1
|
Aquib M, Yang W, Yu L, Kannaujiya VK, Zhang Y, Li P, Whittaker A, Fu C, Boyer C. Effect of cyclic topology versus linear terpolymers on antibacterial activity and biocompatibility: antimicrobial peptide avatars. Chem Sci 2024:d4sc05797j. [PMID: 39479165 PMCID: PMC11520352 DOI: 10.1039/d4sc05797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.
Collapse
Affiliation(s)
- Md Aquib
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Wenting Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Luofeng Yu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Vinod Kumar Kannaujiya
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Andrew Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
2
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Xiong W, Lai G, Liu WH. A Type of Stable Amides Behaves as Acyl Transfer Reagents upon Visible-Light Irradiation through Self-Aromatization. Chemistry 2024; 30:e202401619. [PMID: 38773843 DOI: 10.1002/chem.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Organic molecules with light-modifiable reactivity are important in many fields because they can serve as the "switch" for light to trigger chemical processes. Herein, we disclose a new type of stable non-twisted amides, the reactivity of which can be turned on by light as acyl transfer reagents. Upon photo-activation, these amides react with various nucleophiles including amines, phenols, hydroxide, thiols, boronic acids, and alkynes either under metal-free or metal-catalysis conditions. This reactivity hinges on the design and synthesis of a photo-activatable reagent (7-nitro-5,6-dihydrophenanthridine), which undergoes self-aromatization enabled by an internal oxidant under light. This masked acyl donor group is anticipated to be useful in scenarios where light is preferred to trigger a chemical process.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd, Guangzhou, 510442, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Adrion DM, Karunaratne WV, Lopez SA. Multiconfigurational photodynamics simulations reveal the mechanism of photodecarbonylations of cyclopropenones in explicit aqueous environments. Chem Sci 2023; 14:13205-13218. [PMID: 38023495 PMCID: PMC10664470 DOI: 10.1039/d3sc03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Gas-evolving photochemical reactions use light and mild conditions to access strained organic compounds irreversibly. Cyclopropenones are a class of light-responsive molecules used in bioorthogonal photoclick reactions; their excited-state decarbonylation reaction mechanisms are misunderstood due to their ultrafast (<100 femtosecond) lifetimes. We have combined multiconfigurational quantum mechanical (QM) calculations and non-adiabatic molecular dynamics (NAMD) simulations to uncover the excited-state mechanism of cyclopropenone and a photoprotected cyclooctyne-(COT)-precursor in gaseous and explicit aqueous environments. We explore the role of H-bonding with fully quantum mechanical explicitly solvated NAMD simulations for the decarbonylation reaction. The cyclopropenones pass through asynchronous conical intersections and have dynamically concerted photodecarbonylation mechanisms. The COT-precursor has a higher quantum yield of 55% than cyclopropenone (28%) because these trajectories prefer to break a σCC bond to avoid the strained trans-cyclooctene geometries. Our solvated simulations show an increased quantum yield (58%) for the systems studied here.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Waruni V Karunaratne
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| |
Collapse
|
6
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
7
|
Red light-induced conjugation of amines through amide bond formation triggered via photooxidation of 3-acylindolizines. Commun Chem 2022; 5:91. [PMID: 36697938 PMCID: PMC9814406 DOI: 10.1038/s42004-022-00712-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023] Open
Abstract
The development of a conjugation method initiated by irradiation of long-wavelength light (>500 nm) to prepare densely functionalized molecules while avoiding undesired photodegradation has attracted considerable attention. Here we show an amide bond formation method based on the photoreaction of 3-acylindolizines in the presence of amines triggered via red-light irradiation. Photooxidation of 3-acylindolizines using a catalytic amount of a photosensitizer and red light-emitting diodes (660 nm) affords the corresponding conjugated amides in nearly quantitative yields within <5 min. This transformation can be performed in aqueous organic solvents and is applicable to diverse aliphatic amines with various functional groups, including the moieties responsive to short-wavelength light.
