1
|
Long S, Turner DA, Hamill KJ, Natrajan LS, McDonald TO. Capturing the dynamic integrity of carbocyanine fluorophore-based lipid nanoparticles using the FRET technique. J Mater Chem B 2025; 13:2295-2305. [PMID: 39886899 PMCID: PMC11783621 DOI: 10.1039/d4tb02653e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Nanoparticles capable of dynamically reporting their structural integrity in real-time are a powerful tool to guide the design of drug delivery technologies. Lipid nanoparticles (LNPs) offer multiple important advantages for drug delivery, including stability, protection of active substances, and sustained release capabilities. However, tracking their structural integrity and dynamic behaviour in complex biological environments remains challenging. Here, we report the development of a Förster resonance energy transfer (FRET)-enabled LNP platform that achieves unprecedented sensitivity and precision in monitoring nanoparticle disintegration. The FRET-based LNPs were prepared using nanoprecipitation, encapsulating high levels of 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorophores as the donor and acceptors, respectively. The resulting LNPs had a mean diameter of 114 ± 19 nm with a distinct FRET signal. An optimal energy transfer efficiency of 0.98 and an emission quantum yield of 0.13 were achieved at 11.1% fluorophore loading in the LNPs, balancing efficient energy transfer and minimal aggregation-induced quenching. Using the FRET reporting, three dissociation stages of FRET LNPs were observed: solvation, indicated by an increased emission intensity; swelling and partial dissolution, evidenced by changes in emission maxima and mean size; and complete dissociation, confirmed by emission solely from DiO and the absence of particles. Testing the nanoparticles in live cells (telomerase-immortalised human corneal epithelial cells, hTCEpi cells) revealed a direct link to the disappearance of the FRET signal with the dissociation of FRET NPs. The nanoparticles initially exhibited a strong extracellular FRET signal, which diminished after cellular internalisation. This suggests that the LNPs disintegrate after entering the cells. These findings establish FRET-based LNPs as a robust tool for real-time nanoparticle tracking, offering insights into their integrity and release mechanisms, with potential applications in advanced drug delivery and diagnostics.
Collapse
Affiliation(s)
- Siyu Long
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Louise S Natrajan
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Tom O McDonald
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
2
|
Stenspil SG, Laursen BW. Photophysics of fluorescent nanoparticles based on organic dyes - challenges and design principles. Chem Sci 2024; 15:8625-8638. [PMID: 38873083 PMCID: PMC11168078 DOI: 10.1039/d4sc01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Fluorescent nanoparticles have become attractive for bioanalysis and imaging, due to their high brightness and photostability. Many different optical materials have been applied in fluorescent nanoparticles with a broad range of properties and characteristics. One appealing approach is the incorporation of molecular organic fluorophores in nanoparticles with the intention of transferring their known attractive solution-state properties directly to the nanoparticles. However, as molecular dyes are packed closely together in the nanoparticles their interactions most often result in fluorescence quenching and change in spectral properties making this approach challenging. In this perspective we will first discuss the origins of quenching and spectral shifts observed in dye based nanoparticles. On this background, we will then describe various designs of dye based NPs and how they address the challenges of dye-dye interactions and quenching. Our aim is to provide a general framework for understanding the supramolecular mechanisms that determine the photophysics of dye based nanoparticles. This framework of molecular photophysics and its relation to the internal structure of dye based nanoparticles can hopefully serve to assist rational design and optimization of new and improved dye based nanoparticles.
Collapse
Affiliation(s)
- Stine G Stenspil
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
3
|
Song YH, Cho HM, Ryu YC, Hwang BH, Seo JH. Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21509-21521. [PMID: 38642038 DOI: 10.1021/acsami.3c18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.
Collapse
Affiliation(s)
- Young Hoon Song
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
4
|
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers (Basel) 2023; 15:3935. [PMID: 37835984 PMCID: PMC10575272 DOI: 10.3390/polym15193935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.
