1
|
Yan S, Xing G, Yuan X, Cui E, Ji K, Yang X, Su J, Mara D, Tang J, Zhao Y, Hu J, Liu J. Upconversion nanoparticles-CuMnO 2 nanoassemblies for NIR-excited imaging of reactive oxygen species in vivo. J Colloid Interface Sci 2025; 677:666-674. [PMID: 39159521 DOI: 10.1016/j.jcis.2024.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticles-CuMnO2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible-light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 can promote the redox reaction of CuMnO2, leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) were monitored to detect ROS levels. The H2O2 nanoprobe exhibited a linear response in the range of 0.314-10 μM with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.
Collapse
Affiliation(s)
- Shanshu Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Gaoyuan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Endian Cui
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Kaixin Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xing Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jiahao Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Dimitrije Mara
- Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade 11158, P. O. Box 45, Serbia
| | - Jianfeng Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Jie Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Orthopedic Hospital of Guangdong Province, Guangzhou 510515, China.
| |
Collapse
|
2
|
Huang R, Zhang Z, Shi Z, Yang Y, Sun J, Gao F. Ratiometric fluorescence imaging of lysosomal NO in living cells and mice brains with Alzheimer's disease. Chem Commun (Camb) 2024; 60:6793-6796. [PMID: 38869018 DOI: 10.1039/d4cc02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
We report an integrated ratiometric lysosomal nitric oxide (NO) nanoprobe based on engineered semiconducting polymer dots (Pdots), LyNO-Pdots, which consist of a newly designed NO-responsive dye, a fluorescent conjugated polymer and two functional polymers. The developed probe LyNO-Pdots exhibit high specificity and stability, good photostability and favorable blood-brain barrier (BBB) penetration ability. The LyNO-Pdots are successfully applied to ratiometric imaging of lysosomal NO variations in brain-derived endothelial cells, brain tissues and mice brains with Alzheimer's disease (AD). The results demonstrate that the NO content in the brains of AD mice is considerably higher than that in normal mice.
Collapse
Affiliation(s)
- Rui Huang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Ziwei Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Zhen Shi
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yumeng Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Ishfaq M, Mubashir T, Abdou SN, Tahir MH, Halawa MI, Ibrahim MM, Xie Y. Data mining and library generation to search electron-rich and electron-deficient building blocks for the designing of polymers for photoacoustic imaging. Heliyon 2023; 9:e21332. [PMID: 37964821 PMCID: PMC10641172 DOI: 10.1016/j.heliyon.2023.e21332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Photoacoustic imaging is a good method for biological imaging, for this purpose, materials with strong near infrared (NIR) absorbance are required. In the present study, machine learning models are used to predict the light absorption behavior of polymers. Molecular descriptors are utilized to train a variety of machine learning models. Building blocks are searched from chemical databases, as well as new building blocks are designed using chemical library enumeration method. The Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) method is employed for the creation of 10,000 novel polymers. These polymers are designed based on the input of searched and selected building blocks. To enhance the process, the optimal machine learning model is utilized to predict the UV/visible absorption maxima of the newly designed polymers. Concurrently, chemical similarity analysis is also performed on the selected polymers, and synthetic accessibility of selected polymers is calculated. In summary, the polymers are all easy to synthesize, increasing their potential for practical applications.
Collapse
Affiliation(s)
| | - Tayyaba Mubashir
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Safaa N. Abdou
- Department of Chemistry, Khurmah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mudassir Hussain Tahir
- Research Faculty of Agriculture, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, 060-8589, 060-0811, Japan
| | - Mohamed Ibrahim Halawa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Mansoura, Egypt
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yulin Xie
- Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
4
|
Guo Q, Feng Y, Song H, Sun M, Zhan Z, Lv Y. New Perylene-Based Chemiluminescent Polymer Nanoparticles for Highly Selective Detection of the Superoxide Anion In Vivo. Anal Chem 2023; 95:15102-15109. [PMID: 37779257 DOI: 10.1021/acs.analchem.3c03233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The superoxide anion (O2•-) is one of the primary reactive oxygen species in biological systems. Developing a determination system for O2•- in vivo has attracted much attention thanks to its complex biological function. Herein, we proposed a new perylene-based chemiluminescence (CL) probe, the SH-PDI polymer, which was capable of generating strong CL signals with O2•- in comparison with other ROS. The CL mechanism involved was proposed to be a kind of oxidation reaction induced by the breakage of the S-S and S-H bonds into sulfoxide bonds by O2•-. Subsequently, a nanoprecipitation method was introduced, using cumene-terminated poly(styrene-co-maleic anhydride) as the amphiphilic agent, to obtain water-soluble nanoparticles, SPPS NPs, which exhibited not only stronger CL intensity but also higher selectivity toward O2•- than the SH-PDI polymer. Moreover, the CL wavelength of the SPPS-O2•- system was found to be located at 580 and 710 nm, which was conducive to CL imaging. By virtue of these advantages, SPPS NPs were utilized to evaluate the O2•- level in vitro in the range of 0.25-60 μM at pH 7.0, with a detection limit of 8.2 × 10-8 M (S/N = 3). Moreover, SPPS NPs were also capable of imaging O2•- in an LPS-induced acute inflammation mice model and drug-induced acute kidney injury (AKI).
