1
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
2
|
Heitmann T, Barrow JC. The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System. Biomolecules 2023; 13:1317. [PMID: 37759717 PMCID: PMC10526494 DOI: 10.3390/biom13091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - James C. Barrow
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Ritter K, Jork N, Unmüßig AS, Köhn M, Jessen HJ. Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent. Biomolecules 2023; 13:1150. [PMID: 37509185 PMCID: PMC10377360 DOI: 10.3390/biom13071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens.
Collapse
Affiliation(s)
- Kevin Ritter
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Unmüßig
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maja Köhn
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Sahu S, Gordon J, Gu C, Sobhany M, Fiedler D, Stanley RE, Shears SB. Nucleolar Architecture Is Modulated by a Small Molecule, the Inositol Pyrophosphate 5-InsP 7. Biomolecules 2023; 13:biom13010153. [PMID: 36671538 PMCID: PMC9855682 DOI: 10.3390/biom13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Robin E. Stanley
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-984-287-3483
| |
Collapse
|
5
|
Couto D, Richter A, Walter H, Furkert D, Hothorn M, Fiedler D. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry 2021; 60:2739-2748. [PMID: 34499474 DOI: 10.1021/acs.biochem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.
Collapse
Affiliation(s)
- Daniel Couto
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Annika Richter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Henriette Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
6
|
Mohanrao R, Manorama R, Ganguli S, Madhusudhanan MC, Bhandari R, Sureshan KM. Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase. Molecules 2021; 26:molecules26123601. [PMID: 34208421 PMCID: PMC8231259 DOI: 10.3390/molecules26123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.
Collapse
Affiliation(s)
- Raja Mohanrao
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Ruth Manorama
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Mithun C. Madhusudhanan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Correspondence: (R.B.); (K.M.S.)
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
- Correspondence: (R.B.); (K.M.S.)
| |
Collapse
|
7
|
Mantilla BS, Kalesh K, Brown NW, Fiedler D, Docampo R. Affinity-based proteomics reveals novel targets of inositol pyrophosphate (5-IP 7 )-dependent phosphorylation and binding in Trypanosoma cruzi replicative stages. Mol Microbiol 2021; 115:986-1004. [PMID: 33354791 DOI: 10.1111/mmi.14672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Diphosphoinositol-5-pentakisphosphate (5-PP-IP5 ), also known as inositol heptakisphosphate (5-IP7 ), has been described as a high-energy phosphate metabolite that participates in the regulation of multiple cellular processes through protein binding or serine pyrophosphorylation, a posttranslational modification involving a β-phosphoryl transfer. In this study, utilizing an immobilized 5-IP7 affinity reagent, we performed pull-down experiments coupled with mass spectrometry identification, and bioinformatic analysis, to reveal 5-IP7 -regulated processes in the two proliferative stages of the unicellular parasite Trypanosoma cruzi. Our protein screen clearly defined two cohorts of putative targets either in the presence of magnesium ions or in metal-free conditions. We endogenously tagged four protein candidates and immunopurified them to assess whether 5-IP7 -driven phosphorylation is conserved in T. cruzi. Among the most interesting targets, we identified a choline/o-acetyltransferase domain-containing phosphoprotein that undergoes 5-IP7 -mediated phosphorylation events at a polyserine tract (Ser578-580 ). We also identified a novel SPX domain-containing phosphoribosyltransferase [EC 2.7.6.1] herein termed as TcPRPPS4. Our data revealed new possible functional roles of 5-IP7 in this divergent eukaryote, and provided potential new targets for chemotherapy.
Collapse
Affiliation(s)
- Brian S Mantilla
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Biosciences, Durham University, Durham, UK
| | | | - Nathaniel W Brown
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Abstract
In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.