Collapse
Affiliation(s)
- José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Fraix A, Parisi C, Longobardi G, Conte C, Pastore A, Stornaiuolo M, Graziano ACE, Alberto ME, Francés-Monerris A, Quaglia F, Sortino S. Red-Light-Photosensitized NO Release and Its Monitoring in Cancer Cells with Biodegradable Polymeric Nanoparticles. Biomacromolecules 2023; 24:3887-3897. [PMID: 37467426 DOI: 10.1021/acs.biomac.3c00527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Arianna Pastore
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Adriana C E Graziano
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende I-87036, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
6
|
Chen Q, Chen L, Liu Y, Li W, Zhong Q, Xu B, Wang Z, Wang W. A novel spraying nanoprobe for renal cell carcinoma in humans. LIFE MEDICINE 2023; 2:lnac059. [PMID: 39872953 PMCID: PMC11749079 DOI: 10.1093/lifemedi/lnac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/22/2022] [Indexed: 01/30/2025]
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Chen
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenzhi Li
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiwei Wang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Ningbo Haibo Biotechnology Co., Ltd, Ningbo 315615, China
| |
Collapse
|
7
|
Lee N, Kim S, Lee KH, Lee SM, Lee DW. Synthesis of fluorescent dye-embedded silica nanoparticles for vitamin D3 detection using sandwich-like assay. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Cai X, Yu J, Song Y. Ultrasensitive lateral flow immunoassay for staphylococcal enterotoxin B using nanosized fluorescent metal-organic frameworks. NANOSCALE 2022; 14:16994-17002. [PMID: 36354367 DOI: 10.1039/d2nr04683k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to their outstanding optical properties and superior physical/chemical stability, dye-doped fluorescent nanoparticles (NPs) are growing exponentially as signal labels of immunochromatographic lateral flow immunoassay (LFA) for the detection of various analytes. However, the key challenge in the design of these fluorescent NPs is to confine the fluorophores inside NPs at extreme concentrations, at which dyes tend to self-quench resulting from the formation of non-fluorescent aggregates. Looking for other advantageous nanomaterials, we propose for the first time the use of a nanosized fluorescent metal-organic framework (nanoMOF) in LFA for the detection of staphylococcal enterotoxin B (SEB) as a model analyte. Featured by the chromophore assembly, the nanoMOF exhibited a high dye loading (∼60%) and strong fluorescence intensity, which was due to the reduced self-quenching of dyes in a variety of MOF matrices. The strong green fluorescence intensity of the nanoMOF gives a high contrast against the background of the strips and the sensitivity reflected by photoluminescence was improved by the enhanced antenna effect. Furthermore, due to the high surface area for antibody stemming, the limit of detection (LOD) of the MOF based LFA for SEB detection was as low as 0.025 ng mL-1. The compatibility of the MOF based LFA with dairy samples and its stability under long-term storage conditions were also demonstrated. The integration of a nanoMOF into LFA to detect toxins could inspire the utilization of such nanomaterial-based labels in similar immunochromatographic testing methods to improve their performance.
Collapse
Affiliation(s)
- Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.
| | - Yang Song
- NANOGENE LLC, Gainesville, Florida 32611, USA.
| |
Collapse
|
9
|
Yang Z, Guo Y, Zhou J, Liu F, Liang W, Chai Y, Li Z, Yuan R. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy. Anal Chem 2022; 94:16237-16245. [DOI: 10.1021/acs.analchem.2c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
10
|
Fatima A, Ahmad MW, Al Saidi AKA, Choudhury A, Chang Y, Lee GH. Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2449. [PMID: 34578765 PMCID: PMC8465722 DOI: 10.3390/nano11092449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Gadolinium (Gd) based contrast agents (CAs) (Gd-CAs) represent one of the most advanced developments in the application of Gd for magnetic resonance imaging (MRI). Current challenges with existing CAs generated an urgent requirement to develop multimodal CAs with good biocompatibility, low toxicity, and prolonged circulation time. This review discussed the Gd-CAs used in bioimaging applications, addressing their advantages and limitations. Future research is required to establish the safety, efficacy and theragnostic capabilities of Gd-CAs. Nevertheless, these Gd-CAs offer extraordinary potential as imaging CAs and promise to benefit bioimaging applications significantly.
Collapse
Affiliation(s)
- Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, P.O. Box 2509, Salalah 211, Sultanate of Oman;
| | - Md. Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, P.O. Box 2509, Salalah 211, Sultanate of Oman;
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University (KNU), Taegu 702-701, Korea;
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Yongmin Chang
- Department of Molecular Medicine and Medical & Biological Engineering, School of Medicine, Kyungpook National University (KNU), Taegu 702-701, Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University (KNU), Taegu 702-701, Korea;
| |
Collapse
|
11
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
12
|
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L, Amorati R, Zaccheroni N. Nitroxides as Building Blocks for Nanoantioxidants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31996-32004. [PMID: 34156238 PMCID: PMC8289242 DOI: 10.1021/acsami.1c06674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.
Collapse
Affiliation(s)
- Damiano Genovese
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Baschieri
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, 40129 Bologna, Italy
| | - Danilo Vona
- Department
of Chemistry, University of Bari, via Orabona 4, I-70126 Bari, Italy
| | - Ruxandra Elena Baboi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Fabio Mollica
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
13
|
Dhir A, Gogoi H, Datta A. Modulation of FRET efficiency by donor-acceptor ratio in co-condensed fluorophore-silica nanoconjugates. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
De La Encarnacion Bermudez C, Haddadi E, Rampazzo E, Petrizza L, Prodi L, Genovese D. Core-Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4802-4809. [PMID: 33851534 PMCID: PMC8154881 DOI: 10.1021/acs.langmuir.0c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors. The precursors are obtained via a fast and quantitative click reaction, starting from cost-effective reagents such as diamines and an isocyanate silane derivative, and they condensate in building blocks characterized by a balance between hydrophobic and H-bond-rich domains. As nanoscopic probes for local polarity, oxygen permeability, and solvating properties, we use, respectively, solvatochromic, phosphorescent, and excimer-forming dyes covalently linked to the organosilica matrix during synthesis. The results obtained here clearly show that the use of these organosilane precursors allows for finely tuning polarity, oxygen permeability, and solvating properties of the resulting organosilica core, expanding the toolbox for precise engineering of the particle properties.