Collapse
Affiliation(s)
- Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
5
|
Huang C, Zhou W, Wu R, Guan W, Ye N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111726. [PMID: 37299629 DOI: 10.3390/nano13111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) play important roles in organisms and are closely related to various physiological and pathological processes. Due to the short lifetime and easy transformation of ROS, the determination of ROS content in biosystem has always been a challenging task. Chemiluminescence (CL) analysis has been widely used in the detection of ROS due to its advantages of high sensitivity, good selectivity and no background signal, among which nanomaterial-related CL probes are rapidly developing. In this review, the roles of nanomaterials in CL systems are summarized, mainly including their roles as catalysts, emitters, and carriers. The nanomaterial-based CL probes for biosensing and bioimaging of ROS developed in the past five years are reviewed. We expect that this review will provide guidance for the design and development of nanomaterial-based CL probes and facilitate the wider application of CL analysis in ROS sensing and imaging in biological systems.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
6
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
7
|
Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angew Chem Int Ed Engl 2023; 62:e202213791. [PMID: 36579889 DOI: 10.1002/anie.202213791] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Near-infrared (NIR) chemiluminescence imaging holds potential for sensitive imaging of cancer due to its low background; however, few NIR chemiluminophores are available, which share the drawback of low chemiluminescence quantum yields (ΦCL ). Herein, we report the synthesis of NIR chemiluminophores for cancer imaging and laparotomy. Molecular engineering of the electron-withdrawing group at the para-position of the phenol-dioxetane leads to a highly bright NIR chemiluminophore (DPT), showing the ΦCL (4.6×10-2 Einstein mol-1 ) that is 3 to 5-fold higher than existing NIR chemiluminophores. By caging the phenol group of DPT with a cathepsin B (CatB) responsive moiety, an activatable chemiluminescence probe (DPTCB ) is developed for real-time turn-on detection of deeply buried tumor tissues in living mice. Due to its high brightness, DPTCB permits accurate chemiluminescence-guided laparotomy.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P.R. China
| |
Collapse
|
8
|
Deng S, Li L, Zhang J, Wang Y, Huang Z, Chen H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. BIOSENSORS 2023; 13:bios13010137. [PMID: 36671972 PMCID: PMC9855952 DOI: 10.3390/bios13010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/28/2023]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted much attention due to their excellent photophysical properties and applicability, such as large absorption cross section, high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile modification and regulation. Therefore, Pdots have been widely used in various types of sensing and imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for clinical applications. In this review, we briefly outline strategies for the preparation and modification of Pdots and summarize the recent progress in the development of Pdots-based optical probes for analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots for biomedical applications are given.
Collapse
|
9
|
Xu Z, Yu Y, Zhao J, Liao Z, Sun Y, Cheng S, Gou S. A Unique Chemo-photodynamic Antitumor Approach to Suppress Hypoxia via Ultrathin Graphitic Carbon Nitride Nanosheets Supported a Platinum(IV) Prodrug. Inorg Chem 2022; 61:20346-20357. [DOI: 10.1021/acs.inorgchem.2c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yongzhi Yu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Si Cheng
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| |
Collapse
|
10
|
Zhang R, Zhang J, Zhang X, Ma J, Wang S, Li Y, Xie X, Jiao X, Wang X, Tang B. Cyano-substituted stilbene (CSS)-based conjugated polymers: Photophysical properties exploration and applications in photodynamic therapy. Biomaterials 2022; 291:121885. [PMID: 36351355 DOI: 10.1016/j.biomaterials.2022.121885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Conjugated polymers (CPs) have attracted great attention due to their excellent optical properties (such as large absorption cross section, signal amplification, high photostability etc.). As representative electron acceptors and organic small molecules which are easy to be synthesized and modified, cyano-substituted stilbene (CSS) derivatives are widely used to construct photoelectrical materials. Despite donor-acceptor (D-A) conjugated polymers based on CSS have been applied in sensing and super-resolution imaging, systematic studies about the effects of different CSS structures on the photophysical properties of CPs have rarely been reported. Therefore, we have synthesized a series of D-A conjugated polymer nanoparticles (CP NPs) based on different CSS units, and found that the photophysical properties of CP NPs including the bandgap and ΔES-T were closely associated with the structure of CSS derivatives. Moreover, the introduction of tetraphenylethylene (TPE) can relieve the aggregation-caused quenching (ACQ) effects of CSS conjugated polymers to varying degrees. The theoretical calculation further corroborated that by regulating the number and distribution of cyanide groups in the repeating units, the stronger D-A strength resulted in a redshift in the emission spectrum and the more efficient capacity of total ROS (1O2, O2•- and •OH) generation. We then selected CP6-TAT NPs, with the near infrared (NIR) emission and best ФPS, to characterize its performance in photodynamic therapy (PDT). It was revealed that CP6-TAT NPs can be regarded as an ideal candidate for PDT. The results provided a new reference for regulating the structure-effect relationship of CPs and a comprehensive method for constructing photosensitizers based on CPs.
Collapse
Affiliation(s)
- Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| | - Xue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Jushuai Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Shaoshuai Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
11
|
Kang X, Li Y, Yin S, Li W, Qi J. Reactive Species-Activatable AIEgens for Biomedical Applications. BIOSENSORS 2022; 12:646. [PMID: 36005044 PMCID: PMC9406055 DOI: 10.3390/bios12080646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/27/2023]
Abstract
Precision medicine requires highly sensitive and specific diagnostic strategies with high spatiotemporal resolution. Accurate detection and monitoring of endogenously generated biomarkers at the very early disease stage is of extensive importance for precise diagnosis and treatment. Aggregation-induced emission luminogens (AIEgens) have emerged as a new type of excellent optical agents, which show great promise for numerous biomedical applications. In this review, we highlight the recent advances of AIE-based probes for detecting reactive species (including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive carbonyl species (RCS)) and related biomedical applications. The molecular design strategies for increasing the sensitivity, tuning the response wavelength, and realizing afterglow imaging are summarized, and theranostic applications in reactive species-related major diseases such as cancer, inflammation, and vascular diseases are reviewed. The challenges and outlooks for the reactive species-activatable AIE systems for disease diagnostics and therapeutics are also discussed. This review aims to offer guidance for designing AIE-based specifically activatable optical agents for biomedical applications, as well as providing a comprehensive understanding about the structure-property application relationships. We hope it will inspire more interesting researches about reactive species-activatable probes and advance clinical translations.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Yin
