1
|
Zhang H, Ya J, Sun M, Du X, Ren J, Qu X. Inhibition of the cGAS-STING pathway via an endogenous copper ion-responsive covalent organic framework nanozyme for Alzheimer's disease treatment. Chem Sci 2025; 16:7215-7226. [PMID: 40144496 PMCID: PMC11934151 DOI: 10.1039/d4sc07963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Inhibition of cGAS-STING overactivation has recently emerged as a promising strategy to counteract Alzheimer's disease (AD). However, current cGAS-STING inhibitors as immunosuppressants suffer from instability, non-specific targeting, and innate immune disruption. Here, an endogenous AD brain copper ion-responsive covalent organic framework (COF)-based nanozyme (denoted as TP@PB-COF@NADH) has been designed for targeted inhibition of the cGAS-STING pathway for AD treatment. The effective trapping of excess brain endogenous copper ions by TP@PB-COF@NADH not only inhibits the Cu2+-induced harmful reactive oxygen species (ROS) production which is one of the mediators of cGAS-STING activation, but also activates the nanozyme activity of TP@PB-COF@NADH. Furthermore, the well-prepared nanozyme catalytically generates NAD+ and consumes hydrogen peroxide (H2O2) through second near-infrared (NIR-II) enhanced nicotinamide adenine dinucleotide (NADH) peroxidase (NPX)-like activity, realizing the efficient inhibition of the cGAS-STING pathway and associated neuroinflammation. Moreover, replenishing NAD+ levels efficiently restores mitochondrial function and ATP supply. In vivo studies demonstrate that TP@PB-COF@NADH with NIR-II irradiation significantly improves cognitive function in 3× Tg-AD mice, with a reduction in amyloid-β (Aβ) plaque, neuroinflammation and neuronal damage. Collectively, this work presents a promising approach for AD treatment by using an AD brain harmful excess endogenous copper ion-responsive and efficient nanozyme.
Collapse
Affiliation(s)
- Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230029 China
| | - Junlin Ya
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230029 China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
2
|
Xia Y, Tsim KWK, Wang WX. Disruption of Copper Redox Balance and Dysfunction under In Vivo and In Vitro Alzheimer's Disease Models. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:238-249. [PMID: 40144323 PMCID: PMC11934196 DOI: 10.1021/envhealth.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder disease mainly caused by extracellular senile plaques (SP) formed by β-amyloid (Aβ1-42) protein deposits. Copper (Cu) is an essential metal involved in neural system, and its homeostasis is the key to maintain its proper function. Herein, the subcellular locations of Cu(I) and Cu(II) in human neurodegenerative disease SH-SY5Y cells and AD mouse brains were imaged. We found that the content of Cu(II) decreased while that of Cu(I) increased under Aβ exposure, which were further verified in the brain tissues of the AD mouse model, strongly suggesting the disruption of Cu homeostasis under Aβ exposure or AD. Remarkably, the mitochondrial and lysosomal Cu(II) decreased significantly, whereas Cu(I) decreased in mitochondria but increased in lysosome. Lysosomes digested the damaged mitochondria via mitophagy to remove excess Cu(I) and maintain Cu homeostasis. The Aβ induced Cu(I) in mitochondria resulted in an overformation of reactive oxygen species and altered the morphology of this organelle. Due to the oxidative stress, glutathione (GSH) was converted into glutathione disulfide (GSSG), and Cu(I) bound with GSH was further released into the cytoplasm and absorbed by the lysosome. Transcriptomic analysis showed that genes (ATP7A/B) related to Cu transportation were upregulated, whereas genes related to mitochondrial complex were down-regulated, representing the damage of this organelle. This study demonstrated that Aβ exposure caused the disruption of intracellular homeostasis by reducing Cu(II) to Cu(I) and damaging the mitochondria, which further triggered detoxification by the lysosome. Our finding provided new insights in Aβ and AD induced Cu redox transformation and toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W. K. Tsim
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
4
|
Ojo OA, Adeyemo TR, Iyobhebhe M, Adams MD, Asaleye RM, Evbuomwan IO, Abdurrahman J, Maduakolam-Aniobi TC, Nwonuma CO, Odesanmi OE, Ojo AB. Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions. Sci Rep 2024; 14:25205. [PMID: 39448782 PMCID: PMC11502780 DOI: 10.1038/s41598-024-77503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B. vulgaris on Fe2+-mediated oxidative liver damage through in vitro, ex vivo, and in silico studies to establish a strong rationale for its protective effect. To induce oxidative damage, we incubated the livers of healthy male rats with 0.1 mM FeSO4 to induce oxidative injury and coincubated them with an aqueous extract of B. vulgaris root (BVFE) (15-240 µg/mL). Induction of liver damage significantly (p < .05) decreased the levels of GSH, SOD, CAT, and ENTPDase activities, with a corresponding increase in MDA and NO levels and Na+/K+ ATPase, G6 Pase, and F-1,6-BPase enzyme activities. BVFE treatment (p < .05) reduced these levels and activities to almost normal levels, with the most prominent effects observed at 240 µg/mL BVFE. An HPLC investigation revealed sixteen compounds in BVFE, with quercetin being the most abundant. Chlorogenic acid and iso-orientation showed the highest binding affinities for G6 Pase and Na+/K + ATPase, respectively. These findings suggest that B. vulgaris can protect against Fe2+-mediated liver damage by suppressing oxidative stress and cholinergic and purinergic activities while regulating gluconeogenesis. Overall, the hepatoprotective activity of this extract might be driven by the synergistic effect of the identified compounds and their probable interactions with target proteins.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria.