Collapse
Affiliation(s)
| | - Elahe Haddadi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- Department
of Chemistry, College of Sciences, Shiraz
University, Shiraz 71454, Iran
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Petrizza
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Severi C, Melnychuk N, Klymchenko AS. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe. Biosens Bioelectron 2020; 168:112515. [PMID: 32862092 DOI: 10.1016/j.bios.2020.112515] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Point-of-care assays for optical detection of biomolecular markers attract growing attention, because of their capacity to provide rapid and inexpensive diagnostics of cancer and infectious diseases. Here, we designed a nanoprobe compatible with a smartphone RGB camera for detection of nucleic acids. It is based on light-harvesting polymeric nanoparticles (NPs) encapsulating green fluorescent donor dyes that undergo efficient Förster Resonance Energy Transfer (FRET) to red fluorescent acceptor hybridized at the particle surface. Green-emitting NPs are based on rhodamine 110 and 6G dyes paired with bulky hydrophobic counterions, which prevent dye self-quenching and ensure efficient energy transfer. Their surface is functionalized with a capture DNA sequence for cancer marker survivin, hybridized with a short oligonucleotide bearing FRET acceptor ATTO647N. Obtained 40-nm poly(methyl methacrylate)-based NP probe, encapsulating octadecyl rhodamine 6G dyes with tetrakis(perfluoro-tert-butoxy)aluminate counterions (~6000 dyes per NP), and bearing 65 acceptors, shows efficient FRET with >20% quantum yield and a signal amplification (antenna effect) of 25. It exhibits ratiometric response to the target DNA by FRET acceptor displacement and enables DNA detection in solution by fluorescence spectroscopy (limit of detection 3 pM) and on surfaces at the single-particle level using two-color fluorescence microscopy. Using a smartphone RGB camera, the nanoprobe response can be readily detected at 10 pM target in true color and in red-to-green ratio images. Thus, our FRET-based nanoparticle biosensor enables detection of nucleic acid targets using a smartphone coupled to an appropriate optical setup, opening the way to simple and inexpensive point-of-care assays.
Collapse
Affiliation(s)
- Caterina Severi
- Laboratoire de Biophotonique et Pathologies, Faculté de Pharmacie, UMR 7021, CNRS, Université de Strasbourg, 74, Route du Rhin, 67401, Cedex, Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Biophotonique et Pathologies, Faculté de Pharmacie, UMR 7021, CNRS, Université de Strasbourg, 74, Route du Rhin, 67401, Cedex, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pathologies, Faculté de Pharmacie, UMR 7021, CNRS, Université de Strasbourg, 74, Route du Rhin, 67401, Cedex, Illkirch, France.
| |
Collapse
|
16
|
Ashokkumar P, Adarsh N, Klymchenko AS. Ratiometric Nanoparticle Probe Based on FRET-Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002494. [PMID: 32583632 DOI: 10.1002/smll.202002494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Luminescent oxygen probes enable direct imaging of hypoxic conditions in cells and tissues, which are associated with a variety of diseases, including cancer. Here, a nanoparticle probe that addresses key challenges in the field is developed, it: i) strongly amplifies room temperature phosphorescence of encapsulated oxygen-sensitive dyes; ii) provides ratiometric response to oxygen; and iii) solves the fundamental problem of phototoxicity of phosphorescent sensors. The nanoprobe is based on 40 nm polymeric nanoparticles, encapsulating ≈2000 blue-emitting cyanine dyes with fluorinated tetraphenylborate counterions, which are as bright as 70 quantum dots (QD525). It functions as a light-harvesting nanoantenna that undergoes efficient Förster resonance energy transfer to ≈20 phosphorescent oxygen-sensitive platinum octaethylporphyrin (PtOEP) acceptor dyes. The obtained nanoprobe emits stable blue fluorescence and oxygen-sensitive red phosphorescence, providing ratiometric response to dissolved oxygen. The light harvesting leads to ≈60-fold phosphorescence amplification and makes the single nanoprobe particle as bright as ≈1200 PtOEP dyes. This high brightness enables oxygen detection at a single-particle level and in cells at ultra-low nanoprobe concentration with no sign of phototoxicity, in contrast to PtOEP dye. The developed nanoprobe is successfully applied to the imaging of a microfluidics-generated oxygen gradient in cancer cells. It constitutes a promising tool for bioimaging of hypoxia.
Collapse
Affiliation(s)
- Pichandi Ashokkumar
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Nagappanpillai Adarsh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| |
Collapse
|
17
|
Walia S, Sharma C, Acharya A. Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. NANOMATERIAL - BASED BIOMEDICAL APPLICATIONS IN MOLECULAR IMAGING, DIAGNOSTICS AND THERAPY 2020:27-53. [DOI: 10.1007/978-981-15-4280-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Yang S, Li Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1603. [DOI: 10.1002/wnan.1603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shaobo Yang
- Lab of Low‐Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
19
|
Zheng C, Wang T, Kang Q, Xiao J, Yu L. Rhodamine-assisted fluorescent detection for lysozyme based on the inner filter effect of gold nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Palomba F, Genovese D, Rampazzo E, Zaccheroni N, Prodi L, Morbidelli L. PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS OMEGA 2019; 4:13962-13971. [PMID: 31497714 PMCID: PMC6714606 DOI: 10.1021/acsomega.9b01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Silica nanostructures are widely investigated for theranostic applications since relatively mild and easy synthetic methods allow the fabrication of multicompartment nanoparticles (NPs) and fine modulation of their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability, up to 45 molecules per NP, of Sorafenib, a small molecule acting as an antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation and migration and network formation. Their lyophilization can endow them with long shelf stability, whereas, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from Pluronic silica NPs completely prevented endothelial cell responses and postreceptor mitogen-activated protein kinase signaling ignited by vascular endothelial growth factor, one of the major players of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anticancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivered.