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, Zhang X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202035. [PMID: 35762403 DOI: 10.1002/smll.202202035] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence imaging with high sensitivity and minimal invasiveness has received tremendous attention, which can accomplish visualized monitoring and evaluation of cancer progression. Compared with the conventional first near-infrared (NIR-I) optical window (650-950 nm), fluorescence imaging in the second NIR optical window (NIR-II, 950-1700 nm) exhibits deeper tissue penetration capability and higher temporal-spatial resolution with lower background interference for achieving deep-tissue in vivo imaging and real-time monitoring of cancer development. Encouraged by the significant preponderances, a variety of multifunctional NIR-II fluorophores have been designed and fabricated for sensitively imaging biomarkers in vivo and visualizing the treatment procedure of cancers. In this review, the differences between NIR-I and NIR-II fluorescence imaging are briefly introduced, especially the advantages of NIR-II fluorescence imaging for the real-time visualization of tumors in vivo and cancer diagnosis. An important focus is to summarize the NIR-II fluorescence imaging for deep-tissue biomarker analysis in vivo and tumor tissue visualization, and a brief introduction of NIR-II fluorescence imaging-guided cancer therapy is also presented. Finally, the significant challenges and reasonable prospects of NIR-II fluorescence imaging for cancer diagnosis in clinical applications are outlined.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Kai Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenchen Gong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
13
|
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210:114330. [PMID: 35567882 DOI: 10.1016/j.bios.2022.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Numerous polymeric agents have been widely applied in biology and medicine by virtue of the facile chemical modification, feasible nano-engineering approaches and fine-tuned pharmacokinetics. To endow polymeric imaging agents with ability to monitor and measure subtle molecular or cellular alterations at diseased sites, activatable polymeric probes that can elicit signal changes in response to biomolecular interactions or the analytes of interest have to be developed. Herein, this review aims to provide a systemic interpretation and summarization of the design methodology and imaging utility of recently emerged activatable polymeric probes. An introduction of activatable probes allowing for precise imaging and classification of polymeric imaging agents is reported first. Then, we give a detailed discussion of the contemporary design approaches toward activatable polymeric probes in diverse imaging modes for the detection of various stimuli and their imaging applications. Finally, current challenges and future advances are discussed and highlighted.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Zhou C, Li Z, Zhu Z, Chia GWN, Mikhailovsky A, Vázquez RJ, Chan SJW, Li K, Liu B, Bazan GC. Conjugated Oligoelectrolytes for Long-Term Tumor Tracking with Incremental NIR-II Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201989. [PMID: 35306702 DOI: 10.1002/adma.202201989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The design and synthesis of the near-infrared (NIR)-II emissive conjugated oligoelectrolyte COE-BBT are reported. COE-BBT has a solubility in aqueous media greater than 50 mg mL-1 , low toxicity, and a propensity to intercalate lipid bilayers, wherein it exhibits a higher emission quantum yield relative to aqueous media. Addition of COE-BBT to cells provides two emission channels, at ≈500 and ≈1020 nm, depending on the excitation wavelength, which facilitates in vitro confocal microscopy and in vivo animal imaging. The NIR-II emission of COE-BBT is used to track intracranial and subcutaneous tumor progression in mice. Of relevance is that the total NIR-II intensity increases over time. This phenomenon is attributed to a progressive attenuation of a COE-BBT self-quenching effect within the cells due to the expected dye dilution per cell as the tumor proliferates.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zeshun Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ziyue Zhu
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Geraldine W N Chia
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 639798, Singapore
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Nakamura N, Tanaka N, Ohta S. Facile and wide-range size tuning of conjugated polymer nanoparticles for biomedical applications as a fluorescent probe. RSC Adv 2022; 12:11606-11611. [PMID: 35432941 PMCID: PMC9008803 DOI: 10.1039/d1ra09101h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Conjugated polymer nanoparticles (Pdots) are expected to be novel bioimaging and sensing probes. However, the size tuning required to control biological interactions has not been well established. Herein, we achieved a size-tunable synthesis of Pdots ranging from 30 to 200 nm by controlling the hydrolysis rate of the stabilising agent and evaluated their cellular imaging properties.
Collapse
Affiliation(s)
- Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Nobuaki Tanaka
- Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-2-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
16
|
Sajjad F, Jin H, Han Y, Wang L, Bao L, Chen T, Yan Y, Qiu Y, Chen ZL. Incorporation of green emission polymer dots into pyropheophorbide-α enhance the PDT effect and biocompatibility. Photodiagnosis Photodyn Ther 2022; 37:102562. [PMID: 34610430 DOI: 10.1016/j.pdpdt.2021.102562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND A green emission up-conversion carbon-based polymer dots (CPDs) owned excellent photophysical properties and good solubility. Most photosensitizers (PS) are hydrophobic which limits their application in biomedicine. Herein we synthesized and integrated green emitting CPDs into pyropheophorbide-α (PPa) to improve the overall properties of the PS. MATERIAL AND METHODS The nano-agent was incorporated through amide condensation and electrostatic interaction. The structure, size and morphology of the prepared conjugates were determined by FTIR, TEM, DLS, TGA, 1HNMR, Uv-vis, and fluorescence spectrophotometry. The dark and light toxicity, as well as cellular uptake, was also monitored on the human esophageal cancer cell line (Eca-109). RESULTS Our results illustrate that the conjugation improved the PDT efficacy by increasing the ROS generation. The nano-hybrids showed pH sensitivity as well as good hemocompatibility as the hemolysis ratio was decreased when treated with nano-conjugates. PPa-CPD1 and PPa-CPD2 had the pH response and stronger ability to absorb light and produce fluorescence in an acidic environment (pH 4.0 and pH 5.0) The synthesized nano-hybrids doesnot affect the clotting time. An increase in the absorbance wavelengths was observed. The results of MTT assay showed that dark toxicity was reduced after conjugation. CONCLUSION This CPDs-based drug enhanced tumor-inhibition efficiency as well as low dark toxicity in vitro, showing significant application potential for PDT-based treatment.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Hui Jin
- Pudong New Area People's Hospital, Shanghai 201200, China
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Laixing Wang
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Ting Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yijia Yan
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yan Qiu
- Pudong New Area People's Hospital, Shanghai 201200, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Cheng Y, Borum RM, Clark AE, Jin Z, Moore C, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. A Dual-Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain-like Proteases of SARS-CoV-2-Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angew Chem Int Ed Engl 2022; 61:e202113617. [PMID: 34889013 PMCID: PMC8854376 DOI: 10.1002/anie.202113617] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/15/2022]
Abstract
The main protease (Mpro ) and papain-like protease (PLpro ) play critical roles in SARS-CoV-2 replication and are promising targets for antiviral inhibitors. The simultaneous visualization of Mpro and PLpro is extremely valuable for SARS-CoV-2 detection and rapid inhibitor screening. However, such a crucial investigation has remained challenging because of the lack of suitable probes. We have now developed a dual-color probe (3MBP5) for the simultaneous detection of Mpro and PLpro by fluorescence (or Förster) resonance energy transfer (FRET). This probe produces fluorescence from both the Cy3 and Cy5 fluorophores that are cleaved by Mpro and PLpro . 3MBP5-activatable specificity was demonstrated with recombinant proteins, inhibitors, plasmid-transfected HEK 293T cells, and SARS-CoV-2-infected TMPRSS2-Vero cells. Results from the dual-color probe first verified the simultaneous detection and intracellular distribution of SARS-CoV-2 Mpro and PLpro . This is a powerful tool for the simultaneous detection of different proteases with value for the rapid screening of inhibitors.