| | | | | | - Moses Dele Adams
- Clinical Biochemistry, Phytopharmacology and Biochemical Toxicology Research Laboratory (CBPBT-RL), Department of Biochemistry, Baze University, Abuja, Nigeria
| | | | | | | | | | | | | | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
5
|
Wang C, Li L, Li J, Zhang J, Qu ZB. Biomimetic Surface Engineering to Modulate the Coffee-Ring Effect for Amyloid-β Detection in Rat Brains. Biomimetics (Basel) 2023; 8:581. [PMID: 38132520 PMCID: PMC10742163 DOI: 10.3390/biomimetics8080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Surface engineering of nanoparticles has been widely used in biosensing and assays, where sensitivity was mainly limited by plasmonic colour change or electrochemical responses. Here, we report a novel biomimetic sensing strategy involving protein-modified gold nanoparticles (AuNPs), where the modulation strategy was inspired by gastropods in inhibition of coffee-ring effects in their trail-followings. The so-called coffee-ring effect presents the molecular behaviour of AuNPs to a macroscopic ring through aggregation, and thus greatly improves sensitivity. The assay relies upon the different assembly patterns of AuNPs against analytes, resulting in the formation or suppression of coffee-ring effects by the different surface engineering of AuNPs by proteins and peptides. The mechanism of the coffee-ring formation process is examined through experimental characterizations and computational simulations. A practical coffee-ring effect assay is developed for a proof-of-concept target, amyloid β (1-42), which is a typical biomarker of Alzheimer's disease. A novel quasi-titrimetric protocol is constructed for quantitative determination of the target molecule. The assay shows excellent selectivity and sensitivity for the amyloid β monomer, with a low detection limit of 20 pM. Combined with a fluorescent staining technique, the assay is designed as a smart sensor for amyloid β detection and fibrillation evaluation in rat cerebrospinal fluids, which is a potential point-of-care test for Alzheimer's disease. Connections between amyloid fibrillation and different courses of brain ischaemia are also studied, with improved sensitivity, lower sample volumes that are required, convenience for rapid detection, and point-of-care testing.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; (C.W.); (L.L.)
| |
Collapse
|
6
|
Falcone E, Hureau C. Redox processes in Cu-binding proteins: the "in-between" states in intrinsically disordered peptides. Chem Soc Rev 2023; 52:6595-6600. [PMID: 37701947 PMCID: PMC10544051 DOI: 10.1039/d3cs00443k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/14/2023]
Abstract
We report on a concept that some of us first described a decade ago for pure electron transfer [V. Balland, C. Hureau and J.-M. Savéant, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 17113]. In the present viewpoint, based on more recent results, we refine and extend this "in-between state" concept to explain the formation of reactive oxygen species by copper ions bound to the amyloid-β (Aβ) peptide involved in Alzheimer's disease. In such intrinsically disordered peptides, the Cu coordination is versatile due to the lack of stable folding and the presence of multiple possible binding anchors. Hence, the Cu(I) and Cu(II) ions do impose their favoured sites, with Cu(I) bound in a linear fashion between two His residues and Cu(II) in a square-based pyramid bound to Asp1 amine and carbonyl groups and two His residues in the equatorial plane. Hence a direct electron transfer is prevented and alternatively an in-between state (IBS) mechanism applies, whose description and analysis with respect to other electron transfer processes is the topic of the present viewpoint.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, Strasbourg, France
- School of Chemistry, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
7
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Oxidative Damages on the Alzheimer's Related-Aβ Peptide Alters Its Ability to Assemble. Antioxidants (Basel) 2023; 12:antiox12020472. [PMID: 36830030 PMCID: PMC9951946 DOI: 10.3390/antiox12020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Oxidative stress that can lead to oxidation of the amyloid-β (Aβ) peptide is considered a key feature in Alzheimer's disease (AD), influencing the ability of Aβ to assemble into β-sheet rich fibrils that are commonly found in senile plaques of AD patients. The present study aims at investigating the fallouts of Aβ oxidation on the assembly properties of the Aβ peptide. To accomplish this, we performed kinetics and analysis on an oxidized Aβ (oxAβ) peptide, resulting from the attack of reactive oxygen species (ROS) that are formed by the biologically relevant Cu/Aβ/dioxygen/ascorbate system. oxAβ was still able to assemble but displayed ill-defined and small oligomeric assemblies compared to the long and thick β-sheet rich fibrils from the non-oxidized counterpart. In addition, oxAβ does affect the assembly of the parent Aβ peptide. In a mixture of the two peptides, oxAβ has a mainly kinetic effect on the assembly of the Aβ peptide and was able to slow down the formation of Aβ fibril in a wide pH range [6.0-7.4]. However, oxAβ does not change the quantity and morphology of the Aβ fibrils formed to a significant extent. In the presence of copper or zinc di-cations, oxAβ assembled into weakly-structured aggregates rather than short, untangled Cu-Aβ fibrils and long untangled Zn-Aβ fibrils. The delaying effect of oxAβ on metal altered Aβ assembly was also observed. Hence, our results obtained here bring new insights regarding the tight interconnection between (i) ROS production leading to Aβ oxidation and (ii) Aβ assembly, in particular via the modulation of the Aβ assembly by oxAβ. It is the first time that co-assembly of oxAβ and Aβ under various environmental conditions (pH, metal ions …) are reported.