Collapse
Affiliation(s)
- Francesco Palomba
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Lucia Morbidelli
- Dipartimento
di Scienze della Vita, Università
di Siena, Via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
21
|
Giuri D, Zanna N, Tomasini C. Low Molecular Weight Gelators Based on Functionalized l-Dopa Promote Organogels Formation. Gels 2019; 5:E27. [PMID: 31091701 PMCID: PMC6630615 DOI: 10.3390/gels5020027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/03/2022] Open
Abstract
We prepared the small pseudopeptide Lau-l-Dopa(OBn)2-d-Oxd-OBn (Lau = lauric acid; l-Dopa = l-3,4-dihydroxyphenylalanine; d-Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one; Bn = benzyl) through a number of coupling reactions between lauric acid, protected l-Dopa and d-Oxd with an excellent overall yield. The ability of the product to form supramolecular organogels has been tested with different organic solvents of increasing polarity and compared with the results obtained with the small pseudopeptide Fmoc-l-Dopa(OBn)2-d-Oxd-OBn. The mechanical and rheological properties of the organogels demonstrated solvent-dependent properties, with a storage modulus of 82 kPa for the ethanol organogel. Finally, to have a preliminary test of the organogels' ability to adsorb pollutants, we treated a sample of the ethanol organogel with an aqueous solution of Rhodamine B (RhB) for 24 h. The water solution slowly lost its pink color, which became trapped in the organogel.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| |
Collapse
|
22
|
Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019; 18:2142-2149. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.
Collapse
Affiliation(s)
- Benedetta Del Secco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Ravotto
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tatiana V Esipova
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sergei A Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
23
|
Caponetti V, Trzcinski JW, Cantelli A, Tavano R, Papini E, Mancin F, Montalti M. Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Front Chem 2019; 7:168. [PMID: 30984740 PMCID: PMC6447614 DOI: 10.3389/fchem.2019.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Fluorescence is a powerful tool for mapping biological events in real-time with high spatial resolution. Ultra-bright probes are needed in order to achieve high sensitivity: these probes are typically obtained by gathering a huge number of fluorophores in a single nanoparticle (NP). Unfortunately this assembly produces quenching of the fluorescence because of short-range intermolecular interactions. Here we demonstrate that rational structural modification of a well-known molecular fluorophore N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) produces fluorophores that self-assemble in nanoparticles in the biocompatible environment without any dramatic decrease of the fluorescence quantum yield. Most importantly, the resulting NP show, in an aqueous environment, a brightness which is more than six orders of magnitude higher than the molecular component in the organic solvent. Moreover, the NP are prepared by nanoprecipitation and they are stabilized only via non-covalent interaction, they are surprisingly stable and can be observed as individual bright spots freely diffusing in solution at a concentration as low as 1 nM. The suitability of the NP as biocompatible fluorescent probes was demonstrated in the case of HeLa cells by fluorescence confocal microscopy and MTS assays.
Collapse
Affiliation(s)
- Valeria Caponetti
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| | - Jakub W Trzcinski
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| | - Regina Tavano
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Emanuele Papini
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
25
|
Rampazzo E, Bonacchi S, Juris R, Genovese D, Prodi L, Zaccheroni N, Montalti M. Dual-Mode, Anisotropy-Encoded, Ratiometric Fluorescent Nanosensors: Towards Multiplexed Detection. Chemistry 2018; 24:16743-16746. [PMID: 30256465 DOI: 10.1002/chem.201803461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/15/2022]
Abstract
A nanosensor with dual-mode fluorescence response to pH and an encoded identification signal, was developed by exploiting excitation energy transfer and tailored control of molecular organization in core-shell nanoparticles. Multiple signals were acquired in a simple single-excitation dual-emission channels set-up.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Sara Bonacchi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Juris
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
26
|
Guidetti G, Giuri D, Zanna N, Calvaresi M, Montalti M, Tomasini C. Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS OMEGA 2018; 3:8122-8128. [PMID: 31458948 PMCID: PMC6644841 DOI: 10.1021/acsomega.8b01037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/04/2018] [Indexed: 06/10/2023]
Abstract
Solar light-activated photocatalyst nanoparticles (NPs) are promising environment-friendly low cost tools for water decontamination, but their dispersion in the environment must be minimized. Here, we propose the incorporation of TiO2-NPs (also in combination with graphene platelets) into highly biocompatible hydrogels as a promising approach for the production of photoactive materials for water treatment. We also propose a convenient fluorescence-based method to investigate the hydrogel photocatalytic activity in real time with a conventional fluorimeter. Kinetics analysis of the degradation profile of a target fluorescent model pollutant demonstrates that fast degradation occurs in the matrix bulk. Fluorescence anisotropy proved that small pollutant molecules diffuse freely in the hydrogel. Rheological and scanning electron microscopy characterization showed that the TiO2-NP incorporation does not significantly alter the hydrogel mechanical and morphological properties.