Collapse
Affiliation(s)
- Yong Cheng
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Raina M. Borum
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Alex E. Clark
- Department of MedicineUniversity of California, San DiegoLa JollaCA 92093USA
| | - Zhicheng Jin
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Colman Moore
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCA 92093USA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCA 92093USA
| | - Aaron F. Carlin
- Department of MedicineUniversity of California, San DiegoLa JollaCA 92093USA
| | - Jesse V. Jokerst
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA 92093USA
- Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaCA 92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA 92093USA
| |
Collapse
|
18
|
Can Z, Keskin B, Üzer A, Apak R. Detection of nitric oxide radical and determination of its scavenging activity by antioxidants using spectrophotometric and spectrofluorometric methods. Talanta 2022; 238:122993. [PMID: 34857326 DOI: 10.1016/j.talanta.2021.122993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
Although reactive nitrogen species (RNS) may attack biomacromolecules and cause tissue damage when unbalanced by natural antioxidant defenses of the organism, they can also take part in cell signaling under different physiological states and defend against certain pathogens. Since there is a scarcity of analytical methods to detect radicalic NO and its scavengers, a functionalized gold nanoparticle-based spectrophotometric method and a spectrofluorometric method have been separately developed to test antioxidant activity toward scavenging of NO produced from sodium nitroprusside (SNP). The spectrophotometric method involves conversion of NO to nitrite, followed by the formation of an azo dye with 4-aminothiophenol (4-ATP)-modified gold nanoparticles (AuNPs) and N-(1-naphthyl)-ethylene diamine dichloride (NED) and its absorbance measurement at 565 nm. Calibration equations were established by taking the absorbance difference in the presence and absence of antioxidants. In the spectrofluorometric method, the excess of NO radicals, after being scavenged by thiol type antioxidants, caused a decrease in resorcinol fluorescence. The developed spectrophotometric method was applied to orange juice and its trolox equivalent (TE) antioxidant activity was found. By further applying the developed methods to real samples such as bovine serum albumin (BSA), fetal bovine serum (FBS), saliva and certain biomolecules, it is envisaged that these novel methods improving the selectivity of previous methods can be useful in human health and disease research associated with nitric oxide. The developed methods were compared and validated against the conventional Griess assay with Student t-test and F tests.
Collapse
Affiliation(s)
- Ziya Can
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Büşra Keskin
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey; Institute of Graduate Studies, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Ayşem Üzer
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Reşat Apak
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No:112, Çankaya, Ankara, 06670, Turkey.
| |
Collapse
|
19
|
Cheng Y, Borum RM, Clark AE, Jin Z, Moore C, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. A Dual‐Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain‐like Proteases of SARS‐CoV‐2‐Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yong Cheng
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Alex E. Clark
- Department of Medicine University of California, San Diego La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Colman Moore
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Aaron F. Carlin
- Department of Medicine University of California, San Diego La Jolla CA 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California, San Diego La Jolla CA 92093 USA
- Department of Radiology University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
20
|
Zhao L, Zhao C, Zhou J, Ji H, Qin Y, Li G, Wu L, Zhou X. Conjugated Polymers-based Luminescent Probes for Ratiometric Detection of Biomolecules. J Mater Chem B 2022; 10:7309-7327. [DOI: 10.1039/d2tb00937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate monitoring of the biomolecular changes in biological and physiological environments is of great significance for pathogenesis, development, diagnosis and treatment of diseases. Compared with traditional luminescent probes on the...
Collapse
|
21
|
Tian H, Lin L, Ba Z, Xue F, Li Y, Zeng W. Nanotechnology combining photoacoustic kinetics and chemical kinetics for thrombosis diagnosis and treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Liu K, Kang B, Luo X, Yang Z, Sun C, Li A, Fan Y, Chen X, Gao J, Lin H. Redox-Activated Contrast-Enhanced T1-Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS NANO 2021; 15:17831-17841. [PMID: 34751559 DOI: 10.1021/acsnano.1c06026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GSH-mediated liver biotransformation is a crucial physiological process demanding efficient research tools. Here, we report a type of amorphous FexMnyO nanoparticles (AFMO-ZDS NPs) as redox-activated probes for in vivo visualization of the dynamics of GSH-mediated biotransformation in liver with T1-weighted magnetic resonance imaging (MRI). This imaging technique reveals the periodic variations in GSH concentration during the degradation of AFMO-ZDS NPs due to the limited transportation capacity of GSH carriers in the course of GSH efflux from hepatocytes to perisinusoidal space, providing direct imaging evidence for this important carrier-mediated process during GSH-mediated biotransformation. Therefore, this technique offers an effective method for in-depth investigations of GSH-related biological processes in liver under various conditions as well as a feasible means for the real-time assessment of liver functions, which is highly desirable for early diagnosis of liver diseases and prompt a toxicity evaluation of pharmaceuticals.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119228, Singapore
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
24
|
Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun 2021; 12:6145. [PMID: 34686685 PMCID: PMC8536768 DOI: 10.1038/s41467-021-26380-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor response to radiotherapy or ferroptosis is closely related to hydroxyl radical (•OH) production. Noninvasive imaging of •OH fluctuation in tumors can allow early monitoring of response to therapy, but is challenging. Here, we report the optimization of a diene electrochromic material (1-Br-Et) as a •OH-responsive chromophore, and use it to develop a near-infrared ratiometric fluorescent and photoacoustic (FL/PA) bimodal probe for in vivo imaging of •OH. The probe displays a large FL ratio between 780 and 1113 nm (FL780/FL1113), but a small PA ratio between 755 and 905 nm (PA755/PA905). Oxidation of 1-Br-Et by •OH decreases the FL780/FL1113 while concurrently increasing the PA755/PA905, allowing the reliable monitoring of •OH production in tumors undergoing erastin-induced ferroptosis or radiotherapy. The hydroxyl radical is generated during radiotherapy and ferroptosis and accurate imaging of this reactive oxygen species may permit the monitoring of response to therapy. Here, the authors develop a ratiometric probe for accurate imaging of hydroxyl radical generation in vivo.