Collapse
|
9
|
Shears SB, Wang H. Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules 2020; 25:E4515. [PMID: 33023101 PMCID: PMC7583957 DOI: 10.3390/molecules25194515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs) comprise an important group of intracellular, diffusible cellular signals that a wide range of biological processes throughout the yeast, plant, and animal kingdoms. It has been difficult to gain a molecular-level mechanistic understanding of the actions of these molecules, due to their highly phosphorylated nature, their low levels, and their rapid metabolic turnover. More recently, these obstacles to success are being surmounted by the chemical synthesis of a number of insightful PP-InsP analogs. This review will describe these analogs and will indicate the important chemical and biological information gained by using them.
Collapse
Affiliation(s)
- Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | | |
Collapse
|
10
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
11
|
InsP 7 is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proc Natl Acad Sci U S A 2020; 117:19245-19253. [PMID: 32727897 DOI: 10.1073/pnas.1922284117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.
Collapse
|
12
|
Abstract
The specific non-invasive control of intracellular signaling events requires advanced tools that enter cells by diffusion and are controllable by light. Here, we detail the synthesis and application of membrane-permeant caged inositol pyrophosphates with respect to cell entry and cell distribution. We recently published the synthesis of these tools as well as their effect on PH-domain localization in HeLa cells and oscillations of the intracellular calcium concentration in β-cells, which are known to drive insulin secretion. In this chapter, we discuss the possibilities and limitations when using cell-penetrating inositol pyrophosphates. We provide a detailed protocol for the application in live mouse β-cells and we discuss the image analysis needed for following effects on calcium signaling.
Collapse
|
13
|
Control of XPR1-dependent cellular phosphate efflux by InsP 8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci U S A 2020; 117:3568-3574. [PMID: 32019887 DOI: 10.1073/pnas.1908830117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (K d = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Collapse
|
14
|
Riley AM, Wang H, Shears SB, Potter BVL. Synthesis of an α-phosphono-α,α-difluoroacetamide analogue of the diphosphoinositol pentakisphosphate 5-InsP 7. MEDCHEMCOMM 2019; 10:1165-1172. [PMID: 31391889 PMCID: PMC6657673 DOI: 10.1039/c9md00163h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are an evolutionarily ancient group of signalling molecules that are essential to cellular and organismal homeostasis. As the detailed mechanisms of PP-InsP signalling begin to emerge, synthetic analogues of PP-InsPs containing stabilised mimics of the labile diphosphate group can provide valuable investigational tools. We synthesised 5-PCF2Am-InsP5 (1), a novel fluorinated phosphonate analogue of 5-PP-InsP5, and obtained an X-ray crystal structure of 1 in complex with diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2). 5-PCF2Am-InsP5 binds to the kinase domain of PPIP5K2 in a similar orientation to that of the natural substrate 5-PP-InsP5 and the PCF2Am structure can mimic many aspects of the diphosphate group in 5-PP-InsP5. We propose that 1, the structural and electronic properties of which are in some ways complementary to those of existing phosphonoacetate and methylenebisphosphonate analogues of 5-PP-InsP5, may be a useful addition to the expanding array of chemical tools for the investigation of signalling by PP-InsPs. The PCF2Am group may also deserve attention for wider application as a diphosphate mimic.