Collapse
|
9
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
10
|
Ojo AB, Gyebi GA, Alabi O, Iyobhebhe M, Kayode AB, Nwonuma CO, Ojo OA. Syzygium aromaticum (L.) Merr. & L.M.Perry mitigates iron-mediated oxidative brain injury via in vitro, ex vivo, and in silico approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
12
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
13
|
Wiloch MZ, Baran N, Jonsson-Niedziolka M. The Influence of Coordination Mode on the Redox Properties of Copper Complexes with Aβ(3‐16) and its Pyroglutamate Counterpart pAβ(3‐16). ChemElectroChem 2022. [DOI: 10.1002/celc.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Magdalena Z. Wiloch
- Institute of Physical Chemistry PAS: Polska Akademia Nauk Instytut Chemii Fizycznej Department of Electrode Processes POLAND
| | - Natalia Baran
- Institute of Physical Chemistry PAS: Polska Akademia Nauk Instytut Chemii Fizycznej Department of Electrode Processes POLAND
| | - Martin Jonsson-Niedziolka
- Institute of Physical Chemistry, PAS Department of electrode processes Kasprzaka 44/52 01-224 Warsaw POLAND
| |
Collapse
|
14
|
Wang W, Lin X, Dong X, Sun Y. A multi-target theranostic nano-composite against Alzheimer's disease fabricated by conjugating carbon dots and triple-functionalized human serum albumin. Acta Biomater 2022; 148:298-309. [PMID: 35732234 DOI: 10.1016/j.actbio.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) involves the aggregation and accumulation of amyloid β-protein (Aβ) as well as elevated levels of reactive oxygen species (ROS), which requires the development of comprehensive diagnostic and therapeutic interventions. In this work, a multifunctional theranostic nano-composite (HSA-BFP@CDs) is constructed by conjugating triple-functionalized human serum albumin (HSA-BFP) as a theranostic agent targeting Aβ and carbon dots (CDs) as an ROS scavenger. HSA-BFP@CDs exhibits a fluorescence "off-on" effect at 700 nm upon interaction with Aβ aggregates, showing the capability for detection of Aβ plaques and potential for early diagnosis of AD. Besides, HSA-BFP@CDs effectively inhibits the aggregation of Aβ, increasing the viability of Aβ-treated cells from 74% to over 95% at 100 µg/mL. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aβ-Cu2+-induced-ROS, can be scavenged by HSA-BFP@CDs, thus resulting in the mitigation of cellular oxidative damages. Experiments with the AD model of Caenorhabditis elegans further demonstrate the multifunctionality of HSA-BFP@CDs in imaging amyloid plaques, reducing Aβ deposition, and relieving oxidative stress in vivo, showing the prospect for Aβ- and ROS-targeted AD diagnosis and treatment. This work provided new insight into the design of protein-carbon dots conjugate and the development of multi-target therapy of AD. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) is the most common form of dementia, which currently affects over 55 million people worldwide. Due to the complex pathogenesis of AD involving amyloid β-protein (Aβ) aggregation as well as elevated levels of reactive oxygen species (ROS), it is highly desired to develop comprehensive diagnostic and therapeutic interventions. In this paper, we fabricated a multifunctional theranostic nano-composite (HSA-BFP@CDs) via the conjugation of triple-functionalized human serum albumin (HSA-BFP) and carbon dots (CDs). The multifunctionality of HSA-BFP@CDs for efficient detection of Aβ aggregates and inhibition of Aβ aggregation as well as scavenging of ROS was demonstrated, demonstrating the potential of the protein-carbon dots conjugate for the multi-target therapy of AD.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
15
|
Arrigoni F, Di Carlo C, Rovetta A, De Gioia L, Zampella G, Bertini L. Superoxide reduction by Cu‐Amyloid Beta peptide complexes. A Density Functional Theory study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Arrigoni
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Chiara Di Carlo
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Alberto Rovetta
- University of Milano–Bicocca University Library: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca De Gioia
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Giuseppe Zampella
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca Bertini
- Universita' degli studi di MIlano-Bicocca Biotecnologie e Bioscienze Piazza della Scienza 2 20127 Milano ITALY
| |
Collapse
|
16
|
Mitra S, Talukdar K, Prasad P, Misra SK, Khan S, Sharp JS, Jurss JW, Chakraborty S. Rational Design of a Cu Chelator That Mitigates Cu-Induced ROS Production by Amyloid Beta. Chembiochem 2022; 23:e202100485. [PMID: 34878720 PMCID: PMC9040527 DOI: 10.1002/cbic.202100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease severely perturbs transition metal homeostasis in the brain leading to the accumulation of excess metals in extracellular and intraneuronal locations. The amyloid beta protein binds these transition metals, ultimately causing severe oxidative stress in the brain. Metal chelation therapy is an approach to sequester metals from amyloid beta and relieve the oxidative stress. Here we have designed a mixed N/O donor Cu chelator inspired by the proposed ligand set of Cu in amyloid beta. We demonstrate that the chelator effectively removes Cu from amyloid beta and suppresses reactive oxygen species (ROS) production by redox silencing and radical scavenging both in vitro and in cellulo. The impact of ROS on the extent of oxidation of the different aggregated forms of the peptide is studied by mass spectrometry, which, along with other ROS assays, shows that the oligomers are pro-oxidants in nature. The aliphatic Leu34, which was previously unobserved, has been identified as a new oxidation site.