Collapse
|
8
|
Huang Y, Sun Y, Weng Y, Zhang W. A Simple and Green Oxygen‐Tolerant RAFT Polymerization without Additional Catalyst and Initiator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
9
|
Controlling polymer molecular weight distributions by light through reversible addition‐fragmentation chain transfer‐hetero‐Diels–Alder click conjugation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Farh MK, Gruschwitz FV, Ziegenbalg N, Abul-Futouh H, Görls H, Weigand W, Brendel JC. Dual Function of β-hydroxy Dithiocinnamic Esters: RAFT Agent and Ligand for Metal Complexation. Macromol Rapid Commun 2022; 43:e2200428. [PMID: 35751415 DOI: 10.1002/marc.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Indexed: 11/06/2022]
Abstract
The reversible addition-fragmentation chain-transfer (RAFT) process has become a versatile tool for the preparation of defined polymers tolerating a large variety of functional groups. Several dithioesters, trithiocarbonates, xanthates, or dithiocarbamates have been developed as effective chain transfer agents (CTA), but only few examples have been reported, where the resulting end groups are directly considered for a secondary use besides controlling the polymerization. We here demonstrate that β-hydroxy dithiocinnamic esters represent a hitherto overlooked class of materials, which were originally designed for the complexation of transition metals but might as well act as reversible CTA. Modified with a suitable leaving group (R-group), these vinyl conjugated dithioesters indeed provide reasonable control over the polymerization of acrylates, acrylamides, or styrene via the RAFT process. Kinetic studies revealed linear evolutions of molar mass with conversion, while different substituents on the aromatic unit had only a minor influence. Block extensions prove the livingness of the polymer chains, although extended polymerization times may lead to side reactions. The resulting dithiocinnamic ester end groups are still able to form complexes with platinum, which verifies that the structural integrity of the end group is maintained. These findings open a versatile new route to tailor-made polymer bound metal complexes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Micheal K Farh
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
11
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
13
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
14
|
Liebich VJ, Avrutina O, Habermann J, Hillscher LM, Langhans M, Meckel T, Biesalski M, Kolmar H. Toward Fabrication of Bioactive Papers: Covalent Immobilization of Peptides and Proteins. Biomacromolecules 2021; 22:2954-2962. [PMID: 34101458 DOI: 10.1021/acs.biomac.1c00354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a novel two-step method for the covalent, site-directed, and efficient immobilization of proteins on lab-made paper sheets. First, paper fibers were modified with a peptidic anchor comprising enzyme recognition motifs. Four different conjugation strategies for peptide immobilization were evaluated with respect to reproducibility and fiber loading efficiency. After manufacturing of the peptide-preconditioned paper, oriented conjugation of the model protein tGFP containing a C-terminal recognition sequence for either sortase A or microbial transglutaminase was assessed semiquantitatively by fluorescence measurement and inspected by confocal laser scanning microscopy (CLSM). The two enzymes utilized for protein conjugation used the same oligoglycine peptide anchor, and both proved to be suitable for controlled oriented linkage of substrate proteins at physiological conditions.
Collapse
Affiliation(s)
- Valentina J Liebich
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Laura M Hillscher
- Institute for Macromolecular and Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Merck Lab @ TU Darmstadt, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Markus Langhans
- Institute for Macromolecular and Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Institute for Macromolecular and Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Markus Biesalski
- Institute for Macromolecular and Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Merck Lab @ TU Darmstadt, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany.,Merck Lab @ TU Darmstadt, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero‐Diels‐Alder‐Cycloaddition mit RAFT‐Polymeren als Biokonjugationsplattform. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Department of Applied Chemistry (UPV/EHU) Avda. Manuel de Lardizabal 3 E-20018 Donostia – San Sebastian Spanien
- IKERBASQUE Basque Foundation for Science Maria Diaz de Haro 3 E-48013 Bilbao Spanien
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Marcel Langer
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Mathias Glassner
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
- Department of Chemical Engineering and Biotechnology University of Cambridge West Cambridge Site, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Organic Functional Molecules Organic Chemistry University of Wuppertal Gaußstrasse 20 42119 Wuppertal Deutschland
| |
Collapse
|
17
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero-Diels-Alder Cycloaddition with RAFT Polymers as Bioconjugation Platform. Angew Chem Int Ed Engl 2020; 59:19951-19955. [PMID: 32729643 PMCID: PMC7693046 DOI: 10.1002/anie.202005747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/16/2022]
Abstract
We introduce the bioconjugation of polymers synthesized by RAFT polymerization, bearing no specific functional end group, by means of hetero-Diels-Alder cycloaddition through their inherent terminal thiocarbonylthio moiety with a diene-modified model protein. Quantitative conjugation occurs over the course of a few hours, at ambient temperature and neutral pH, and in the absence of any catalyst. Our technology platform affords thermoresponsive bioconjugates, whose aggregation is solely controlled by the polymer chains.