Collapse
Affiliation(s)
- Andrew M Riley
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| |
Collapse
|
15
|
Kim J, Darè E, Rajasekaran SS, Ryu SH, Berggren PO, Barker CJ. Inositol pyrophosphates and Akt/PKB: Is the pancreatic β-cell the exception to the rule? Cell Signal 2019; 58:131-136. [DOI: 10.1016/j.cellsig.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
|
16
|
Marmelstein AM, Morgan JAM, Penkert M, Rogerson DT, Chin JW, Krause E, Fiedler D. Pyrophosphorylation via selective phosphoprotein derivatization. Chem Sci 2018; 9:5929-5936. [PMID: 30079207 PMCID: PMC6050540 DOI: 10.1039/c8sc01233d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
An important step in elucidating the function of protein post-translational modifications (PTMs) is gaining access to site-specifically modified, homogeneous samples for biochemical characterization. Protein pyrophosphorylation is a poorly characterized PTM, and here a chemical approach to obtain pyrophosphoproteins is reported. Photo-labile phosphorimidazolide reagents were developed for selective pyrophosphorylation, affinity-capture, and release of pyrophosphoproteins. Kinetic analysis of the reaction revealed rate constants between 9.2 × 10-3 to 0.58 M-1 s-1, as well as a striking proclivity of the phosphorimidazolides to preferentially react with phosphate monoesters over other nucleophilic side chains. Besides enabling the characterization of pyrophosphorylation on protein function, this work highlights the utility of phosphoryl groups as handles for selective protein modification for a variety of applications, such as phosphoprotein bioconjugation and enrichment.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Department of Chemistry , Princeton University , Washington Road , Princeton , New Jersey 08544 , USA
| | - Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Daniel T Rogerson
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| |
Collapse
|
17
|
Riley AM, Unterlass JE, Konieczny V, Taylor CW, Helleday T, Potter BVL. A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MEDCHEMCOMM 2018; 9:1105-1113. [PMID: 30079174 PMCID: PMC6071853 DOI: 10.1039/c8md00149a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/01/2018] [Indexed: 01/17/2023]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are inositol phosphates (InsPs) that contain PP (diphosphate) groups. Converting a phosphate group in an InsP into a diphosphate has been reported to enhance affinity for some binding proteins. We synthesised 1-PP-Ins(4,5)P2, the first diphosphate analogue of the intracellular signalling molecule InsP3, and examined its effects on InsP3 receptors, which are intracellular Ca2+ channels. 1-PP-Ins(4,5)P2 was indistinguishable from InsP3 in its ability to bind to and activate type 1 InsP3 receptors, indicating that the diphosphate modification of InsP3 affected neither affinity nor efficacy. Nevertheless, 1-PP-Ins(4,5)P2 is the most potent 1-phosphate modified analogue of InsP3 yet identified. PP-InsPs are generally hydrolysed by diphosphoinositol phosphate phosphohydrolases (DIPPs), but 1-PP-Ins(4,5)P2 was not readily metabolised by human DIPPs. Differential scanning fluorimetry showed that 1-PP-Ins(4,5)P2 stabilises DIPP proteins, but to a lesser extent than naturally occurring substrates 1-PP-InsP5 and 5-PP-InsP5. The non-hydrolysable InsP7 analogues 1-PCP-InsP5 and 5-PCP-InsP5 showed comparable stabilising abilities to their natural counterparts and may therefore be promising substrate analogues for co-crystallisation with DIPPs.
Collapse
Affiliation(s)
- Andrew M. Riley
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| | - Judith E. Unterlass
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Vera Konieczny
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Colin W. Taylor
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Thomas Helleday
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Barry V. L. Potter
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| |
Collapse
|
18
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
19
|
Features and regulation of non-enzymatic post-translational modifications. Nat Chem Biol 2018; 14:244-252. [DOI: 10.1038/nchembio.2575] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023]
|
20
|
Brown NW, Marmelstein AM, Fiedler D. Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 2018; 45:6311-6326. [PMID: 27462803 DOI: 10.1039/c6cs00193a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Alan M Marmelstein
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Dorothea Fiedler
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
22
|
Engelsma SB, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV. Combined Phosphoramidite-Phosphodiester Reagents for the Synthesis of Methylene Bisphosphonates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sander B. Engelsma
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Nico J. Meeuwenoord
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hermen S. Overkleeft
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
23
|
Engelsma SB, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV. Combined Phosphoramidite-Phosphodiester Reagents for the Synthesis of Methylene Bisphosphonates. Angew Chem Int Ed Engl 2017; 56:2955-2959. [DOI: 10.1002/anie.201611878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Sander B. Engelsma
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Nico J. Meeuwenoord
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hermen S. Overkleeft
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Department of Bioorganic Synthesis; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
24
|
Wilson MSC, Saiardi A. Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling. Top Curr Chem (Cham) 2017; 375:14. [PMID: 28101851 PMCID: PMC5396384 DOI: 10.1007/s41061-016-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.