Collapse
|
27
|
Peng X, Liang WB, Wen ZB, Xiong CY, Zheng YN, Chai YQ, Yuan R. Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy. Anal Chem 2018; 90:7474-7479. [DOI: 10.1021/acs.analchem.8b01015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xin Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhi-Bin Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheng-Yi Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying-Ning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
28
|
Detecting the functional complexities between high-density lipoprotein mimetics. Biomaterials 2018; 170:58-69. [PMID: 29653287 DOI: 10.1016/j.biomaterials.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023]
Abstract
High-density lipoprotein (HDL) is a key regulator of lipid homeostasis through its native roles like reverse cholesterol transport. The reconstitution of this natural nanoparticle (NP) has become a nexus between nanomedicine and multi-disease therapies, for which a major portion of HDL functionality is attributed to its primary scaffolding protein, apolipoprotein A1 (apoA1). ApoA1-mimetic peptides were formulated as cost-effective alternatives to apoA1-based therapies; reverse-4F (r4F) is one such peptide used as part of a nanoparticle platform. While similarities between r4F- and apoA1-based HDL-mimetic nanoparticles have been identified, key functional differences native to HDL have remained undetected. In the present study, we executed a multidisciplinary approach to uncover these differences by exploring the form, function, and medical applicability of engineered HDL-mimetic NPs (eHNPs) made from r4F (eHNP-r4F) and from apoA1 (eHNP-A1). Comparative analyses of the eHNPs through computational molecular dynamics (MD), advanced microfluidic NP synthesis and screening technologies, and in vivo animal model studies extracted distinguishable eHNP characteristics: the eHNPs share identical structural and compositional characteristics with distinct differences in NP stability and organization; eHNP-A1 could more significantly stimulate anti-inflammatory responses characteristic of the scavenger receptor class B type 1 (SR-B1) mediated pathways; and eHNP-A1 could outperform eHNP-r4F in the delivery of a model hydrophobic drug to an in vivo tumor. The biomimetic microfluidic technologies and MD simulations uniquely enabled our comparative analysis through which we determined that while eHNP-r4F is a capable NP with properties mimicking natural eHNP-A1, challenges remain in reconstituting the full functionality of NPs naturally derived from humans.
Collapse
|
29
|
Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles forin vivoimaging, sensing and theranostic. Methods Appl Fluoresc 2018; 6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Peng J, Li J, Xu W, Wang L, Su D, Teoh CL, Chang YT. Silica Nanoparticle-Enhanced Fluorescent Sensor Array for Heavy Metal Ions Detection in Colloid Solution. Anal Chem 2018; 90:1628-1634. [PMID: 29275622 DOI: 10.1021/acs.analchem.7b02883] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sensitivity and detection limit are two vital factors that affect fluorophores-based sensing and imaging system. However, it remains a challenge to improve the sensitivity and detection limit of fluorophores, largely due to their limited response and photophysical properties. In this study, we report for the first time, a novel approach to enhance the sensitivity and detection limit of probes using silica nanoparticles, also known as silica nanoparticles-enhanced fluorescence (SiEF). SiEF can drastically improve the fluorescence intensities and detection limit of fluorophores. A SiEF-improved fluorescent sensor array for rapid and sensitive identification of different heavy metal ions is achieved, and a 3D spatial dispersion graph is obtained based on the SiEF-improved fluorescent sensor array, which provides a lower concentration dependent pattern than fluorophores alone, allowing qualitative, quantitative, and sensitive detection of heavy metal ions. Furthermore, with UV lamp irradiation of the sensor-metal ion mixtures, the output signals enable direct visual of heavy metal ions with low concentration. Thus, the SiEF approach provides a simple and practical strategy for fluorescent probes to improve their sensitivity and detection limit in analytes sensing.
Collapse
Affiliation(s)
- Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University , Nanjing, Jiangsu 211198, China
| | - Junyao Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University , Nanjing, Jiangsu 211198, China
| | - Wang Xu
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Lu Wang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Dongdong Su
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Chai Lean Teoh
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) , Pohang 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
31
|
Genovese D, Rampazzo E, Zaccheroni N, Montalti M, Prodi L. Collective Properties Extend Resistance to Photobleaching of Highly Doped PluS NPs. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Department of Chemistry “Giacomo Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| |
Collapse
|
32
|
Zhang W, Ma M, Zhang XA, Zhang ZY, Saleh SM, Wang XD. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles. Methods Appl Fluoresc 2017; 5:024003. [PMID: 28387212 DOI: 10.1088/2050-6120/aa64e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Moore CJ, Giovannini G, Kunc F, Hall AJ, Gubala V. ‘Overloading’ fluorescent silica nanoparticles with dyes to improve biosensor performance. J Mater Chem B 2017. [DOI: 10.1039/c7tb01284e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using dye-doped silica nanoparticles (DSNP) as reporter probes, we describe a simple method of enhancing fluorescent signal and the extension of the detectable target concentration range in a proof-of-concept ‘dissolution immunoassay’.