Collapse
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Department of Applied Chemistry (UPV/EHU)Avda. Manuel de Lardizabal 3E-20018Donostia – San SebastianSpain
- IKERBASQUEBasque Foundation for ScienceMaria Diaz de Haro 3E-48013BilbaoSpain
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Marcel Langer
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Mathias Glassner
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeWest Cambridge Site, Philippa Fawcett DriveCambridgeCB3 0ASUK
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Organic Functional MoleculesOrganic ChemistryUniversity of WuppertalGaußstrasse 2042119WuppertalGermany
| |
Collapse
|
18
|
Xiang L, Liu X, He Y, Zhang K. Eye-Readable Dynamic Covalent Click Reaction and Its Application in Polymer Synthesis. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lue Xiang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianfeng Liu
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiang He
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Yang G, Long W, Yan W, Huang H, Liu M, Ouyang H, Feng Y, Liu L, Zhang X, Wei Y. Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
21
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
22
|
Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Light‐Driven Intramolecular C−N Cross‐Coupling via a Long‐Lived Photoactive Photoisomer Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong Jing
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Songyang Jin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Lijuan Xie
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ziyi Meng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
23
|
Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Light-Driven Intramolecular C-N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex. Angew Chem Int Ed Engl 2019; 58:14666-14672. [PMID: 31373432 DOI: 10.1002/anie.201906112] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Reported herein is a visible-light-driven intramolecular C-N cross-coupling reaction under mild reaction conditions (metal- and photocatalyst-free, at room temperature) via a long-lived photoactive photoisomer complex. This strategy was used to rapidly prepare the N-substituted polycyclic quinazolinone derivatives with a broad substrate scope (>50 examples) and further exploited to synthesize the natural products tryptanthrin, rutaecarpine, and their analogues. The success of gram-scale synthesis and solar-driven transformation, as well as promising tumor-suppressing biological activity, proves the potential of this strategy for practical applications. Mechanistic investigations, including control experiments, DFT calculations, UV-vis spectroscopy, EPR, and X-ray single-crystal structure of the key intermediate, provides insight into the mechanism.
Collapse
Affiliation(s)
- Dong Jing
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Songyang Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lijuan Xie
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ziyi Meng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
24
|
Zaquen N, Haven JJ, Rubens M, Altintas O, Bohländer P, Offenloch JT, Barner‐Kowollik C, Junkers T. Exploring the Photochemical Reactivity of Multifunctional Photocaged Dienes in Continuous Flow. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neomy Zaquen
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
| | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| | - Maarten Rubens
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| | - Ozcan Altintas
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Peggy Bohländer
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Janin T. Offenloch
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Christopher Barner‐Kowollik
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of Technology (QUT) 2 George St Brisbane QLD 4000 Australia
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Tanja Junkers
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| |
Collapse
|
25
|
Town JS, Jones GR, Hancox E, Shegiwal A, Haddleton DM. Tandem Mass Spectrometry for Polymeric Structure Analysis: A Comparison of Two Common MALDI–ToF/ToF Techniques. Macromol Rapid Commun 2019; 40:e1900088. [DOI: 10.1002/marc.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- James S. Town
- Department of ChemistryUniversity of Warwick CV4 7AL UK
| | - Glen R. Jones
- Department of ChemistryUniversity of Warwick CV4 7AL UK
| | - Ellis Hancox
- Department of ChemistryUniversity of Warwick CV4 7AL UK
| | | | | |
Collapse
|
26
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
27
|
Peng J, Xu Q, Ni Y, Zhang L, Cheng Z, Zhu X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polym Chem 2019. [DOI: 10.1039/c9py00069k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fast visible light controlled RAFT polymerization system without the prior removal of oxygen was successfully carried out in a continuous tubular reactor with water as a green solvent.
Collapse
Affiliation(s)
- Jinying Peng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Qinghua Xu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Yuanyuan Ni
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| |
Collapse
|
28
|
Jovic K, Nitsche T, Lang C, Blinco JP, De Bruycker K, Barner-Kowollik C. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polym Chem 2019. [DOI: 10.1039/c9py00370c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we demonstrate how SEC-ESI-MS can be used to analyze complex polymers, a significant challenge in contemporary polymer chemistry.