Collapse
Affiliation(s)
- Suchitra Mitra
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Kallol Talukdar
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Sandeep K. Misra
- Department of Biomolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Shabana Khan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Joshua S. Sharp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
- Department of Biomolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Jonah W. Jurss
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
17
|
Sandomenico A, Gogliettino M, Iaccarino E, Fusco C, Caporale A, Ruvo M, Palmieri G, Cocca E. Oxidized Substrates of APEH as a Tool to Study the Endoprotease Activity of the Enzyme. Int J Mol Sci 2021; 23:ijms23010443. [PMID: 35008880 PMCID: PMC8745263 DOI: 10.3390/ijms23010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
APEH is a ubiquitous and cytosolic serine protease belonging to the prolyl oligopeptidase (POP) family, playing a critical role in the processes of degradation of proteins through both exo- and endopeptidase events. Endopeptidase activity has been associated with protein oxidation; however, the actual mechanisms have yet to be elucidated. We show that a synthetic fragment of GDF11 spanning the region 48–64 acquires sensitivity to the endopeptidase activity of APEH only when the methionines are transformed into the corresponding sulphoxide derivatives. The data suggest that the presence of sulphoxide-modified methionines is an important prerequisite for the substrates to be processed by APEH and that the residue is crucial for switching the enzyme activity from exo- to endoprotease. The cleavage occurs on residues placed on the C-terminal side of Met(O), with an efficiency depending on the methionine adjacent residues, which thereby may play a crucial role in driving and modulating APEH endoprotease activity.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Carmela Fusco
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Caporale
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
- Correspondence: (M.R.); (G.P.)
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
- Correspondence: (M.R.); (G.P.)
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
| |
Collapse
|
18
|
Feng JQ, Shi DK, Ding WQ, Cheng YJ, Qin SY, Zhang AQ. A Self-Assembled Nanoindicator from Alizarin Red S-Borono-Peptide for Potential Imaging of Cellular Copper(II) Ions. ACS Biomater Sci Eng 2021; 7:3361-3369. [PMID: 34180219 DOI: 10.1021/acsbiomaterials.1c00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, smart nanomaterials from peptide self-assembly have received extensive attention in the field of biological and medical applications. Through rationally designing the molecular structure, we constructed a borono-peptide that self-assembled into well-defined nanofibers. Relying on the specific recognition between the vicinal diol compound and boronic acid, a novel alizarin red S (ARS)-borono-peptide (BP) spherical nanoindicator was fabricated, accompanying with the emission of strong fluorescent signal. The fluorescent nanoindicator displayed an intense response to copper(II) ions and underwent the fluorescent "turn-off" due to the strong binding-induced displacement. Originating from the high selectivity toward copper(II) ions, good biocompatibility and cancer cell targeting, the nanoindicator offered the opportunity to image copper(II) ions in cancer cells via fluorescent change.
Collapse
Affiliation(s)
- Jia-Qi Feng
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Dao-Kun Shi
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Wen-Qiang Ding
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Yin-Jia Cheng
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Si-Yong Qin
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Ai-Qing Zhang
- The Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| |
Collapse
|
19
|
Galaup C, Picard C, Couderc F, Gilard V, Collin F. Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS J 2021; 289:2516-2539. [PMID: 33811448 DOI: 10.1111/febs.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Histopathological hallmarks of Alzheimer's disease (AD) are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the aggregated amyloid-beta peptide along with metal ions (copper, iron or zinc). In addition, oxidative stress is considered as an important factor in the etiology of AD and a multitude of metalloproteins and transporters is affected, leading to metal ion misregulation. Redox-active metal ions (e.g., copper) can catalyze the production of reactive oxygen species (ROS) in the presence of molecular oxygen and a reductant such as ascorbate. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative stress conditions. Thus, detecting ROS in vivo or in biological models of AD is of interest for better understanding AD etiology. The use of biocompatible and highly specific and sensitive probes is needed for such a purpose, since ROS are transient species whose steady-state concentrations are very low. Luminescent lanthanide complexes are sensitive probes that can meet these criteria. The present review focuses on the recent advances in the use of luminescent lanthanide complexes for ROS biosensing. It shows why the use of luminescent lanthanide complexes is of particular interest for selectively detecting ROS ( O 2 · - , HO• , 1 O2 , H2 O2 , etc.) in biological samples in the µM-nM range. It particularly focuses on the most recent strategies and discusses what could be expected with the use of luminescent lanthanide complexes for better understanding some of the molecular mechanisms underlying the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| |
Collapse
|
20
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
21
|
Urbanc B. Cross-Linked Amyloid β-Protein Oligomers: A Missing Link in Alzheimer's Disease Pathology? J Phys Chem B 2021; 125:1307-1316. [PMID: 33440940 DOI: 10.1021/acs.jpcb.0c07716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid β-protein (Aβ) oligomers are broadly viewed as the proximate mediators of toxicity in Alzheimer's disease (AD). Recent studies, however, provide substantial evidence that Aβ is involved in protection and repair of the central nervous system whereby Aβ oligomer and subsequent fibril formation are integral to its normal antimicrobial and antiviral function. These developments raise a question of what exactly makes Aβ oligomers toxic in the context of AD. This Perspective describes a paradigm shift in the search for toxic Aβ oligomer species that involves oxidative-stress-induced stabilization of Aβ oligomers via cross-linking and reviews most recent research elucidating structural aspects of cross-linked Aβ oligomers and potential inhibition of their toxicity.