Collapse
Affiliation(s)
- Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
26
|
Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 2016; 113:E6757-E6765. [PMID: 27791083 DOI: 10.1073/pnas.1606853113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
Collapse
|
27
|
Yates LM, Fiedler D. A Stable Pyrophosphoserine Analog for Incorporation into Peptides and Proteins. ACS Chem Biol 2016; 11:1066-73. [PMID: 26760216 DOI: 10.1021/acschembio.5b00972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein pyrophosphorylation is a covalent modification of proteins, mediated by the inositol pyrophosphate messengers. Although the inositol pyrophosphates have been linked to a range of cellular processes, the role of protein pyrophosphorylation remains minimally characterized in vivo. The inherent instability of the phosphoanhydride bond has hampered the development of useful bioanalytical techniques to interrogate this novel signaling mechanism. Here, we describe the preparation of a pyrophosphoserine analog containing a stable methylene-bisphosphonate group that is compatible with solid-phase peptide synthesis. The resulting peptides demonstrate enhanced stability in Eukaryotic cell lysates and mammalian plasma and display resistance toward chemical degradation, when compared to the corresponding pyrophosphopeptides. In addition, the peptides containing the stable pyrophosphoserine analog are highly compatible with common ligation methods, such as native chemical ligation, maleimide conjugation, and glutaraldehyde ligation. The bisphosphonate-containing peptides will, therefore, be well-suited for future pyrophosphoserine antibody generation and affinity capture of pyrophosphoprotein binding partners and provide a key entry point to study the regulatory role of protein pyrophosphorylation.
Collapse
Affiliation(s)
- Lisa M. Yates
- Department
of Chemistry, Princeton University, Washington Rd, Princeton, New Jersey 08544, United States
| | - Dorothea Fiedler
- Department
of Chemistry, Princeton University, Washington Rd, Princeton, New Jersey 08544, United States
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
28
|
Vibhute AM, Konieczny V, Taylor CW, Sureshan KM. Triazolophostins: a library of novel and potent agonists of IP3 receptors. Org Biomol Chem 2016; 13:6698-710. [PMID: 25869535 PMCID: PMC4533600 DOI: 10.1039/c5ob00440c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IP3R initiate most cellular Ca2+ signaling. AdA is the most potent agonist of IP3R. The structural complexity of AdA makes synthesis of its analogs cumbersome. We report an easy method for generating a library of potent triazole-based analogs of AdA, triazolophostins, which are the most potent AdA analogs devoid of a nucleobase.
IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala-695016, India.
| | | | | | | |
Collapse
|
29
|
PPIP5K1 interacts with the exocyst complex through a C-terminal intrinsically disordered domain and regulates cell motility. Cell Signal 2016; 28:401-411. [PMID: 26854614 DOI: 10.1016/j.cellsig.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Cellular signaling involves coordinated regulation of many events. Scaffolding proteins are crucial regulators of cellular signaling, because they are able to affect numerous events by coordinating specific interactions among multiple protein partners in the same pathway. Scaffolding proteins often contain intrinsically disordered regions (IDR) that facilitate the formation and function of distinct protein complexes. We show that PPIP5K1 contains an unusually long and evolutionarily conserved IDR. To investigate the biological role(s) of this domain, we identified interacting proteins using affinity purification coupled with mass spectrometry. Here, we report that PPIP5K1 is associated with a network of proteins that regulate vesicle-mediated transport. We further identified exocyst complex component 1 as a direct interactor with the IDR of PPIP5K1. Additionally, we report that knockdown of PPIP5K1 decreases motility of HeLa cells in a wound-healing assay. These results suggest that PPIP5K1 might play an important role in regulating function of exocyst complex in establishing cellular polarity and directional migration of cells.