Collapse
Affiliation(s)
- Kristina Jovic
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tobias Nitsche
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kevin De Bruycker
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
29
|
Müller R, Feuerstein TJ, Trouillet V, Bestgen S, Roesky PW, Barner-Kowollik C. Spatially-Resolved Multiple Metallopolymer Surfaces by Photolithography. Chemistry 2018; 24:18933-18943. [PMID: 30357939 DOI: 10.1002/chem.201803966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/19/2022]
Abstract
A tetrazole-based photoligation protocol for the spatially-resolved encoding of various defined metallopolymers onto solid surfaces is introduced. By using this approach, fabrication of bi- and trifunctional metallopolymer surfaces with different metal combinations were achieved. Specifically, α-ω-functional copolymers containing bipyridine as well as triphenylphosphine ligands were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization, and subsequently metal loaded to afford metallopolymers of the widely-used metals gold, palladium, and platinum. Spatially-resolved surface attachment was achieved by means of a nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) based photoligation protocol, exploiting tethered tetrazoles and metallopolymers equipped with a maleimide chain terminus. Metallopolymer coated surfaces with three different metals were prepared and characterized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and spatially-resolved X-ray photoelectron spectroscopy (XPS) mapping, supporting the preserved chemical composition of the surface-bound metallopolymers. The established photochemical technology platform for arbitrary spatially-resolved metallopolymer surface designs enables the patterning of multiple metallopolymers onto solid substrates. This allows for the assembly of designer metallopolymer substrates.
Collapse
Affiliation(s)
- Rouven Müller
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Thomas J Feuerstein
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Bestgen
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
30
|
Lueckerath T, Strauch T, Koynov K, Barner-Kowollik C, Ng DYW, Weil T. DNA–Polymer Conjugates by Photoinduced RAFT Polymerization. Biomacromolecules 2018; 20:212-221. [DOI: 10.1021/acs.biomac.8b01328] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thorsten Lueckerath
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tina Strauch
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), George Street, Brisbane, Queensland 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
31
|
Rubio‐Cervilla J, Frisch H, Barner‐Kowollik C, Pomposo JA. Synthesis of Single‐Ring Nanoparticles Mimicking Natural Cyclotides by a Stepwise Folding‐Activation‐Collapse Process. Macromol Rapid Commun 2018; 40:e1800491. [DOI: 10.1002/marc.201800491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/30/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jon Rubio‐Cervilla
- Centro de Física de Materiales (CSIC, UPV/EHU) – MPC Materials Physics Center Paseo Manuel de Lardizabal 5 20018 San Sebastian Spain
| | - Hendrik Frisch
- School of Chemistry Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Christopher Barner‐Kowollik
- School of Chemistry Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) – MPC Materials Physics Center Paseo Manuel de Lardizabal 5 20018 San Sebastian Spain
- Departamento de Física de Materiales Universidad del País Vasco (UPV/EHU) Apartado 1072 20080 San Sebastian Spain
- IKERBASQUE – Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
32
|
Feist F, Menzel JP, Weil T, Blinco JP, Barner-Kowollik C. Visible Light-Induced Ligation via o-Quinodimethane Thioethers. J Am Chem Soc 2018; 140:11848-11854. [DOI: 10.1021/jacs.8b08343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Florian Feist
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jan P. Menzel
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - James P. Blinco
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
33
|
Laun J, Marchal W, Trouillet V, Welle A, Hardy A, Van Bael MK, Barner-Kowollik C, Junkers T. Reversible Surface Engineering via Nitrone-Mediated Radical Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3244-3255. [PMID: 29457981 DOI: 10.1021/acs.langmuir.7b03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficient and simple polymer conjugation reactions are critical for introducing functionalities on surfaces. For polymer surface grafting, postpolymerization modifications are often required, which can impose a significant synthetic hurdle. Here, we report two strategies that allow for reversible surface engineering via nitrone-mediated radical coupling (NMRC). Macroradicals stemming from the activation of polymers generated by copper-mediated radical polymerization are grafted via radical trapping with a surface-immobilized nitrone or a solution-borne nitrone. Since the product of NMRC coupling features an alkoxyamine linker, the grafting reactions can be reversed or chain insertions can be performed via nitroxide-mediated polymerization (NMP). Poly( n-butyl acrylate) ( Mn = 1570 g·mol-1, D̵ = 1.12) with a bromine terminus was reversibly grafted to planar silicon substrates or silica nanoparticles as successfully evidenced via X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry, and grazing angle attenuated total reflection Fourier-transform infrared spectroscopy (GAATR-FTIR). NMP chain insertions of styrene are evidenced via GAATR-FTIR. On silica nanoparticles, an NMRC grafting density of close to 0.21 chains per nm2 was determined by dynamic light scattering and thermogravimetric analysis. Concomitantly, a simple way to decorate particles with nitroxide radicals with precise control over the radical concentration is introduced. Silica microparticles and zinc oxide, barium titanate, and silicon nanoparticles were successfully functionalized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , 2 George Street , QLD 4000 , Brisbane , Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstraße 18 , 76128 Karlsruhe , Germany