Collapse
Affiliation(s)
- Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Esmieu C, Ferrand G, Borghesani V, Hureau C. Impact of N-Truncated Aβ Peptides on Cu- and Cu(Aβ)-Generated ROS: Cu I Matters! Chemistry 2020; 27:1777-1786. [PMID: 33058356 DOI: 10.1002/chem.202003949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/07/2020] [Indexed: 12/15/2022]
Abstract
In vitro Cu(Aβ1-x )-induced ROS production has been extensively studied. Conversely, the ability of N-truncated isoforms of Aβ to alter the Cu-induced ROS production has been overlooked, even though they are main constituents of amyloid plaques found in the human brain. N-Truncated peptides at the positions 4 and 11 (Aβ4-x and Aβ11-x ) contain an amino-terminal copper and nickel (ATCUN) binding motif (H2 N-Xxx-Zzz-His) that confer them different coordination sites and higher affinities for CuII compared to the Aβ1-x peptide. It has further been proposed that the role of Aβ4-x peptide is to quench CuII toxicity in the brain. However, the role of CuI coordination has not been investigated to date. In contrast to CuII , CuI coordination is expected to be the same for N-truncated and N-intact peptides. Herein, we report in-depth characterizations and ROS production studies of Cu (CuI and CuII ) complexes of the Aβ4-16 and Aβ11-16 N-truncated peptides. Our findings show that the N-truncated peptides do produce ROS when CuI is present in the medium, albeit to a lesser extent than the unmodified counterpart. In addition, when used as competitor ligands (i.e., in the presence of Aβ1-16 ), the N-truncated peptides are not able to fully preclude Cu(Aβ1-16 )-induced ROS production.
Collapse
Affiliation(s)
- Charlène Esmieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France
| | - Guillaume Ferrand
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| | - Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France.,current address: School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
23
|
Bacchella C, Brewster JT, Bähring S, Dell’Acqua S, Root HD, Thiabaud GD, Reuther JF, Monzani E, Sessler JL, Casella L. Condition-Dependent Coordination and Peroxidase Activity of Hemin-Aβ Complexes. Molecules 2020; 25:E5044. [PMID: 33143109 PMCID: PMC7662341 DOI: 10.3390/molecules25215044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
The peroxidase activity of hemin-peptide complexes remains a potential factor in oxidative damage relevant to neurodegeneration. Here, we present the effect of temperature, ionic strength, and pH relevant to pathophysiological conditions on the dynamic equilibrium between high-spin and low-spin hemin-Aβ40 constructs. This influence on peroxidase activity was also demonstrated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and dopamine (DA) oxidation rate analyses with increasing ratios of Aβ16 and Aβ40 (up to 100 equivalents). Interaction and reactivity studies of aggregated Aβ40-hemin revealed enhanced peroxidase activity versus hemin alone. Comparison of the results obtained using Aβ16 and Aβ40 amyloid beta peptides revealed marked differences and provide insight into the potential effects of hemin-Aβ on neurological disease progression.
Collapse
Affiliation(s)
- Chiara Bacchella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - James T. Brewster
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Steffen Bähring
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Simone Dell’Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - Harrison D. Root
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Gregory D. Thiabaud
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - James F. Reuther
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| |
Collapse
|
24
|
A blue/red dual-emitting multi-responsive fluorescent probe for Fe3+, Cu2+ and cysteine based on isophorone-antharecene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Pradhan K, Das G, Kar C, Mukherjee N, Khan J, Mahata T, Barman S, Ghosh S. Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity. ACS OMEGA 2020; 5:18958-18967. [PMID: 32775897 PMCID: PMC7408195 DOI: 10.1021/acsomega.0c02235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/19/2020] [Indexed: 05/28/2023]
Abstract
Alzheimer's disease (AD) exhibits a multitude of syndromes which add up to its complex nature. In AD, amyloid plaques are deposited along with abnormal accumulation of transition-metal ions. These transition-metal ions are redox-active and help to induce the formation of various polymorphic forms of amyloid-β. Amyloid oligomeric and fibrillar aggregates are the main cause for neuronal toxicity. Another reason for neuronal toxicity arises from generation of reactive oxygen species (ROS) catalyzed by redox-active metal ions through Fenton's reaction. In this direction, an Aβ inhibitor possessing the metal chelation property will be the most promising approach against multifaceted AD. Herein, a rhodamine-B-based compound (Rh-BT) has been designed and synthesized. Rhodamine was attached with benzothiazole as a recognition unit for amyloid-β aggregates. The molecule can effectively capture redox metal ions from the Aβ-Cu2+ complex as well as inhibit Aβ self-assembly such as toxic oligomeric and fibrillar aggregates. Various biophysical assays show that Rh-BT interacts with the Aβ peptide, is capable of decreasing metal-induced ROS generation, and inhibits Aβ-Cu2+-induced cytotoxicity. All these results support the multifunctional nature of Rh-BT, which has an Aβ-specific recognition unit. In addition to the above properties, Rh-BT also exhibits good serum stability in vivo and blood-brain barrier permeability. Therefore, Rh-BT can be considered as a potent multifunctional therapeutic for the treatment of AD.
Collapse
Affiliation(s)
- Krishnangsu Pradhan
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Gaurav Das
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirantan Kar
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Nabanita Mukherjee
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Tanushree Mahata
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Barman
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. β-amyloid and Oxidative Stress: Perspectives in Drug Development. Curr Pharm Des 2020; 25:4771-4781. [PMID: 31814548 DOI: 10.2174/1381612825666191209115431] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
Abstract
Alzheimer's Disease (AD) is a slow-developing neurodegenerative disorder in which the main pathogenic role has been assigned to β-amyloid protein (Aβ) that accumulates in extracellular plaques. The mechanism of action of Aβ has been deeply analyzed and several membrane structures have been identified as potential mediators of its effect. The ability of Aβ to modify neuronal activity, receptor expression, signaling pathways, mitochondrial function, and involvement of glial cells have been analyzed. In addition, extensive literature deals with the involvement of oxidative stress in Aβ effects. Herein we focus more specifically on the reciprocal regulation of Aβ, that causes oxidative stress, that favors Aβ aggregation and toxicity and negatively affects the peptide clearance. Analysis of this strict interaction may offer novel opportunities for therapeutic intervention. Both common and new molecules endowed with antioxidant properties deserve attention in this regard.