Collapse
|
30
|
Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuña RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun 2016; 7:10622. [PMID: 26842801 PMCID: PMC4743007 DOI: 10.1038/ncomms10622] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm. Photocaged inositol-pyrophosphates offer a tool to study cellular signalling, but their challenging synthesis has precluded any biological studies so far. Here, the authors report the synthesis and cellular delivery of a photocaged analogue, and show that it mediates protein translocation in cellulo.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Colin J McKinlay
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Rafael C Camuña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Malaga 29071, Spain
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Steidle EA, Chong LS, Wu M, Crooke E, Fiedler D, Resnick AC, Rolfes RJ. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE β-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5). J Biol Chem 2016; 291:6772-83. [PMID: 26828065 DOI: 10.1074/jbc.m116.714907] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.
Collapse
Affiliation(s)
- Elizabeth A Steidle
- From the Department of Biology, Georgetown University, Washington, D. C. 20057
| | - Lucy S Chong
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Mingxuan Wu
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Elliott Crooke
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Dorothea Fiedler
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Adam C Resnick
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,
| | - Ronda J Rolfes
- From the Department of Biology, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
32
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
33
|
Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 2016; 22:4-27. [PMID: 26785684 PMCID: PMC4745034 DOI: 10.1002/psc.2836] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications.
Collapse
Affiliation(s)
- Raymond Behrendt
- Novabiochem, Merck & CieIm Laternenacker 58200SchaffhausenSwitzerland
| | - Peter White
- Novabiochem, Merck Chemicals LtdPadge RoadBeestonNG9 2JRUK
| | - John Offer
- The Francis Crick Institute215 Euston RoadLondonNW1 2BEUK
| |
Collapse
|
34
|
Pavlovic I, Thakor DT, Jessen HJ. Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue. Org Biomol Chem 2016; 14:5559-62. [DOI: 10.1039/c6ob00094k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphoinositol polyphosphates (inositol pyrophosphates, X-InsP7) are a family of second messengers with important roles in eukaryotic biology. A new approach targeting 2-InsP7 and a photocaged analogue is described.
Collapse
Affiliation(s)
- I. Pavlovic
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - D. T. Thakor
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - H. J. Jessen
- Department of Chemistry and Pharmacy
- Albert-Ludwigs University Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
35
|
Aiba T, Sato M, Umegaki D, Iwasaki T, Kambe N, Fukase K, Fujimoto Y. Regioselective phosphorylation of myo-inositol with BINOL-derived phosphoramidites and its application for protozoan lysophosphatidylinositol. Org Biomol Chem 2016; 14:6672-5. [DOI: 10.1039/c6ob01062h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BINOL-derived phosphoramidites enabled a regioselective phosphorylation of myo-inositol. The method was applied for the first total synthesis of a protozoan lysophosphatidylinositol, EhPIa.
Collapse
Affiliation(s)
- Toshihiko Aiba
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Masaki Sato
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Daichi Umegaki
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takanori Iwasaki
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Nobuaki Kambe
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Koichi Fukase
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yukari Fujimoto
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
36
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
37
|
Riley AM, Wang H, Shears SB, L. Potter BV. Synthetic tools for studying the chemical biology of InsP8. Chem Commun (Camb) 2015; 51:12605-8. [PMID: 26153667 PMCID: PMC4643724 DOI: 10.1039/c5cc05017k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022]
Abstract
To synthesise stabilised mimics of InsP8, the most phosphorylated inositol phosphate signalling molecule in Nature, we replaced its two diphosphate (PP) groups with either phosphonoacetate (PA) or methylenebisphosphonate (PCP) groups. Utility of the PA and PCP analogues was verified by structural and biochemical analyses of their interactions with enzymes of InsP8 metabolism.