| | | |
Collapse
|
34
|
Hurrle S, Goldmann AS, Gliemann H, Mutlu H, Barner-Kowollik C. Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Lett 2018; 7:201-207. [PMID: 35610893 DOI: 10.1021/acsmacrolett.7b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce two AB-type monomers able to undergo a facile catalyst-free photoinduced polycycloaddition of photocaged dienes, enabling rapid Diels-Alder ligations under UV-irradiation (λmax = 350 nm) at ambient temperature, closely adhering to Carother's equation established by a careful kinetic study (17800 g mol-1 < Mw < 24700 g mol-1). The resulting macromolecules were in-depth analyzed via size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Additionally, SEC hyphenated to high resolution-electrospray ionization-mass spectrometry (HR-ESI-MS) enabled the careful mapping of the end group structure of the generated polymers. Furthermore, we demonstrate that both monomer systems can be readily copolymerized. The study thus demonstrates that Diels-Alder ligation resting upon photocaged dienes is a powerful tool for accessing step-growth polymers.
Collapse
Affiliation(s)
- Silvana Hurrle
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Hartmut Gliemann
- Institut
für Funktionelle Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Hatice Mutlu
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Baron M, Morris JC, Telitel S, Clément JL, Lalevée J, Morlet-Savary F, Spangenberg A, Malval JP, Soppera O, Gigmes D, Guillaneuf Y. Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. J Am Chem Soc 2018; 140:3339-3344. [DOI: 10.1021/jacs.7b12807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marc Baron
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Jason C. Morris
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Siham Telitel
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Jean-Louis Clément
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Arnaud Spangenberg
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Jean-Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Olivier Soppera
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Didier Gigmes
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Yohann Guillaneuf
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| |
Collapse
|
36
|
Mateos J, Cherubini-Celli A, Carofiglio T, Bonchio M, Marino N, Companyó X, Dell’Amico L. A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chem Commun (Camb) 2018; 54:6820-6823. [DOI: 10.1039/c8cc01373j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A general and scalable microfluidic photoreactor for light-driven reaction of 2-methylbenzophenones was successfully developed.
Collapse
Affiliation(s)
- Javier Mateos
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Alessio Cherubini-Celli
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Tommaso Carofiglio
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Marcella Bonchio
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Nadia Marino
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Xavier Companyó
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Luca Dell’Amico
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| |
Collapse
|
37
|
Gegenhuber T, De Keer L, Goldmann AS, Van Steenberge PHM, Mueller JO, Reyniers MF, Menzel JP, D’hooge DR, Barner-Kowollik C. Fusing Light-Induced Step-Growth Processes with RAFT Chemistry for Segmented Copolymer Synthesis: A Synergetic Experimental and Kinetic Modeling Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01394] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Gegenhuber
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lies De Keer
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Jan O. Mueller
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Jan P. Menzel
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium
- Centre
for Textile Science and Engineering, Ghent University, Technologiepark
907, 9052 Gent, Belgium
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Gegenhuber T, Abt D, Welle A, Özbek S, Goldmann AS, Barner-Kowollik C. Spatially resolved photochemical coding of reversibly anchored cysteine-rich domains. J Mater Chem B 2017; 5:4993-5000. [PMID: 32264016 DOI: 10.1039/c7tb00962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a novel methodology to generate recodable surfaces using cysteine-rich domains (CRD) via a combination of photolithography and reversible covalently peptide-driven disulfide formation. Therefore, two 21mer CRD peptide derivatives were synthesized, one bearing an electron deficient fumarate group for immobilization via nitrile imine-ene mediated cycloaddition (NITEC) to a tetrazole-functional surface. Secondly, a bromine moiety is introduced to the CRD for analytic labelling purposes to detect surface encoding. The photolithography is conducted by selectively passivating the surface with a polyethylene glycol (PEG)-fumarate via NITEC using a photomask in a dotted pattern. Consecutively, the CRD-fumarate is immobilized via NITEC adjacent to the PEG-functional areas to the unaffected tetrazole covered surface layer. Subsequently, the CRD-bromide is covalently linked to the CRD-fumarate by forming disulfide bonds under mild reoxidative conditions in a buffer solution. The CRD-bromide is released from the surface upon reduction to recover the prior state of the surface without the bromine marker. The analysis of the CRD precursors is based on electrospray ionization mass spectrometry (ESI-MS). The surface analytics were carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS), unambiguously verifying the successful immobilization as well as coding and decoding of the CRD-bromide on the surface based on dynamically reversible disulfide bond formation.