Collapse
Affiliation(s)
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018 Troina, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
27
|
Kou X, Song L, Wang Y, Yu Q, Ju H, Yang A, Shen R. Design, synthesis and anti-Alzheimer's disease activity study of xanthone derivatives based on multi-target strategy. Bioorg Med Chem Lett 2019; 30:126927. [PMID: 31901382 DOI: 10.1016/j.bmcl.2019.126927] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
A series of xanthone derivatives were designed, synthesized and evaluated as multifunctional ligands against Alzheimer's disease (AD). In vitro studies showed all xanthone derivatives had good metal chelating property and exhibited selective inhibitory activity against Acetylcholinesterase (AChE). In particular, compound 2a showed the highest inhibitory activity against AChE, and the IC50 value was (0.328 ± 0.001) μM, which was comparable to tacrine. Kinetic analysis and molecular docking studies indicated that these derivatives targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of AChE. Moreover, all derivatives showed higher anti-oxidative activity than vitamin C. Furthermore, copper complex had higher anti-AChE activity and antioxidant activity. Thus, these xanthone derivatives are potential multi-targeted-directed ligands for further development for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodi Kou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lulu Song
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yunhua Wang
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiao Yu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hui Ju
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
28
|
Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Arrigoni F, Prosdocimi T, Mollica L, De Gioia L, Zampella G, Bertini L. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Metallomics 2019; 10:1618-1630. [PMID: 30345437 DOI: 10.1039/c8mt00216a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) involves a number of factors including an anomalous interaction of copper with the amyloid peptide (Aβ), inducing oxidative stress with radical oxygen species (ROS) production through a three-step cycle in which O2 is gradually reduced to superoxide, oxygen peroxide and finally OH radicals. The purpose of this work has been to investigate the reactivity of 14 different Cu(ii)-Aβ coordination models with the aim of identifying on an energy basis (Density Functional Theory (DFT) and classical Molecular Dynamics (MD)) the redox competent form(s). Accordingly, we have specifically focused on the first three steps of the cycle, i.e. ascorbate binding to Cu(ii), Cu(ii) → Cu(i) reduction and O2 reduction to O2-. Compared to the recent literature, our results broaden the set of possible redox competent metallopeptide forms responsible for ROS production. Indeed, in addition to the three-coordinated species containing one His ligand, a N-terminal amine group and the carboxylate side chain of the Asp1 residue of Aβ already proposed, we found two other Cu-Aβ coordination modes involving two histidines.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20102407. [PMID: 31096608 PMCID: PMC6566277 DOI: 10.3390/ijms20102407] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases.
Collapse
|
32
|
Chung YJ, Lee BI, Park CB. Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(ii)-mediated β-amyloid aggregation. NANOSCALE 2019; 11:6297-6306. [PMID: 30882825 DOI: 10.1039/c9nr00473d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The abnormal self-assembly of cerebral β-amyloid (Aβ) peptides into toxic aggregates is a hallmark of Alzheimer's disease (AD). Here, we report on multifunctional carbon dots that can chelate Cu(ii) ions, suppress Aβ aggregation, and photooxygenate Aβ peptides. Copper ions have high relevance to AD pathogenesis, causing Cu(ii)-mediated Aβ aggregation and oxidative damage to neuronal cells. For effective conjugation with Cu(ii)-bound Aβ complexes, we have designed carbon dots that possess nitrogen (N)-containing polyaromatic functionalities on their surface by employing o-phenylenediamine (OPD) as a polymerization precursor. We demonstrate that the polymerized OPD (pOPD)-derived carbon dots exhibit multiple capabilities against Cu(ii)-mediated Aβ aggregation. Furthermore, the pOPD-derived carbon dots exhibited dramatically enhanced absorption and fluorescence upon coordination with Cu(ii) ions and effectively photooxygenated Aβ peptides. The photodynamically modulated Aβ residues lost the propensity to coordinate with Cu(ii) and to assemble into toxic aggregates. This work demonstrates the potential of carbon dots as a multifunctional β-sheet breaker and provides a promising anti-amyloidogenic strategy for future Aβ-targeted AD treatments.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea.
| | | | | |
Collapse
|
33
|
Xu Y, Zhang J, Wang H, Mao F, Bao K, Liu W, Zhu J, Li X, Zhang H, Li J. Rational Design of Novel Selective Dual-Target Inhibitors of Acetylcholinesterase and Monoamine Oxidase B as Potential Anti-Alzheimer's Disease Agents. ACS Chem Neurosci 2019; 10:482-496. [PMID: 30110536 DOI: 10.1021/acschemneuro.8b00357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multifunctional agents aiming at cholinesterases (ChEs) and monoamine oxidases (MAOs) are promising therapy for Alzheimer's disease (AD). Herein, a series of novel propargylamine-modified pyrimidinylthiourea derivatives (1-4) were designed and synthesized as dual inhibitors of ChEs and MAOs with other functions against AD. Most of these derivatives inhibited ChEs and MAOs with IC50 values in the micro- or nanomolar ranges. Compound 1c displayed the dual functional profile of targeting the AChE (IC50 = 0.032 ± 0.007 μM) and MAO-B (IC50 = 2.117 ± 0.061 μM), along with the improved blood-brain barrier (BBB) permeability, antioxidant ability, and good copper chelating property in vitro. Animal studies showed that compound 1c·HCl could inhibit the cerebral AChE/MAO-B activities and alleviate scopolamine-induced cognitive impairment in mice. Combined with good oral bioavailability ( F = 45.55%), these findings demonstrated that compound 1c may be a potent brain permeable multifunctional candidate for the treatment of AD.