Collapse
|
25
|
Zhang Q, Hu X, Dai X, Ling P, Sun J, Chen H, Gao F. General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid. ACS NANO 2021; 15:13633-13645. [PMID: 34374516 DOI: 10.1021/acsnano.1c04581] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is highly desired and challenging to construct integrated (all-in-one) single semiconducting-polymer-derived dot (Pdot) without any postmodification but with desired performances for bioapplications. In this work, eight hypochlorous acid (HClO)-sensitive integrated polymers and corresponding polymer-derived Pdots are designed through molecular engineering to comparatively study their analytical performances for detecting and imaging HClO. The optimized polymers-derived Pdots are obtained through regulating donor-acceptor structure, the content of HClO-sensitive units, and the position of HClO-sensitive units in the polymer backbone. The designed Pdots display distinguished characteristics including multicolours with blue, yellow, and red three primary fluorescence colors, determination mode from single-channel to dual-channel (ratiometric) quantification, ultrafast response, low detection limit, and high selectivity for ClO- sensing based on specific oxidation of ClO--sensitive unit 10-methylphenothiazine (PT) accompanied by altering the intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) processes in Pdots. The prepared integrated Pdots are also applied for two-photon ClO- imaging in HeLa cells and one- and two-photon ClO- imaging produced in acute inflammation in mice with satisfactory results. We believe that the present study not only provides excellent integrated fluorescent nanoprobes for ClO- monitoring in living systems but also extends a general strategy for designing integrated semiconducting polymers and Pdots with desired performances for biological applications.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Hongqi Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| |
Collapse
|
26
|
Paúrová M, Taboubi O, Šeděnková I, Hromádková J, Matouš P, Herynek V, Šefc L, Babič M. Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Verma M, Chan YH, Saha S, Liu MH. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2142-2159. [PMID: 35014343 DOI: 10.1021/acsabm.0c01185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted enormous attention in applications from fundamental analytical detection to advanced deep-tissue bioimaging due to their ultrahigh fluorescence brightness with excellent photostability and minimal cytotoxicity. Pdots have therefore been widely adopted for a variety types of molecular sensing for analytical detection. More importantly, the recent development of Pdots for use in the optical window between 1000 and 1700 nm, popularly known as the "second near-infrared window" (NIR-II), has emerged as a class of optical transparent imaging technology in the living body. The advantages of the NIR-II region over the traditional NIR-I (700-900 nm) window in fluorescence imaging originate from the reduced autofluorescence, minimal absorption and scattering of light, and improved penetration depths to yield high spatiotemporal images for biological tissues. Herein, we discuss and summarize the recent developments of Pdots employed for analytical detection and NIR-II fluorescence imaging. Starting with their preparation, the recent developments for targeting various analytes are then highlighted. After that, the importance of and latest progress in NIR-II fluorescence imaging using Pdots are reported. Finally, perspectives and challenges associated with the emergence of Pdots in different fields are given.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30050, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
28
|
Zhen X, Pu K, Jiang X. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004723. [PMID: 33448155 DOI: 10.1002/smll.202004723] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Photoacoustic (PA) imaging and photothermal therapy (PTT) have attracted extensive attention in disease diagnosis and treatment. Although many exogenous contrast agents have been developed for PA imaging and PTT, the design guidelines to amplify their imaging and therapy performances remain challenging and are highly demanded. Semiconducting polymer nanoparticles (SPNs) composed of polymers with π-electron delocalized backbones can be designed to amplify their PA imaging and PTT performance, because of their clear structure-property relation and versatility in modifying their molecular structures to tune their photophysical properties. This review summarizes the recent advances in the photoacoustic imaging and photothermal therapy applications of semiconducting polymer nanoparticles with a focus on signal amplification and second near-infrared (NIR-II, 1000-1700 nm) construction. The strategies such as structure-property screening, fluorescence quenching, accelerated heat dissipation, and size-dependent heat dissipation are first discussed to amplify the PA brightness of SPNs for in vivo PA. The molecular approaches to shifting the absorption of SPNs for NIR-II PA imaging and PTT are then introduced so as to improve the tissue penetration depth for diagnosis and therapy. At last, current challenges and perspectives of SPNs in the field of imaging and therapy are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
29
|
Sun J, Zhang Q, Dai X, Ling P, Gao F. Engineering fluorescent semiconducting polymer nanoparticles for biological applications and beyond. Chem Commun (Camb) 2021; 57:1989-2004. [DOI: 10.1039/d0cc07182j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We summarize the recent advances in engineering approaches to obtain functionalized semiconducting polymer nanoparticles (SPNs) for biological applications. The challenges and outlook of fabricating functionalized SPNs are also provided.
Collapse
Affiliation(s)
- Junyong Sun
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| |
Collapse
|
30
|
Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular Chemiluminescent Probes with a Very Long Near‐Infrared Emission Wavelength for in Vivo Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jingsheng Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
31
|
Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular Chemiluminescent Probes with a Very Long Near‐Infrared Emission Wavelength for in Vivo Imaging. Angew Chem Int Ed Engl 2020; 60:3999-4003. [DOI: 10.1002/anie.202013531] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jingsheng Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
32
|
Zheng C, Ding L, Wu Y, Tan X, Zeng Y, Zhang X, Liu X, Liu J. A near-infrared turn-on fluorescence probe for glutathione detection based on nanocomposites of semiconducting polymer dots and MnO 2 nanosheets. Anal Bioanal Chem 2020; 412:8167-8176. [PMID: 32935150 DOI: 10.1007/s00216-020-02951-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
Abstract
Fluorescence biosensors that enable highly sensitive detection of glutathione (GSH) are in great demand for various biological investigations and early disease diagnoses. Here, we report a turn-on fluorescence nanoplatform based on fluorescent semiconducting polymer nanoparticle@MnO2 nanosheets (P-dot@MnO2) nanocomposites for rapid homogeneous determination of GSH. The near-infrared (NIR) fluorescent P-dots were prepared by doping NIR dyes into polymer matrix and then encompassed by MnO2, which resulted in a remarkable fluorescence quenching. Owing to the selective decomposition of MnO2 by GSH, the fluorescence recovery was achieved in the presence of GSH. On the basis of the target-induced turn-on fluorescence response, the developed nanoplatform can readily detect GSH with a high sensitivity up to 0.26 μM, as well as a superior specificity. Furthermore, it was successfully applied in monitoring the intracellular GSH in living cells, revealing its great potential in biomedical applications. Graphical abstract.