Collapse
Affiliation(s)
- Thomas Gegenhuber
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Claus TK, Zhang J, Martin L, Hartlieb M, Mutlu H, Perrier S, Delaittre G, Barner‐Kowollik C. Stepwise Light‐Induced Dual Compaction of Single‐Chain Nanoparticles. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/31/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Tanja K. Claus
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
- Institute for Biological Interfaces (IBG)Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Junliang Zhang
- Department of ChemistryThe University of Warwick Warwick CV4 7AL UK
| | - Liam Martin
- Department of ChemistryThe University of Warwick Warwick CV4 7AL UK
| | | | - Hatice Mutlu
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
- Institute for Biological Interfaces (IBG)Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Sébastien Perrier
- Department of ChemistryThe University of Warwick Warwick CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Guillaume Delaittre
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
- Institute for Biological Interfaces (IBG)Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
40
|
Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00465] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anja S. Goldmann
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher Barner-Kowollik
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Blasco E, Wegener M, Barner-Kowollik C. Photochemically Driven Polymeric Network Formation: Synthesis and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28075059 DOI: 10.1002/adma.201604005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Indexed: 05/11/2023]
Abstract
Polymeric networks have been intensely investigated and a large number of applications have been found in areas ranging from biomedicine to materials science. Network fabrication via light-induced reactions is a particularly powerful tool, since light provides ready access to temporal and spatial control, opening an array of synthetic access routes for structuring the network geometry as well as functionality. Herein, the most recent light-induced modular reactions and their use in the formation of precision polymeric networks are collated. The synthetic strategies including photoinduced thiol-based reactions, Diels-Alder systems, and photogenerated reactive dipoles, as well as photodimerizations, are discussed in detail. Importantly, applications of the fabricated networks via the aforementioned reactions are highlighted with selected examples. Concomitantly, we provide future directions for the field, emphasizing the most critically required advances.
Collapse
Affiliation(s)
- Eva Blasco
- Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76128, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
42
|
Baeten E, Rubens M, Wuest KNR, Barner-Kowollik C, Junkers T. Photo-induced ring-closure via a looped flow reactor. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00124j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Looped flow processes are an efficient and versatile tool to synthesize cyclic macromolecular materials.
Collapse
Affiliation(s)
- Evelien Baeten
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Maarten Rubens
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Kilian N. R. Wuest
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
- School of Chemistry, Physics and Mechanical Engineering
| | - Christopher Barner-Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
- School of Chemistry, Physics and Mechanical Engineering
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| |
Collapse
|
43
|
Wang J, Rivero M, Muñoz Bonilla A, Sanchez-Marcos J, Xue W, Chen G, Zhang W, Zhu X. Natural RAFT Polymerization: Recyclable-Catalyst-Aided, Opened-to-Air, and Sunlight-Photolyzed RAFT Polymerizations. ACS Macro Lett 2016; 5:1278-1282. [PMID: 35614740 DOI: 10.1021/acsmacrolett.6b00818] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The successful sunlight-photolyzed reversible addition-fragmentation chain transfer (RAFT) photopolymerization can be reversibly activated and deactivated by irradiation with sunlight in the absence of photocatalyst and photoinitiator. In the present work, the thiocarbonylthio compounds (dithiobenzoate, trithiocarbonate, and xanthate) can all be employed to carry out the polymerization under sunlight irradiation acting as an initiator, chain transfer agent, and termination agent. Moreover, it was demonstrated that the recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed RAFT (ROS-RAFT) polymerizations can be successfully carried out to fabricate precise and predictable polymers in the presence of the recyclable magnetic semiconductor nanoparticles (NPs). The oxygen tolerance is likely attributed to a specific interaction between NPs and oxygen.