Collapse
Affiliation(s)
- Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jian Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Keting Bao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Wenwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiaokang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
34
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Olive Biophenols Reduces Alzheimer's Pathology in SH-SY5Y Cells and APPswe Mice. Int J Mol Sci 2018; 20:ijms20010125. [PMID: 30598025 PMCID: PMC6337485 DOI: 10.3390/ijms20010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease, associated with the hallmark proteinacious constituent called amyloid beta (Aβ) of senile plaques. Moreover, it is already established that metals (particularly copper, zinc and iron) have a key role in the pathogenesis of AD. In order to reduce the Aβ plaque burden and overcome the side effects from the synthetic inhibitors, the current study was designed to focus on direct inhibition of with or without metal-induced Aβ fibril formation and aggregation by using olive biophenols. Exposure of neuroblastoma (SH-SY5Y) cells with Aβ42 resulted in decrease of cell viability and morphological changes might be due to severe increase in the reactive oxygen species (ROS). The pre-treated SH-SY5Y cells with olive biophenols were able to attenuate cell death caused by Aβ42, copper- Aβ42, and [laevodihydroxyphenylalanine (l-DOPA)] l-DOPA-Aβ42-induced toxicity after 24 h of treatment. Oleuropein, verbascoside and rutin were the major anti-amyloidogenic compounds. Transgenic mice (APPswe/PS1dE9) received 50 mg/kg of oleuropein containing olive leaf extracts (OLE) or control diet from 7 to 23 weeks of age. Treatment mice (OLE) were showed significantly reduced amyloid plaque deposition (p < 0.001) in cortex and hippocampus as compared to control mice. Our findings provide a basis for considering natural and low cost biophenols from olive as a promising candidate drug against AD. Further studies warrant to validate and determine the anti-amyloid mechanism, bioavailability as well as permeability of olive biophenols against blood brain barrier in AD.
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
35
|
Copper Redox Cycling Inhibits Aβ Fibre Formation and Promotes Fibre Fragmentation, while Generating a Dityrosine Aβ Dimer. Sci Rep 2018; 8:16190. [PMID: 30385800 PMCID: PMC6212427 DOI: 10.1038/s41598-018-33935-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress and the formation of plaques which contain amyloid-β (Aβ) peptides are two key hallmarks of Alzheimer’s disease (AD). Dityrosine is found in the plaques of AD patients and Aβ dimers have been linked to neurotoxicity. Here we investigate the formation of Aβ dityrosine dimers promoted by Cu2+/+ Fenton reactions. Using fluorescence measurements and UV absorbance, we show that dityrosine can be formed aerobically when Aβ is incubated with Cu2+ and hydrogen-peroxide, or in a Cu2+ and ascorbate redox mixture. The dityrosine cross-linking can occur for both monomeric and fibrillar forms of Aβ. We show that oxidative modification of Aβ impedes the ability for Aβ monomer to form fibres, as indicated by the amyloid specific dye Thioflavin T (ThT). Transmission electron microscopy (TEM) indicates the limited amyloid assemblies that form have a marked reduction in fibre length for Aβ(1–40). Importantly, the addition of Cu2+ and a reductant to preformed Aβ(1–40) fibers causes their widespread fragmentation, reducing median fibre lengths from 800 nm to 150 nm upon oxidation. The processes of covalent cross-linking of Aβ fibres, dimer formation, and fibre fragmentation within plaques are likely to have a significant impact on Aβ clearance and neurotoxicity.
Collapse
|
36
|
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement 2018; 14:1602-1614. [DOI: 10.1016/j.jalz.2018.06.3040] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| | - Richard Lathe
- Division of Infection and Pathway Medicine; University of Edinburgh; Little France Edinburgh UK
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| |
Collapse
|
37
|
Girvan P, Teng X, Brooks NJ, Baldwin GS, Ying L. Redox Kinetics of the Amyloid-β-Cu Complex and Its Biological Implications. Biochemistry 2018; 57:6228-6233. [DOI: 10.1021/acs.biochem.8b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Hong S, Go YK, Derrick JS, Han S, Kim J, Lim MH, Kim SH. Advanced Electron Paramagnetic Resonance Studies of a Ternary Complex of Copper, Amyloid-β, and a Chemical Regulator. Inorg Chem 2018; 57:12665-12670. [DOI: 10.1021/acs.inorgchem.8b01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Kyung Go
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sanghun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
39
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Atrián-Blasco E, del Barrio M, Faller P, Hureau C. Ascorbate Oxidation by Cu(Amyloid-β) Complexes: Determination of the Intrinsic Rate as a Function of Alterations in the Peptide Sequence Revealing Key Residues for Reactive Oxygen Species Production. Anal Chem 2018; 90:5909-5915. [PMID: 29611698 PMCID: PMC6120677 DOI: 10.1021/acs.analchem.8b00740] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Along with aggregation of the amyloid-β (Aβ) peptide and subsequent deposit of amyloid plaques, oxidative stress is an important feature in Alzheimer's disease. Cu bound to Aβ is able to produce reactive oxygen species (ROS) by the successive reductions of molecular dioxygen, and the ROS produced contribute to oxidative stress. In vitro, ascorbate consumption parallels ROS production, where ascorbate is the reductant that fuels the reactions. Because the affinity of Cu for Aβ is moderate compared to other biomolecules, the rate of ascorbate consumption is a combination of two contributions. The first one is due to peptide-unbound Cu and the second one to peptide-bound Cu complexes. In the present Article, we aim to determine the amounts of the second contribution in the global ascorbate consumption process. It is defined as the intrinsic rate of ascorbate oxidation, which mathematically corresponds to the rate at an infinite peptide to Cu ratio, i.e., without any contribution from peptide-unbound Cu. We show that, for the wild-type Cu(Aβ) complex, this value equals 10% of the value obtained for peptide-unbound Cu and that this value is strongly dependent on peptide alterations. By examination of the dependence of the intrinsic rate of ascorbate oxidation, followed by UV-vis spectroscopy, for several altered peptides, we determine some of the key residues that influence ROS production.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Melisa del Barrio