Collapse
Affiliation(s)
- Cheng Zheng
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Lei Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Yanni Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Yongyi Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xiaolong Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China.
| | - Xiaolong Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Jingfeng Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China.
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
33
|
Zhao T, Masuda T, Miyoshi E, Takai M. High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface. Anal Chem 2020; 92:13271-13280. [DOI: 10.1021/acs.analchem.0c02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tingbi Zhao
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
34
|
Li J, Li Y, Tang S, Zhang Y, Zhang J, Li Y, Xiong L. Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle vulgaris L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114877. [PMID: 32531651 DOI: 10.1016/j.envpol.2020.114877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The use of polymers such as plastic has become an important part of daily life, and in aqueous environments, these polymers are considered as pollutants. When macropolymers are reduced to the nanoscale, their small particle size and large specific surface area facilitate their uptake by plants, which has a significant impact on aquatic plants. Therefore, it is essential to study the pollution of nanoscale polymers in the aquatic environment. In this work, we prepared nanoscale polymer dots (Pdots) and explored their toxicity, uptake and transport mechanisms in penny grass. From toxicological studies, in the absence of other nutrients, the cell structure, physiological parameters (total soluble protein and chlorophyll) and biochemical parameters (malondialdehyde) do not show significant changes over at least five days. Through in vivo fluorescence and photoacoustic (PA) imaging, the transport location can be visually detected accurately, and the transport rate can be analyzed without destroying the plants. Moreover, through ex vivo fluorescence imaging, we found that different types of Pdots have various uptake and transport mechanisms in stems and blades. It may be due to the differences in ligands, particle sizes, and oil-water partition coefficients of Pdots. By understanding how Pdots interact with plants, a corresponding method can be developed to prevent them from entering plants, thus avoiding the toxicity from accumulation. Therefore, the results of this study also provide the basis for subsequent prevention work.
Collapse
Affiliation(s)
- Jingru Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yao Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Shiyi Tang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yufan Zhang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Juxiang Zhang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yuqiao Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Liqin Xiong
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China.
| |
Collapse
|
35
|
Hu Y, Wang Y, Wen X, Pan Y, Cheng X, An R, Gao G, Chen HY, Ye D. Responsive Trimodal Probes for In Vivo Imaging of Liver Inflammation by Coassembly and GSH-Driven Disassembly. RESEARCH 2020; 2020:4087069. [PMID: 33029587 PMCID: PMC7520820 DOI: 10.34133/2020/4087069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive in vivo imaging of hepatic glutathione (GSH) levels is essential to early diagnosis and prognosis of acute hepatitis. Although GSH-responsive fluorescence imaging probes have been reported for evaluation of hepatitis conditions, the low penetration depth of light in liver tissue has impeded reliable GSH visualization in the human liver. We present a liver-targeted and GSH-responsive trimodal probe (GdNPs-Gal) for rapid evaluation of lipopolysaccharide- (LPS-) induced acute liver inflammation via noninvasive, real-time in vivo imaging of hepatic GSH depletion. GdNPs-Gal are formed by molecular coassembly of a GSH-responsive Gd(III)-based MRI probe (1-Gd) and a liver-targeted probe (1-Gal) at a mole ratio of 5/1 (1-Gd/1-Gal), which shows high r 1 relaxivity with low fluorescence and fluorine magnetic resonance spectroscopic (19F-MRS) signals. Upon interaction with GSH, 1-Gd and 1-Gal are cleaved and GdNPs-Gal rapidly disassemble into small molecules 2-Gd, 2-Gal, and 3, producing a substantial decline in r 1 relaxivity with compensatory enhancements in fluorescence and 19F-MRS. By combining in vivo magnetic resonance imaging (1H-MRI) with ex vivo fluorescence imaging and 19F-MRS analysis, GdNPs-Gal efficiently detect hepatic GSH using three independent modalities. We noninvasively visualized LPS-induced liver inflammation and longitudinally monitored its remediation in mice after treatment with an anti-inflammatory drug, dexamethasone (DEX). Findings highlight the potential of GdNPs-Gal for in vivo imaging of liver inflammation by integrating molecular coassembly with GSH-driven disassembly, which can be applied to other responsive molecular probes for improved in vivo imaging.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020; 11:10553-10570. [PMID: 34094312 PMCID: PMC8162460 DOI: 10.1039/d0sc01721c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Semiconducting polymer nanoparticles (SPNs) have gained growing attention in biomedical applications. However, the preparation of SPNs is usually limited to nanoprecipitation in the presence of amphiphilic copolymers, which encounters the issue of dissociation. As an alternative to SPNs, grafted semiconducting polymer amphiphiles (SPAs) composed of a semiconducting polymer (SP) backbone and hydrophilic side chains show increased physiological stability and improved optical properties. This review summarizes recent advances in SPAs for cancer imaging and combination phototherapy. The applications of SPAs in optical imaging including fluorescence, photoacoustic, multimodal and activatable imaging are first described, followed by the discussion of applications in imaging-guided phototherapy and combination therapy, light-triggered drug delivery and gene regulation. At last, the conclusion and future prospects in this field are discussed.
Collapse
Affiliation(s)
- Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Wen Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University Tianjin 300071 China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
37
|
Xu Y, Xiao L. Efficient suppression of amyloid-β peptide aggregation and cytotoxicity with photosensitive polymer nanodots. J Mater Chem B 2020; 8:5776-5782. [PMID: 32538407 DOI: 10.1039/d0tb00302f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The deposition of amyloid plaques resulting from the aggregation of amyloid-β (Aβ) peptides is closely related to Alzheimer's disease (AD). With the development of various therapeutic methods, the oxidative modification of Aβ has emerged as a fascinating noninvasive photo-therapeutic intervention for treating AD by altering the Aβ aggregation tendency. Herein, we report the photo-triggered inhibition of Aβ aggregation and cytotoxicity by utilizing polymer nanodots (Pdots) modified with rose bengal (RB), methylene blue (MB), and riboflavin (RF). Experimental results demonstrate that these functionalized Pdots manifest a superior suppression effect on Aβ aggregation under irradiation. This can be attributed to the formation of reactive oxygen species (ROS) (i.e., singlet oxygen (1O2)), resulting in the oxygenation of Aβ and the change of Aβ aggregation tendency. Especially, RB-Pdots manifest better biocompatibility and higher 1O2 productivity. In a word, this hybridized nanostructure will provide a promising platform for the noninvasive photo-therapeutic treatment of AD in the future.