Collapse
Affiliation(s)
- Jie Wang
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Maria Rivero
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente,
7, Cantoblanco, 28049 Madrid, Spain
| | - Alexandra Muñoz Bonilla
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente,
7, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Sanchez-Marcos
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente,
7, Cantoblanco, 28049 Madrid, Spain
| | - Wentao Xue
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Gaojian Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry Engineering and Materials Science
of Soochow University, Soochow University, Suzhou 215123, China
| | - Weidong Zhang
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry Engineering and Materials Science
of Soochow University, Soochow University, Suzhou 215123, China
| | - Xiulin Zhu
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry Engineering and Materials Science
of Soochow University, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Josse T, De Winter J, Gerbaux P, Coulembier O. Synthese cyclischer Polymere durch Ringschluss-Strategien. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Josse
- Laboratory of Polymeric and Composite Materials (LPCM); Center of Innovation and Research in Materials and Polymers (CIRMAP); University of Mons; Place du Parc, 20 7000 Mons Belgien
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgien
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgien
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgien
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM); Center of Innovation and Research in Materials and Polymers (CIRMAP); University of Mons; Place du Parc, 20 7000 Mons Belgien
| |
Collapse
|
45
|
Josse T, De Winter J, Gerbaux P, Coulembier O. Cyclic Polymers by Ring-Closure Strategies. Angew Chem Int Ed Engl 2016; 55:13944-13958. [DOI: 10.1002/anie.201601677] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Josse
- Laboratory of Polymeric and Composite Materials (LPCM); Center of Innovation and Research in Materials and Polymers (CIRMAP); University of Mons; Place du Parc, 20 7000 Mons Belgium
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory (S MOS); University of Mons; Place du Parc, 20 7000 Mons Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM); Center of Innovation and Research in Materials and Polymers (CIRMAP); University of Mons; Place du Parc, 20 7000 Mons Belgium
| |
Collapse
|
46
|
Cecchini MM, Steinkoenig J, Reale S, Barner L, Yuan J, Goldmann AS, De Angelis F, Barner-Kowollik C. Universal mass spectrometric analysis of poly(ionic liquid)s. Chem Sci 2016; 7:4912-4921. [PMID: 30155139 PMCID: PMC6018439 DOI: 10.1039/c6sc01347c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
We introduce a universal high resolution mass spectrometric method for the analysis of poly(ionic liquid)s (PILs), which belong to the most challenging polyelectrolytes from an analytical perspective, by fusing high resolution collision-induced dissociation (CID)-Orbitrap mass spectrometry (MS) with supercharging agents as well as quadrupole time-of-flight (QToF) MS. The study includes a wide array of hydrophilic halide-containing PILs, which were analyzed in negative mode. The influence of the core structures (based on imidazolium, triazolium, ammonium, phosphonium and pyridinium moieties), and variable styrene-, acrylate- and vinyl-type IL polymers on the ionization behavior is mapped in detail. Variable end group functionalities were introduced via functional chain transfer agents (CTA) in reversible addition-fragmentation chain transfer (RAFT) polymerization to study their behavior during the MS analysis. Furthermore, the demanding class of vinylimidazolium halide IL polymers was investigated. The current contribution thus introduces a new analytical technology platform for an entire polymer class.
Collapse
Affiliation(s)
- Martina M Cecchini
- Dipartimento di Scienze Fisiche e Chimiche , Università degli Studi dell'Aquila , Via Vetoio , Coppito , 67100 , L'Aquila , Italy .
| | - Jan Steinkoenig
- Preparative Macromolecular Chemistry , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76128 Karlsruhe , Germany .
- Institut für Biologische Grenzflächen , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Samantha Reale
- Dipartimento di Scienze Fisiche e Chimiche , Università degli Studi dell'Aquila , Via Vetoio , Coppito , 67100 , L'Aquila , Italy .
| | - Leonie Barner
- Soft Matter Synthesis Laboratory , Institut für Biologische Grenzflächen , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Jiayin Yuan
- Max-Planck-Institute of Colloids and Interfaces , Research Campus Golm , 14424 Potsdam , Germany
| | - Anja S Goldmann
- Preparative Macromolecular Chemistry , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76128 Karlsruhe , Germany .
