1
|
Liu M, Wu L, Li Y, Chen S, Lei Y, Huo Z, Tao L, Li L, Sun C, Zhang H, An B. Phase-engineered metal boride nanobeads for highly efficient oxygen evolution. J Colloid Interface Sci 2025; 691:137409. [PMID: 40147370 DOI: 10.1016/j.jcis.2025.137409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Non-precious metals with tailored phase structures show promise as oxygen evolution reaction (OER) catalysts due to their high inherent catalytic activity and extensive exposed active surface area. However, the mechanisms by which phase structures enhance catalytic performance remain unclear. Herein, we synthesized an amorphous cobalt boride (CoB) catalyst via a magnetic field-assisted method, yielding uniform nanoparticles that self-assemble into a nanobead structure. This material undergoes heat treatment to transition from an amorphous phase to a crystalline phase. The catalyst demonstrated exceptional OER activity and long-term stability in an alkaline electrolyte, requiring only 350 mV overpotential at 10 mA cm-2. The amorphous CoB demonstrates remarkable durability by maintaining stable operation for 100 h under harsh conditions characterized by high alkalinity and elevated temperature without any observable performance degradation. We demonstrate that electrochemical activation of an amorphous catalyst can unveil active sites within the bulk material, leveraging the short-range order characteristic of amorphous structures. This process significantly amplifies the active site density, consequently enhancing the electrocatalytic performance of the amorphous catalyst in the oxygen evolution reaction within water oxidation. Furthermore, in situ Raman spectroscopy reveals that amorphous CoB rapid self-reconstruction upon electrochemical activation, leading to the formation of a metal (oxy)hydroxide active layer. This study offers valuable insights into the design of high-efficiency OER catalysts by elucidating the mechanisms underlying amorphous and crystalline materials.
Collapse
Affiliation(s)
- Meijia Liu
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lin Wu
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yafeng Li
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Shuai Chen
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yuhang Lei
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhuang Huo
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lin Tao
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lixiang Li
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Chengguo Sun
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Han Zhang
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
2
|
Mattioli G, Guidoni L. Multiple Reaction Pathways for Oxygen Evolution as a Key Factor for the Catalytic Activity of Nickel-Iron (Oxy)Hydroxides. J Am Chem Soc 2025; 147:6450-6463. [PMID: 39813108 DOI: 10.1021/jacs.4c12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation. After establishing the structural models of NiCat and Fe:NiCat consistent with experimental data, we used them to explore the atomistic mechanism of the oxygen evolution reaction (OER), which is triggered once the applied potential exceeds the overpotential required for water oxidation and oxygen production. We quantitatively compared seven OER pathways applicable to both the adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mechanism (LOM) families, elucidating how iron significantly enhances the catalytic activity of Fe:NiCat compared to NiCat. Our findings suggest that simple metal-oxygen-metal motifs, common on the surface of both crystalline and amorphous metal (oxy)hydroxide films, can promote both AEM and LOM mechanisms under typical OER conditions. Furthermore, we propose that the elusive role of iron lies in the distinct behavior of Ni(IV)-O and Fe(IV)-O bonds in key intermediates preceding the formation of the O-O bond, with Fe ions lowering the potential needed to form these intermediates across the investigated pathways.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Struttura della Materia (ISM), Strada Provinciale, 35d/9, 00010 Montelibretti, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
4
|
Hartnett AC, Evenson RJ, Thorarinsdottir AE, Veroneau SS, Nocera DG. Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction? J Am Chem Soc 2025; 147:1123-1133. [PMID: 39702923 DOI: 10.1021/jacs.4c14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La3+ incorporation into Co3O4. Powder X-ray diffraction (PXRD), Raman spectroscopy and extended X-ray absorption fine structure (EXAFS) reveal smaller domain sizes with decreased long-range order and increased amorphization for La-modified Co3O4. This lattice deconstruction is exacerbated under the conditions of OER as indicated by operando spectroscopies. The overpotential for OER decreases with increasing La3+ concentration, with maximum activity achieved at 17% La incorporation. HRTEM images and electron diffraction patterns clearly show the formation of an amorphous overlayer during OER catalysis that is accelerated with La3+ addition. O 1s XPS spectra after OER show the loss of lattice-oxide and an increase in peak intensities associated with hydroxylated or defective O-atom environments, consistent with Co(O)x(OH)y species in an amorphous overlayer. Our results suggest that improved catalytic activity of oxides incorporated with La3+ ions (and likely other metal ions) is due to an increase in the number of terminal octahedral Co(O)x(OH)y edge sites upon Co3O4 lattice deconstruction, rather than enhanced intrinsic catalysis.