Collapse
Affiliation(s)
- Yueling Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China. www.xiaolhlab.cn
| | | |
Collapse
|
38
|
Jin G, Li W, Song F, Zhao J, Wang M, Liu Q, Li A, Huang G, Xu F. Fluorescent conjugated polymer nanovector for in vivo tracking and regulating the fate of stem cells for restoring infarcted myocardium. Acta Biomater 2020; 109:195-207. [PMID: 32294553 DOI: 10.1016/j.actbio.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Stem cell therapy holds great promise for cardiac regeneration. However, the lack of ability to control stem cell fate after in vivo transplantation greatly restricts its therapeutic outcomes. MicroRNA delivery has emerged as a powerful tool to control stem cell fate for enhanced cardiac regeneration. However, the clinical translation of therapy based on gene-transfected stem cells remains challenging, due to the unknown in vivo behaviors of stem cells. Here, we developed a nano-platform (i.e., PFBT@miR-1-Tat NPs) that can achieve triggered release of microRNA-1 to promote cardiac differentiation of mesenchymal stem cells (MSCs), and long-term tracking of transplanted MSCs through bright and ultra-stable fluorescence of conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (PFBT). We found that PFBT@miR-1-Tat NP-treated MSCs significantly restored the infarcted myocardium by promoting stem cell cardiac differentiation and integration with the in situ cardiac tissues. Meanwhile, MSCs without gene delivery improved the infarcted heart functions mainly through a paracrine effect and blood vessel formation. The developed conjugated polymer nanovector should be a powerful tool for manipulating as well as revealing the fate of therapeutic cells in vivo, which is critical for optimizing the therapeutic route of gene and cell combined therapy and therefore for accelerating clinical translation. STATEMENT OF SIGNIFICANCE: The lack of controllability in stem cell fate and the unclear in vivo cellular behaviors restrict the therapeutic outcomes of stem cell therapy. Herein, we engineered fluorescent conjugated polymer nanoparticles as gene delivery nanovectors with controlled release and high intracellular delivery capability to harness the fate of mesenchymal stem cells (MSCs) in vivo, meanwhile to reveal the cellular mechanism of gene-treated stem cell therapy. As compared with only MSC treatment that improves infarcted myocardium functions through paracrine effect, treatment with conjugated polymer nanovector-treated MSCs significantly restored infarcted myocardium through enhancing MSC cardiac differentiation and integration with the in-situ cardiac tissues. These findings demonstrate that the conjugated polymer nanovector would be a powerful tool in optimizing gene and cell combined therapy.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, PR China
| | - Wenfang Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, PR China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai North Road, Xi'an 710069, P. R. China
| | - Mengqi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, PR China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
39
|
Yu G, Feng N, Zhao D, Wang H, Jin Y, Liu D, Li Z, Yang X, Ge K, Zhang J. A highly selective and sensitive upconversion nanoprobe for monitoring hydroxyl radicals in living cells and the liver. SCIENCE CHINA-LIFE SCIENCES 2020; 64:434-442. [PMID: 32239367 DOI: 10.1007/s11427-019-1601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 10/24/2022]
Abstract
Excessive reactive oxygen species (ROS) would attack living cells and cause a series of oxidative stress related diseases, such as liver damage. Hydroxyl radicals (·OH) are currently known as one of the most toxic and harmful free radicals to organisms. Therefore, studies involving hydroxyl radicals have become important research topics in the fields of biology, biochemistry, and biomedicine. In addition, imaging of analytes using upconversion nanoparticles (UCNPs) possesses significant advantages over that using general fluorescent dyes or nanoparticles due to its high spatial resolution, reduced photodamage, and deep tissue penetration properties. Herein, we designed a highly selective and sensitive hydroxyl radical nanoprobe based on the luminescence resonance energy transfer between upconversion nanoparticles and methylene blue (MB). The concentration of ·OH could be determined by the fluorescence recovery of the UCNPs due to the oxidative damage of MB. Using this nanoprobe, the ·OH in living cells or in liver tissues could be monitored with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Guangshun Yu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Na Feng
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Dan Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Hao Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yi Jin
- College of Medical Science, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Zhenhua Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Kun Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jinchao Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
40
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
41
|
Fu X, Bai H, Lyu F, Liu L, Wang S. Conjugated Polymer Nanomaterials for Phototherapy of Cancer. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Li Y, Cai Z, Liu S, Zhang H, Wong STH, Lam JWY, Kwok RTK, Qian J, Tang BZ. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun 2020; 11:1255. [PMID: 32152288 PMCID: PMC7062876 DOI: 10.1038/s41467-020-15095-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
Fluorescence imaging in near-infrared IIb (NIR-IIb, 1500-1700 nm) spectrum holds a great promise for tissue imaging. While few inorganic NIR-IIb fluorescent probes have been reported, their organic counterparts are still rarely developed, possibly due to the shortage of efficient materials with long emission wavelength. Herein, we propose a molecular design philosophy to explore pure organic NIR-IIb fluorophores by manipulation of the effects of twisted intramolecular charge transfer and aggregation-induced emission at the molecular and morphological levels. An organic fluorescent dye emitting up to 1600 nm with a quantum yield of 11.5% in the NIR-II region is developed. NIR-IIb fluorescence imaging of blood vessels and deeply-located intestinal tract of live mice based on organic dyes is achieved with high clarity and enhanced signal-to-background ratio. We hope this study will inspire further development on the evolution of pure organic NIR-IIb dyes for bio-imaging.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaochong Cai
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sherman T H Wong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. .,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
43
|
Long Z, Dai J, Hu Q, Wang Q, Zhen S, Zhao Z, Liu Z, Hu JJ, Lou X, Xia F. Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics 2020; 10:2260-2272. [PMID: 32104506 PMCID: PMC7019155 DOI: 10.7150/thno.41317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of "nanococktail" nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through "click" reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart "nanococktail" nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.
