 activity in three different cancer cells that possess varying enzyme concentrations with high signal to noise ratios. In contrast no signal was obtained with CES1, an isoform of CES2 enzyme. CL-CES2 marks the first ever example of a CES2-responsive chemiluminescent luminophore and holds a great potential in further understanding the roles of CES2 activity in tumorogenesis.
Collapse
Affiliation(s)
- Cagri Ozsan
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | | | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey. .,Surface Science and Technology Center (KUYTAM), Koç University, 34450 Istanbul, Turkey.,Boron and Advanced Materials Application and Research Center, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
49
|
Wang J, Meng Q, Yang Y, Zhong S, Zhang R, Fang Y, Gao Y, Cui X. Schiff Base Aggregation-Induced Emission Luminogens for Sensing Applications: A Review. ACS Sens 2022; 7:2521-2536. [PMID: 36048423 DOI: 10.1021/acssensors.2c01550] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence sensing can not only identify a target substrate qualitatively but also achieve the purpose of quantitative detection through the change of the fluorescence signal. It has the advantages of immense sensitivity, rapid response, and excellent selectivity. The proposed aggregation-induced emission (AIE) concept solves the problem of the fluorescence of traditional fluorescent molecules becoming weak or quenched in high concentration or aggregated state conditions. Schiff base fluorescent probes have the advantages of simple synthesis, low toxicity, and easy design. They are often used for the detection of various substances. In this review we cover late developments in Schiff base compounds with AIE characteristics working as fluorescence sensors.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuhang Fang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| |
Collapse
|
50
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|