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Biometals and Biological Chemistry, Institut de Chimie UMR 7177. Université de Strasbourg. Le Bel, rue B. Pascal 67081 Strasbourg, France. +33 68856949
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
42
|
Conte-Daban A, Ambike V, Guillot R, Delsuc N, Policar C, Hureau C. A Metallo Pro-Drug to Target Cu II in the Context of Alzheimer's Disease. Chemistry 2018; 24:5095-5099. [PMID: 29334419 PMCID: PMC6120673 DOI: 10.1002/chem.201706049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII -based superoxide dismutase (SOD) mimic ([MnII (L)]+ , 1+ ) as a pro-drug candidate to target CuII -associated events, namely, CuII -induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Vinita Ambike
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
43
|
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2018; 14:450-464. [PMID: 29080524 PMCID: PMC5680523 DOI: 10.1016/j.redox.2017.10.014] [Citation(s) in RCA: 1449] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.
Collapse
Affiliation(s)
- C Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - M Tomas
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - D Bonnefont-Rousselot
- Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - P Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France
| | - C Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - F Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
| |
Collapse
|
44
|
Cheignon C, Hureau C, Collin F. Real-time evolution of Aβ 40 metal-catalyzed oxidation reveals Asp1 as the main target and a dependence on metal binding site. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Cheignon C, Collin F, Faller P, Hureau C. Is ascorbate Dr Jekyll or Mr Hyde in the Cu(Aβ) mediated oxidative stress linked to Alzheimer's disease? Dalton Trans 2018; 45:12627-31. [PMID: 27264439 PMCID: PMC5714186 DOI: 10.1039/c6dt01979j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evaluation of the pro versus antioxidant activity of ascorbate regarding Cu(Aβ) induced reactive oxygen species production in the context of Alzheimer’s disease shows that a protective activity can only be observed at high ascorbate concentration for exogenous molecules but not for the amyloid-β peptide itself.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| |
Collapse
|
46
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
47
|
Cheignon C, Faller P, Testemale D, Hureau C, Collin F. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics 2017; 8:1081-1089. [PMID: 27730227 PMCID: PMC5714184 DOI: 10.1039/c6mt00150e] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of Alzheimer’s disease (AD), the production of HO• by copper–amyloid beta (Aβ) in the presence of ascorbate is known to be deleterious for the Aβ peptide itself and also for the surrounding molecules, thus establishing a direct link between AD and oxidative stress. The metal-catalyzed oxidation (MCO) of Aβ primarily targets the residues involved in copper coordination during HO• production. In the present work, we demonstrate that the oxidative damage undergone by Aβ during MCO lead to a change in copper coordination, with enhanced catalytic properties that increases the rates of ascorbate consumption and HO• production, and the amount of HO• released by the system. This phenomenon is observed after the peptide has been sufficiently oxidized.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse, UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse, UPS, INPT, 31077 Toulouse, France
| | - Denis Testemale
- University of Grenoble Alpes, Institut NEEL, F-38000 Grenoble, France and CNRS, Institut NEEL, F-38000 Grenoble, France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse, UPS, INPT, 31077 Toulouse, France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse, UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
48
|
|
49
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
50
|
Branch T, Barahona M, Dodson CA, Ying L. Kinetic Analysis Reveals the Identity of Aβ-Metal Complex Responsible for the Initial Aggregation of Aβ in the Synapse. ACS Chem Neurosci 2017. [PMID: 28621929 PMCID: PMC5609119 DOI: 10.1021/acschemneuro.7b00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
![]()
The
mechanism of Aβ aggregation in the absence of metal ions
is well established, yet the role that Zn2+ and Cu2+, the two most studied metal ions, released during neurotransmission,
paly in promoting Aβ aggregation in the vicinity of neuronal
synapses remains elusive. Here we report the kinetics of Zn2+ binding to Aβ and Zn2+/Cu2+ binding
to Aβ-Cu to form ternary complexes under near physiological
conditions (nM Aβ, μM metal ions). We find that these
reactions are several orders of magnitude slower than Cu2+ binding to Aβ. Coupled reaction-diffusion simulations of the
interactions of synaptically released metal ions with Aβ show
that up to a third of Aβ is Cu2+-bound under repetitive
metal ion release, while any other Aβ-metal complexes (including
Aβ-Zn) are insignificant. We therefore conclude that Zn2+ is unlikely to play an important role in the very early
stages (i.e., dimer formation) of Aβ aggregation, contrary to
a widely held view in the subject. We propose that targeting the specific
interactions between Cu2+ and Aβ may be a viable
option in drug development efforts for early stages of AD.
Collapse
Affiliation(s)
- Thomas Branch
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mauricio Barahona
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte A. Dodson
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Liming Ying
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|