Collapse
Affiliation(s)
- Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B. Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford , OX1 3QT , UK . ; Fax: +44-1865-271853 ; Tel: +44-1865-271945
| |
Collapse
|
38
|
Pavlovic I, Thakor DT, Bigler L, Wilson MSC, Laha D, Schaaf G, Saiardi A, Jessen HJ. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate. Angew Chem Int Ed Engl 2015; 54:9622-6. [PMID: 26014370 DOI: 10.1002/anie.201503094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 11/10/2022]
Abstract
Diphospho-myo-inositol phosphates (PP-InsP(y)) are an important class of cellular messengers. Thus far, no method for the transport of PP-InsP(y) into living cells is available. Owing to their high negative charge density, PP-InsP(y) will not cross the cell membrane. A strategy to circumvent this issue involves the generation of precursors in which the negative charges are masked with biolabile groups. A PP-InsP(y) prometabolite would require twelve to thirteen biolabile groups, which need to be cleaved by cellular enzymes to release the parent molecules. Such densely modified prometabolites of phosphate esters and anhydrides have never been reported to date. This study discloses the synthesis of such agents and an analysis of their metabolism in tissue homogenates by gel electrophoresis. The acetoxybenzyl-protected system is capable of releasing 5-PP-InsP5 in mammalian cell/tissue homogenates within a few minutes and can be used to release 5-PP-InsP5 inside cells. These molecules will serve as a platform for the development of fundamental tools required to study PP-InsP(y) physiology.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Laurent Bigler
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | | | - Debabrata Laha
- Center for Plant Molecular Biology, University of Tübingen (Germany)
| | - Gabriel Schaaf
- Center for Plant Molecular Biology, University of Tübingen (Germany)
| | | | - Henning J Jessen
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| |
Collapse
|
39
|
Pavlovic I, Thakor DT, Bigler L, Wilson MSC, Laha D, Schaaf G, Saiardi A, Jessen HJ. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Durantie E, Leroux JC, Castagner B. New paradigms for the chiral synthesis of inositol phosphates. Chembiochem 2015; 16:1030-2. [PMID: 25766971 DOI: 10.1002/cbic.201500071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Paradigms found: Inositol phosphates are biomolecules found ubiquitously in eukaryotes, in which they play a number of vital biological roles. Their enantioselective synthesis has recently received a boost from two complementary phosphorylation methods that could change the way they are synthesised, and hopefully provide invaluable chemical biology tools to further our understanding of this large family.
Collapse
Affiliation(s)
- Estelle Durantie
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich (Switzerland)
| | | | | |
Collapse
|
41
|
Yates LM, Fiedler D. Establishing the Stability and Reversibility of Protein Pyrophosphorylation with Synthetic Peptides. Chembiochem 2015; 16:415-23. [DOI: 10.1002/cbic.201402589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 12/24/2022]
|
42
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of densely phosphorylated bis-1,5-diphospho-myo-inositol tetrakisphosphate and its enantiomer by bidirectional P-anhydride formation. Angew Chem Int Ed Engl 2014; 53:9508-11. [PMID: 25044992 PMCID: PMC4153399 DOI: 10.1002/anie.201404398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Indexed: 11/06/2022]
Abstract
The ubiquitous mammalian signaling molecule bis-diphosphoinositol tetrakisphosphate (1,5-(PP)2 -myo-InsP4 , or InsP8 ) displays the most congested three-dimensional array of phosphate groups found in nature. The high charge density, the accumulation of unstable P-anhydrides and P-esters, the lack of UV absorbance, and low levels of optical rotation constitute severe obstacles to its synthesis, characterization, and purification. Herein, we describe the first procedure for the synthesis of enantiopure 1,5-(PP)2 -myo-InsP4 and 3,5-(PP)2 -myo-InsP4 utilizing a C2 -symmetric P-amidite for desymmetrization and concomitant phosphitylation followed by a one-pot bidirectional P-anhydride-forming reaction that combines sixteen chemical transformations with high efficiency. The configuration of these materials is unambiguously shown by subsequent X-ray analyses of both enantiomers after being individually soaked into crystals of the kinase domain of human diphosphoinositol pentakisphosphate kinase 2.
Collapse
Affiliation(s)
- Samanta Capolicchio
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Huanchen Wang
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Divyeshsinh T. Thakor
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Stephen B. Shears
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Henning J. Jessen
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| |
Collapse
|
43
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of Densely Phosphorylated Bis-1,5-Diphospho-myo-Inositol Tetrakisphosphate and its Enantiomer by Bidirectional P-Anhydride Formation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|