Collapse
Affiliation(s)
- Alaina C Hartnett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan J Evenson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Zhang C, Luo Y, Fu N, Mu S, Peng J, Liu Y, Zhang G. Phase Engineering and Dispersion Stabilization of Cobalt toward Enhanced Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310499. [PMID: 38805738 DOI: 10.1002/smll.202310499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Phase engineering is promising to increase the intrinsic activity of the catalyst toward hydrogen evolution reaction (HER). However, the polymorphism interface is unstable due to the presence of metastable phases. Herein, phase engineering and dispersion stabilization are applied simultaneously to boost the HER activity of cobalt without sacrificing the stability. A fast and facile approach (plasma cathodic electro deposition) is developed to prepare cobalt film with a hetero-phase structure. The polymorphs of cobalt are realized through reduced stacking fault energy due to the doping of Mo, and the high temperature treatment resulted from the plasma discharge. Meanwhile, homogeneously dispersed oxide/carbide nanoparticles are produced from the reaction of plasma-induced oxygen/carbon atoms with electro-deposited metal. The existence of rich polymorphism interface and oxide/carbide help to facilitate H2 production by the tuning of electronic structure and the increase of active sites. Furthermore, oxide/carbide dispersoid effectively prevents the phase transition through a pinning effect on the grain boundary. As-prepared Co-hybrid/CoO_MoC exhibits both high HER activity and robust stability (44 mV at 10 mA cm-2, Tafel slope of 53.2 mV dec-1, no degradation after 100 h test). The work reported here provides an alternate approach to the design of advanced HER catalysts for real application.
Collapse
Affiliation(s)
- Chao Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Yihang Luo
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Nianqing Fu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Songlin Mu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Jihua Peng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Guoge Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| |
Collapse
|
6
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Wang D, Jung HD, Liu S, Chen J, Yang H, He Q, Xi S, Back S, Wang L. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat Commun 2024; 15:4692. [PMID: 38824127 PMCID: PMC11144262 DOI: 10.1038/s41467-024-49158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Collapse
Affiliation(s)
- Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Shikai Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Khosravi M, Mohammadi MR. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. PHOTOSYNTHESIS RESEARCH 2022; 154:329-352. [PMID: 36195743 DOI: 10.1007/s11120-022-00965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
There has been a growing interest in water oxidation in recent two decades. Along with that, remarkable discovery of formation of a mysterious catalyst layer upon application of an anodic potential of 1.13 V vs. standard hydrogen electrode (SHE) to an inert indium tin oxide electrode immersed in phosphate buffer containing Co(II) ions by Nocera et.al, has greatly attracted researchers interest. These researches have oriented in two directions; one focuses on obtaining better understanding of the reported mysterious catalyst layer, further modification, and improved performance, and the second approach is about designing coordination complexes of cobalt and investigating their properties toward the application in water splitting. Although there have been critical debates on true catalysts that are responsible for water oxidation in homogeneous systems of coordination complexes of cobalt, and the case is not totally closed, in this short review, our focus will be mainly on recent major progress and developments in the design and the application of cobalt oxide-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water oxidation reaction, which have been reported since pioneering report of Nocera in 2008 (Kanan Matthew and Nocera Daniel in Science 321:1072-1075, 2008).