Collapse
Affiliation(s)
- Colin J. Moore
- Medway School of Pharmacy
- University of Kent
- Chatham Maritime
- Kent
- UK
| | | | - Filip Kunc
- Medway School of Pharmacy
- University of Kent
- Chatham Maritime
- Kent
- UK
| | - Andrew J. Hall
- Medway School of Pharmacy
- University of Kent
- Chatham Maritime
- Kent
- UK
| | - Vladimir Gubala
- Medway School of Pharmacy
- University of Kent
- Chatham Maritime
- Kent
- UK
| |
Collapse
|
34
|
Wei W, Liu D, Wei Z, Zhu Y. Short-Range π–π Stacking Assembly on P25 TiO2 Nanoparticles for Enhanced Visible-Light Photocatalysis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03064] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Weiqin Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Di Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Zhen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| |
Collapse
|
35
|
Shulov I, Rodik RV, Arntz Y, Reisch A, Kalchenko VI, Klymchenko AS. Protein-Sized Bright Fluorogenic Nanoparticles Based on Cross-Linked Calixarene Micelles with Cyanine Corona. Angew Chem Int Ed Engl 2016; 55:15884-15888. [PMID: 27862803 PMCID: PMC5756471 DOI: 10.1002/anie.201609138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 01/08/2023]
Abstract
The key challenge in the field of fluorescent nanoparticles (NPs) for biological applications is to achieve superior brightness for sizes equivalent to single proteins (3-7 nm). We propose a concept of shell-cross-linked fluorescent micelles, in which PEGylated cyanine 3 and 5 bis-azides form a covalently attached corona on micelles of amphiphilic calixarene bearing four alkyne groups. The fluorescence quantum yield of the obtained monodisperse NPs, with a size of 7 nm, is a function of viscosity and reached up to 15 % in glycerol. In the on-state they are circa 2-fold brighter than quantum dots (QD-585), which makes them the smallest PEGylated organic NPs of this high brightness. FRET between cyanine 3 and 5 cross-linkers at the surface of NPs suggests their integrity in physiological media, organic solvents, and living cells, in which the NPs rapidly internalize, showing excellent imaging contrast. Calixarene micelles with a cyanine corona constitute a new platform for the development of protein-sized ultrabright fluorescent NPs.
Collapse
Affiliation(s)
- Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France); Organic Chemistry Department, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01033 Kyiv (Ukraine)
| | - Roman V. Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv (Ukraine)
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| | - Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv (Ukraine)
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| |
Collapse
|
36
|
Valenti G, Rampazzo E, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, Prodi L, Paolucci F. Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core–Shell Silica Nanoparticles. J Am Chem Soc 2016; 138:15935-15942. [DOI: 10.1021/jacs.6b08239] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Giovanni Valenti
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sara Bonacchi
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Petrizza
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Marcaccio
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- ICMATE-CNR
Bologna Associate Unit, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
37
|
Shulov I, Rodik RV, Arntz Y, Reisch A, Kalchenko VI, Klymchenko AS. Protein-Sized Bright Fluorogenic Nanoparticles Based on Cross-Linked Calixarene Micelles with Cyanine Corona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01033 Kyiv Ukraine
| | - Roman V. Rodik
- Institute of Organic Chemistry; National Academy of Science of Ukraine; 02660 Kyiv Ukraine
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| | - Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry; National Academy of Science of Ukraine; 02660 Kyiv Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| |
Collapse
|
38
|
Biffi S, Petrizza L, Garrovo C, Rampazzo E, Andolfi L, Giustetto P, Nikolov I, Kurdi G, Danailov MB, Zauli G, Secchiero P, Prodi L. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Int J Nanomedicine 2016; 11:4865-4874. [PMID: 27703352 PMCID: PMC5036595 DOI: 10.2147/ijn.s107479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The aim of the present study was to develop nanoprobes with theranostic features, including – at the same time – photoacoustic, near-infrared (NIR) optical imaging, and photothermal properties, in a versatile and stable core–shell silica-polyethylene glycol (PEG) nanoparticle architecture. Materials and methods We synthesized core–shell silica-PEG nanoparticles by a one-pot direct micelles approach. Fluorescence emission and photoacoustic and photothermal properties were obtained at the same time by appropriate doping with triethoxysilane-derivatized cyanine 5.5 (Cy5.5) and cyanine 7 (Cy7) dyes. The performances of these nanoprobes were measured in vitro, using nanoparticle suspensions in phosphate-buffered saline and blood, dedicated phantoms, and after incubation with MDA-MB-231 cells. Results We obtained core–shell silica-PEG nanoparticles endowed with very high colloidal stability in water and in biological environment, with absorption and fluorescence emission in the NIR field. The presence of Cy5.5 and Cy7 dyes made it possible to reach a more reproducible and higher doping regime, producing fluorescence emission at a single excitation wavelength in two different channels, owing to the energy transfer processes within the nanoparticle. The nanoarchitecture and the presence of both Cy5.5 and Cy7 dyes provided a favorable agreement between fluorescence emission and quenching, to achieve optical imaging and photoacoustic and photothermal properties. Conclusion We obtained rationally designed nanoparticles with outstanding stability in biological environment. At appropriate doping regimes, the presence of Cy5.5 and Cy7 dyes allowed us to tune fluorescence emission in the NIR for optical imaging and to exploit quenching processes for photoacoustic and photothermal capabilities. These nanostructures are promising in vivo theranostic tools for the near future.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Luca Petrizza
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | - Chiara Garrovo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Enrico Rampazzo
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | | | | | | | | | | | - Giorgio Zauli
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Luca Prodi
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| |
Collapse
|
39
|
Bonacchi S, Cantelli A, Battistelli G, Guidetti G, Calvaresi M, Manzi J, Gabrielli L, Ramadori F, Gambarin A, Mancin F, Montalti M. Photoswitchable NIR-Emitting Gold Nanoparticles. Angew Chem Int Ed Engl 2016; 55:11064-8. [PMID: 27513299 DOI: 10.1002/anie.201604290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/09/2016] [Indexed: 12/14/2022]
Abstract
Photo-switching of the NIR emission of gold nanoparticles (GNP) upon photo-isomerization of azobenzene ligands, bound to the surface, is demonstrated. Photophysical results confirm the occurrence of an excitation energy transfer process from the ligands to the GNP that produces sensitized NIR emission. Because of this process, the excitation efficiency of the gold core, upon excitation of the ligands, is much higher for the trans form than for the cis one, and t→c photo-isomerization causes a relevant decrease of the GNP NIR emission. As a consequence, photo-isomerization can be monitored by ratiometric detection of the NIR emission upon dual excitation. The photo-isomerization process was followed in real-time through the simultaneous detection of absorbance and luminescence changes using a dedicated setup. Surprisingly, the photo-isomerization rate of the ligands, bound to the GNP surface, was the same as measured for the chromophores in solution. This outcome demonstrated that excitation energy transfer to gold assists photo-isomerization, rather than competing with it. These results pave the road to the development of new, NIR-emitting, stimuli-responsive nanomaterials for theranostics.