- Institut für Biologische Grenzflächen , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Francesco De Angelis
- Dipartimento di Scienze Fisiche e Chimiche , Università degli Studi dell'Aquila , Via Vetoio , Coppito , 67100 , L'Aquila , Italy .
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76128 Karlsruhe , Germany .
- Institut für Biologische Grenzflächen , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
- Soft Matter Synthesis Laboratory , Institut für Biologische Grenzflächen , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
47
|
Xiao L, Chen Y, Zhang K. Efficient Metal-Free “Grafting Onto” Method for Bottlebrush Polymers by Combining RAFT and Triazolinedione–Diene Click Reaction. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lifen Xiao
- State
Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongming Chen
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
48
|
Hiltebrandt K, Elies K, D'hooge DR, Blinco JP, Barner-Kowollik C. A Light-Activated Reaction Manifold. J Am Chem Soc 2016; 138:7048-54. [PMID: 27151599 DOI: 10.1021/jacs.6b01805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.
Collapse
Affiliation(s)
- Kai Hiltebrandt
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany.,Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katharina Elies
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Dagmar R D'hooge
- Department of Chemical Engineering and Technical Chemistry, Laboratory for Chemical Technology, Ghent University , Technologiepark 914, B-9052 Gent, Belgium.,Department of Textiles, Ghent University , Technologiepark 907, B-9052 Gent, Belgium
| | - James P Blinco
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany.,Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
49
|
Langer M, Mueller JO, Goldmann AS, Schacher FH, Barner-Kowollik C. α,ω-Reactive Building Blocks Based on a Dual Functional RAFT Agent for Thermal and Light-Induced Ligation. ACS Macro Lett 2016; 5:597-601. [PMID: 35632378 DOI: 10.1021/acsmacrolett.6b00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A dual functional chain transfer agent (CTA) capable of highly efficient sequential thermal and photoinduced ligation, generating α,ω-functional polymers, is introduced. The newly designed CTA (1-(4-((2-formyl-3-methyl phenoxy)methyl)phenyl)ethyl (diethoxyphosphoryl)methane dithioate) fuses thermally triggered hetero Diels-Alder chemistry with rapid light-induced photoenol chemistry. The versatility of the CTA is exemplarily demonstrated via the preparation of an amphiphilic triblock quaterpolymer poly(isoprene-co-styrene)-block-poly(ethyl acrylate)-block-poly(ethylene oxide) (P(I-co-S)-b-PEA-b-PEO). Subsequent to the homopolymerization of ethyl acrylate (PEA), a Cp-functional poly(isoprene-co-styrene) (P(I-co-S)) is conjugated with the electron-deficient C═S double bond (dienophile) of the CTA end group, generating a P(I-co-S)-b-PEA diblock terpolymer. The triblock quaterpolymer P(I-co-S)-b-PEA-b-PEO is generated by photoligation of a macromolecular dienophile, i.e., the fumarate-terminated poly(ethylene oxide) (PEO-fum) to the photoenol-functional P(I-co-S)-b-PEA. The new dual functional ligation RAFT agent constitutes a technology platform for generating α,ω-reactive building blocks from one single chain transfer agent.
Collapse
Affiliation(s)
- Marcel Langer
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut für Biologische Grenzflächen,
Soft
Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan O. Mueller
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut für Biologische Grenzflächen,
Soft
Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anja S. Goldmann
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut für Biologische Grenzflächen,
Soft
Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix H. Schacher
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut für Biologische Grenzflächen,
Soft
Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
50
|
Sugawara Y, Jasinski N, Kaupp M, Welle A, Zydziak N, Blasco E, Barner-Kowollik C. Light-driven nitrile imine-mediated tetrazole-ene cycloaddition as a versatile platform for fullerene conjugation. Chem Commun (Camb) 2016; 51:13000-3. [PMID: 26179054 DOI: 10.1039/c5cc05507e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient methodology for modular fullerene functionalization via the photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) is introduced. The versatility and platform character of the method is illustrated by the light-driven reaction of fullerenes with small molecule, polymeric and surface-immobilized tetrazoles. The efficient fullerene conjugation is evidenced via mass spectrometric techniques.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|