Collapse
Affiliation(s)
- Mehdi Khosravi
- Department of Physics, University of Sistan and Baluchestan, Zahedan, 98167-45845, Iran
| | | |
Collapse
|
9
|
Hausmann JN, Mebs S, Dau H, Driess M, Menezes PW. Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long-Range Order, Buffer-Binding, Morphology, Mass Transport, and Operation Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207494. [PMID: 36189873 DOI: 10.1002/adma.202207494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short-range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2 O)2 [B2 P2 O8 (OH)2 ]·H2 O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long-range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass-transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near-neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm-2 at 65 °C for 1 month without degrading performance.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Center Berlin for Materials and Energy, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
10
|
Araki Y, Tsunekawa S, Sakai A, Harada K, Nagatsuka R, Suzuki‐Sakamaki M, Amemiya K, Wang K, Kawai T, Yoshida M. Development of a Hemispherical Cavity Cobalt Electrocatalyst for Water Oxidation Based on a Polystyrene Colloidal Template Electrodeposition Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202200600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusaku Araki
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Shun Tsunekawa
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Arisu Sakai
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Kazuki Harada
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Ryosuke Nagatsuka
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | | | - Kenta Amemiya
- Institute of Materials Structure Science High Energy Accelerator Research Organization Oho Tsukuba Ibaraki 305-0801 Japan
| | - Ke‐Hsuan Wang
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
- Blue Energy Center for SGE Technology (BEST) Yamaguchi University
| |
Collapse
|
11
|
Lin R, Salehi M, Guo J, Seifitokaldani A. High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction. iScience 2022; 25:104744. [PMID: 35942099 PMCID: PMC9356110 DOI: 10.1016/j.isci.2022.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Electrochemical 5-hydroxymethylfurfural oxidation reaction (HMFOR), as a clean biorefinery process, promotes a circular economy with value-added products. In HMFOR, the intrinsic catalytic activity and charge transfer mechanisms are crucial. Herein, nickel, co-deposited with phosphorus (Ni-P), attains superior electrocatalytic performance compared with Ni and its oxyhydroxides for the HMFOR. Such electrocatalytic activity of the Ni-P catalyst is attributed to the high oxidation state of surface Ni species, supported by the bulk Ni-P component. An unprecedented charge storing capacity enabled by the bulk Ni-P material maintains the spontaneous reaction between HMF and Ni3+ species to achieve a current density of 10 mA/cm2 normalized by the electrochemical active surface area at a low potential of 1.42 V vs RHE, reaching a 97% Faradaic efficiency toward 2,5-furandicarboxylic acid. This work, for the first time, sheds light on the importance of the electrode bulk material by showcasing the HMFOR via the Ni-P catalyst incorporating a charge-holding bulk component. Ni-P catalyst synthesized via cathodic Ni plating on the Ni-deposited carbon substrate Ni-P catalyst possesses an excellent oxidation charge storing capacity Core of Ni-P catalyst supports spontaneous HMFOR to FDCA at a low potential and OCP 97% FDCA Faradaic efficiency achieved with stable FDCA production of 10 cycles
Collapse
Affiliation(s)
- Roger Lin
- Department of Chemical Engineering, Montréal, QC H3A 0C5, Canada
| | - Mahdi Salehi
- Department of Chemical Engineering, Montréal, QC H3A 0C5, Canada
| | - Jiaxun Guo
- Department of Chemical Engineering, Montréal, QC H3A 0C5, Canada
| | - Ali Seifitokaldani
- Department of Chemical Engineering, Montréal, QC H3A 0C5, Canada
- Corresponding author
| |
Collapse
|
12
|
Villalobos J, Morales DM, Antipin D, Schuck G, Golnak R, Xiao J, Risch M. Stabilization of a Mn-Co Oxide During Oxygen Evolution in Alkaline Media. ChemElectroChem 2022; 9:e202200482. [PMID: 35915742 PMCID: PMC9328349 DOI: 10.1002/celc.202200482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Improving the stability of electrocatalysts for the oxygen evolution reaction (OER) through materials design has received less attention than improving their catalytic activity. We explored the effects of Mn addition to a cobalt oxide for stabilizing the catalyst by comparing single phase CoOx and (Co0.7Mn0.3)Ox films electrodeposited in alkaline solution. The obtained disordered films were classified as layered oxides using X-ray absorption spectroscopy (XAS). The CoOx films showed a constant decrease in the catalytic activity during cycling, confirmed by oxygen detection, while that of (Co0.7Mn0.3)Ox remained constant within error as measured by electrochemical metrics. These trends were rationalized based on XAS analysis of the metal oxidation states, which were Co2.7+ and Mn3.7+ in the bulk and similar near the surface of (Co0.7Mn0.3)Ox, before and after cycling. Thus, Mn in (Co0.7Mn0.3)Ox successfully stabilized the bulk catalyst material and its surface activity during OER cycling. The development of stabilization approaches is essential to extend the durability of OER catalysts.