Collapse
Affiliation(s)
- Sara Bonacchi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Cantelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Giulia Battistelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Gloria Guidetti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Jeannette Manzi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, Università degli Studi di Padova, Italy
| | - Federico Ramadori
- Department of Chemical Sciences, Università degli Studi di Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, Università degli Studi di Padova, Italy
| | - Marco Montalti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
40
|
Bonacchi S, Cantelli A, Battistelli G, Guidetti G, Calvaresi M, Manzi J, Gabrielli L, Ramadori F, Gambarin A, Mancin F, Montalti M. Photoswitchable NIR-Emitting Gold Nanoparticles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Bonacchi
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Andrea Cantelli
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giulia Battistelli
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Gloria Guidetti
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Matteo Calvaresi
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Jeannette Manzi
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Luca Gabrielli
- Department of Chemical Sciences; Università degli Studi di Padova; Italy
| | - Federico Ramadori
- Department of Chemical Sciences; Università degli Studi di Padova; Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences; Università degli Studi di Padova; Italy
| | - Marco Montalti
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
41
|
Su Y, Kuijpers KPL, König N, Shang M, Hessel V, Noël T. A Mechanistic Investigation of the Visible-Light Photocatalytic Trifluoromethylation of Heterocycles Using CF3I in Flow. Chemistry 2016; 22:12295-300. [DOI: 10.1002/chem.201602596] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Yuanhai Su
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Koen P. L. Kuijpers
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Niels König
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Minjing Shang
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
42
|
Bälter M, Li S, Morimoto M, Tang S, Hernando J, Guirado G, Irie M, Raymo FM, Andréasson J. Emission color tuning and white-light generation based on photochromic control of energy transfer reactions in polymer micelles. Chem Sci 2016; 7:5867-5871. [PMID: 30034727 PMCID: PMC6022221 DOI: 10.1039/c6sc01623e] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
We encapsulate a fluorescent donor molecule and a photochromic acceptor unit (photoswitch) in polymer micelles and show that the color of the emitted fluorescence is continuously changed from blue to yellow upon light-induced isomerization of the acceptor. Interestingly, white-light generation is achieved in between. With the photoswitch in the colorless form, intense blue emission from the donor is observed, while UV-induced isomerization to the colored form induces an energy transfer reaction that quenches the donor emission and sensitizes the yellow emission from the colored photoswitch. The process is reversed by exposure to visible light, triggering isomerization to the colorless form.
Collapse
Affiliation(s)
- Magnus Bälter
- Chemistry and Chemical Engineering, Physical Chemistry , Chalmers University of Technology , 41296 Göteborg , Sweden .
| | - Shiming Li
- Chemistry and Chemical Engineering, Physical Chemistry , Chalmers University of Technology , 41296 Göteborg , Sweden .
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules , Rikkyu University , Nishi-Ikebukuro 3-34-1, Toshima-ku , Tokyo 171-8501 , Japan
| | - Sicheng Tang
- Laboratory for Molecular Photonics , Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146-0431 , USA
| | - Jordi Hernando
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Gonzalo Guirado
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules , Rikkyu University , Nishi-Ikebukuro 3-34-1, Toshima-ku , Tokyo 171-8501 , Japan
| | - Françisco M Raymo
- Laboratory for Molecular Photonics , Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146-0431 , USA
| | - Joakim Andréasson
- Chemistry and Chemical Engineering, Physical Chemistry , Chalmers University of Technology , 41296 Göteborg , Sweden .
| |
Collapse
|
43
|
Zhou W, Cao Y, Sui D, Guan W, Lu C, Xie J. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. NANOSCALE 2016; 8:9614-20. [PMID: 27102116 DOI: 10.1039/c6nr02178f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuqing Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
44
|
Guidetti G, Cantelli A, Mazzaro R, Ortolani L, Morandi V, Montalti M. Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution. NANOSCALE 2016; 8:8505-11. [PMID: 27064427 DOI: 10.1039/c6nr02193j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 ± 25 and 1100 ± 200 nm respectively. The correlation of these results with TEM and DLS data is discussed.