Collapse
Affiliation(s)
- Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shijie Zhen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing-Jing Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
44
|
Dai J, Duan C, Huang Y, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for RONS sensing. J Mater Chem B 2020; 8:3357-3370. [DOI: 10.1039/c9tb02310k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of AIE bioprobes for RONS sensing in living systems is now summarized. We discuss some representative examples of AIEgen based bioprobes in terms of their molecular design, sensing mechanism and sensitive sensing in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Chong Duan
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
45
|
Hou X, Yang L, Liu J, Zhang Y, Chu L, Ren C, Huang F, Liu J. Silver-decorated, light-activatable polymeric antimicrobials for combined chemo-photodynamic therapy of drug-resistant bacterial infection. Biomater Sci 2020; 8:6350-6361. [DOI: 10.1039/d0bm01084g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, we describe a silver-decorated, light-activatable polymeric antimicrobial with strong synergistic chemo-photodynamic effect to combat bacterial infections.
Collapse
Affiliation(s)
- Xiaoxue Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Chunyan Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- P. R. China
| |
Collapse
|
46
|
Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, Fan Q, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem Soc Rev 2020; 49:7533-7567. [DOI: 10.1039/d0cs00234h] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the empirical design guidelines and photophysical property manipulation of Aza-BODIPY dyes and the latest advances in their bioapplications.
Collapse
Affiliation(s)
- Zhenxiong Shi
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Xu Han
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- P. R. China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|
47
|
Neumann PR, Crossley DL, Turner M, Ingleson M, Green M, Rao J, Dailey LA. In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46525-46535. [PMID: 31746180 DOI: 10.1021/acsami.9b17022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Borylated poly(fluorene-benzothiadiazoles) (PF8-BT) are π-conjugated polymers (CPs) with deep-red/near-infrared (NIR) absorption and emission profiles suitable for in vivo optical imaging. A fully borylated PF8-BT derivative (P4) was encapsulated in pegylated poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and compared with a reference NIR-emitting CP (PCPDTBT) or indocyanine green (ICG). All formulations satisfied quality requirements for parenterally administered diagnostics. P4 nanoparticles had higher quantum yield (2.3%) than PCPCDTBT (0.01%) or ICG nanoparticles (1.1%). The signal/background ratios (SBRs) of CP systems P4 and PCPDTBT in a phantom mouse (λem = 820 nm) increased linearly with fluorophore mass (12.5-100 μg/mL), while the SBRs of ICG decreased above 25 μg/mL. P4 nanoparticles experienced <10% photobleaching over 10 irradiations (PCPDTBT: ∼25% and ICG: >44%). In a mouse tumor xenograft model, P4 nanoparticles showed a 5-fold higher SBR than PCPDTBT particles with fluorophore accumulation in the liver > spleen > tumor. Blood chemistry and tissue histology showed no abnormalities compared to untreated animals after a single administration.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| | - Daniel L Crossley
- Department of Chemical Sciences , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Michael Turner
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - Michael Ingleson
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , U.K
| | - Mark Green
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Jianghong Rao
- Department of Radiology and Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| |
Collapse
|
48
|
Sun C, Li B, Zhao M, Wang S, Lei Z, Lu L, Zhang H, Feng L, Dou C, Yin D, Xu H, Cheng Y, Zhang F. J-Aggregates of Cyanine Dye for NIR-II in Vivo Dynamic Vascular Imaging beyond 1500 nm. J Am Chem Soc 2019; 141:19221-19225. [PMID: 31746598 DOI: 10.1021/jacs.9b10043] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Light in the second near-infrared window, especially beyond 1500 nm, shows enhanced tissue transparency for high-resolution in vivo optical bioimaging due to decreased tissue scattering, absorption, and autofluorescence. Despite some inorganic luminescent nanoparticles have been developed to improve the bioimaging around 1500 nm, it is still a great challenge to synthesize organic molecules with the absorption and emission toward this region. Here, we present J-aggregates with 1360 nm absorption and 1370 nm emission formed by self-assembly of amphiphilic cyanine dye FD-1080 and 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Molecular dynamics simulations were further employed to illustrate the self-assembly process. Superior spatial resolution and high signal-to-background ratio of J-aggregates were demonstrated for noninvasive brain and hindlimb vasculature bioimaging beyond 1500 nm. The efficacy evaluation of the clinically used hypotensor is successfully achieved by high-resolution in vivo dynamic vascular imaging with J-aggregates.
Collapse
Affiliation(s)
- Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Lingfei Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Lishuai Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , P. R. China
| | - Chaoran Dou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , P. R. China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Yingsheng Cheng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , P. R. China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
49
|
Zhu Y, Gu C, Miao Y, Yu B, Shen Y, Cong H. D-A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties. J Mater Chem B 2019; 7:6576-6584. [PMID: 31588950 DOI: 10.1039/c9tb01196j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NIR-II fluorescence imaging has great potential in diagnosis, but the quantum efficiency of contrast agents is an urgent problem to be solved. We synthesized two new multifunctional polymers, P-TT and P-DPP, with a tetrahedral C (sp3) and branched alkyl chains in the main chain, which were beneficial to obtain high quantum efficiency. P-TT and P-DPP showed absorption peaks of 686 nm and 763 nm, respectively, and fluorescence emission peaks of 1071 nm and 1066 nm, respectively. The photothermal effect of P-DPP can reach 52 °C, and the quantum yield reaches 1.5%, which was three times higher than that of nanotube fluorophores (quantum yield 0.4%). P-DPP is used for stable fluorescence imaging of blood vessels and photoacoustic imaging of nude mice, and successfully applied to phototherapy of nude mouse tumours.
Collapse
Affiliation(s)
- Yaowei Zhu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yawei Miao
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. and State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. and Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. and State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
50
|
Miao Y, Gu C, Yu B, Zhu Y, Zou W, Shen Y, Cong H. Conjugated‐Polymer‐Based Nanoparticles with Efficient NIR‐II Fluorescent, Photoacoustic and Photothermal Performance. Chembiochem 2019; 20:2793-2799. [DOI: 10.1002/cbic.201900309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yawei Miao
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Chuantao Gu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Bing Yu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
- Laboratory for New Fiber Materials and Modern TextileGrowing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P. R. China
| | - Yaowei Zhu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Wentao Zou
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
| | - Youqing Shen
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
- Center for Bionanoengineering andKey Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Hailin Cong
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringQingdao University Qingdao 266071 P. R. China
- Laboratory for New Fiber Materials and Modern TextileGrowing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P. R. China
| |
Collapse
|