Collapse
Affiliation(s)
- G Guidetti
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Dhir A, Datta A. Shape, size and composition dependence of efficiency and dynamics of Förster resonance energy transfer in dye-silica nanoconjugates. Methods Appl Fluoresc 2016; 4:024003. [DOI: 10.1088/2050-6120/4/2/024003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Spallino L, Vaccaro L, Agnello S, Gelardi FM, Zatsepin AF, Cannas M. Insight into the defect–molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra19506g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular-like luminescence of SiO2 nanoparticles is a keystone when investigating the defect–molecule interaction.
Collapse
Affiliation(s)
- Luisa Spallino
- Institute of Physics and Technology
- Ural Federal University
- Ekaterinburg
- Russia
| | - Lavinia Vaccaro
- Physics and Chemistry Department
- University of Palermo
- Palermo
- Italy
| | | | | | - Anatoly F. Zatsepin
- Institute of Physics and Technology
- Ural Federal University
- Ekaterinburg
- Russia
| | - Marco Cannas
- Physics and Chemistry Department
- University of Palermo
- Palermo
- Italy
| |
Collapse
|
47
|
Zheng Z, Caraguel F, Liao YY, Andraud C, van der Sanden B, Bretonnière Y. Photostable far-red emitting pluronic silicate nanoparticles: perfect blood pool fluorophores for biphotonic in vivo imaging of the leaky tumour vasculature. RSC Adv 2016. [DOI: 10.1039/c6ra17438h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new non-diffusible fluorescent probe for two photon microscopy, comprising a hydrophobic push-pull dye in the apolar core of Pluronic F127–silica nanoparticles, shows intense red emission (Φf 39% at 650 nm) and two-photon absorption properties in the NIR.
Collapse
Affiliation(s)
- Zheng Zheng
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- Université Lyon 1
- Laboratoire de Chimie
| | - Flavien Caraguel
- PF of Intravital Microscopy France Life Imaging & CEA-INSERM-Grenoble Alps University
- UMR S 1036
- Biology of Cancer and Infection
- Grenoble
- France
| | - Yuan-Yuan Liao
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- Université Lyon 1
- Laboratoire de Chimie
| | - Chantal Andraud
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- Université Lyon 1
- Laboratoire de Chimie
| | - Boudewijn van der Sanden
- PF of Intravital Microscopy France Life Imaging & CEA-INSERM-Grenoble Alps University
- UMR S 1036
- Biology of Cancer and Infection
- Grenoble
- France
| | - Yann Bretonnière
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- Université Lyon 1
- Laboratoire de Chimie
| |
Collapse
|
48
|
Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging. Top Curr Chem (Cham) 2016; 370:1-28. [DOI: 10.1007/978-3-319-22942-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem 2015; 407:8627-45. [DOI: 10.1007/s00216-015-8981-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 01/04/2023]
|
50
|
Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015; 12:1837-49. [PMID: 26289673 DOI: 10.1517/17425247.2015.1071791] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Nanotechnology has opened up the way to the engineering of new organized materials endowed with improved performances. In the past decade, engineered nanoparticles (NPs) have been progressively implemented by exploiting synthetic strategies that yield complex materials capable of performing functions with applications also in medicine. Indeed, in the field of 'nanomedicine' it has been explored the possibility to design multifunctional nanosystems, characterized by high analytical performances and stability, low toxicity and specificity towards a given cell target. AREA COVERED In this review article, we summarize the advances in the engineering of NPs for biomedical applications, from optical imaging (OI) to multimodal OI and targeted drug delivery. For this purpose, we will provide some examples of how investigations in nanomedicine can support preclinical and clinical research generating innovative diagnostic and therapeutic strategies in oncology. EXPERT OPINION The progressive breakthroughs in nanomedicine have supported the development of multifunctional and multimodal NPs. In particular, NPs are significantly impacting the diagnostic and therapeutic strategies since they allow the development of: NP-based OI probes containing more than one modality-specific contrast agent; surface functionalized NPs for specific 'molecular recognition'. Therefore, the design and characterization of innovative NP-based systems/devices have great applicative potential into the medical field.
Collapse
Affiliation(s)
- Stefania Biffi
- a 1 Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , via dell'Istria, 65/1, 34137 Trieste, Italy +39 040 3757722 ; +39 040 3785210 ;
| | - Rebecca Voltan
- b 2 University of Ferrara, LTTA Centre, Department of Morphology, Surgery and Experimental Medicine , Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Enrico Rampazzo
- c 3 University of Bologna, Department of Chemistry "G. Ciamician" , Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- d 4 University of Bologna, Department of Chemistry "G. Ciamician" , Via Selmi 2, 40126 Bologna, Italy
| | - Giorgio Zauli
- e 5 Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , via dell'Istria, 65/1, 34137 Trieste, Italy +39 040 3785478 ; +39 040 3785210;
| | - Paola Secchiero
- f 6 University of Ferrara, LTTA Centre, Department of Morphology, Surgery and Experimental Medicine , Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|