Collapse
Affiliation(s)
- Javier Villalobos
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Dulce M. Morales
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Denis Antipin
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Götz Schuck
- Abteilung Struktur und Dynamik von EnergiematerialienHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Ronny Golnak
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| |
Collapse
|
13
|
Mom RV, Falling LJ, Kasian O, Algara-Siller G, Teschner D, Crabtree RH, Knop-Gericke A, Mayrhofer KJJ, Velasco-Vélez JJ, Jones TE. Operando Structure–Activity–Stability Relationship of Iridium Oxides during the Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rik V. Mom
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Lorenz J. Falling
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Olga Kasian
- Helmholtz-Zentrum Berlin GmbH, Helmholtz Institute Erlangen-Nürnberg, 14109 Berlin, Germany
- Max Planck Institute for Iron Research, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Gerardo Algara-Siller
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Detre Teschner
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Robert H. Crabtree
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Axel Knop-Gericke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | | - Travis E. Jones
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Shi Y, Zhang D, Miao H, Zhan T, Lai J. Design of NiFe‐based nanostructures for efficient oxygen evolution electrocatalysis. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yue Shi
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Dan Zhang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao China
| | - Hongfu Miao
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
15
|
Sarkar D, Ganguli S, Mondal A, Mahalingam V. Boosting Surface Reconstruction for the Oxygen Evolution Reaction: A Combined Effect of Heteroatom Incorporation and Anion Etching in Cobalt Silicate Precatalyst. ChemElectroChem 2021. [DOI: 10.1002/celc.202101140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debashrita Sarkar
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sagar Ganguli
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
- Department of Chemistry Ångström Laboratory, Molecular Biomimetics, Uppsala University 75120 Uppsala Sweden
| | - Ayan Mondal
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
16
|
Xu Y, Fan K, Zou Y, Fu H, Dong M, Dou Y, Wang Y, Chen S, Yin H, Al-Mamun M, Liu P, Zhao H. Rational design of metal oxide catalysts for electrocatalytic water splitting. NANOSCALE 2021; 13:20324-20353. [PMID: 34870672 DOI: 10.1039/d1nr06285a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic energy conversion between electricity and chemical bonding energy is realized through redox reactions with multiple charge transfer steps at the electrode-electrolyte interface. The surface atomic structure of the electrode materials, if appropriately designed, will provide an energetically affordable pathway with individual reaction intermediates that not only reduce the thermodynamic energy barrier but also allow an acceptably fast kinetic rate of the overall redox reaction. As one of the most abundant and stable forms, oxides of transitional metals demonstrated promising electrocatalytic activities towards multiple important chemical reactions. In this topical review, we attempt to discuss the possible avenues to construct the electrocatalytic active surface for this important class of materials for two essential chemical reactions for water splitting. A general introduction of the electrochemical water splitting process on the electrocatalyst surface with applied potential will be provided, followed by a discussion on the fundamental charge transfers and the mechanism. As the generally perceived active sites are chemical reaction dependent, we offer a general overview of the possible approaches to construct or create electrocatalytically active sites in the context of surface atomic structure engineering. The review concludes with perspectives that summarize challenges and opportunities in electrocatalysis and how these can be addressed to unlock the electrocatalytic potentials of the metal oxide materials.
Collapse
Affiliation(s)
- Yiming Xu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Kaicai Fan
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yu Zou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huaiqin Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Mengyang Dong
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yuhai Dou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Shan Chen
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huajie Yin
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Porun Liu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| |
Collapse
|
17
|
Reith L, Triana CA, Pazoki F, Amiri M, Nyman M, Patzke GR. Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. J Am Chem Soc 2021; 143:15022-15038. [PMID: 34499506 DOI: 10.1021/jacs.1c03375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein, we tackle two key open questions after decades of research into cobalt-assisted visible-light-driven water oxidation: What makes simple cobalt-based precipitates so highly active-and to what extent do we need Co-WOC design? Hence, we started from Co(NO3)2 to generate a precursor precipitate, which transforms into a highly active WOC during the photocatalytic process with a [Ru(bpy)3]2+/S2O82-/borate buffer standard assay that outperforms state of the art cobalt catalysts. The structural transformations of these nanosized Co catalysts were monitored with a wide range of characterization techniques. The results reveal that the precipitated catalyst does not fully change into an amorphous CoOx material but develops some crystalline features. The transition from the precipitate into a disordered Co3O4 material proceeds within ca. 1 min, followed by further transformation into highly active disordered CoOOH within the first 10 min. Furthermore, under noncatalytic conditions, the precursor directly transforms into CoOOH. Moreover, fast precipitation and isolation afford a highly active precatalyst with an exceptional O2 yield of 91% for water oxidation with the visible-light-driven [Ru(bpy)3]2+/S2O82- assay, which outperforms a wide range of carefully designed Co-containing WOCs. We thus demonstrate that high-performance cobalt-based OER catalysts indeed emerge effortlessly from a self-optimization process favoring the formation of Co(III) centers in all-octahedral environments. This paves the way to new low-maintenance flow chemistry OER processes.
Collapse
Affiliation(s)
- Lukas Reith
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Faezeh Pazoki
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Chemical Engineering Department, University of Tehran, District 6, 16th Azar St., Enghelab Sq., Tehran 1417935840, Iran
| | - Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
18
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021; 60:18981-19006. [PMID: 33411383 PMCID: PMC8451938 DOI: 10.1002/anie.202015738] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 01/14/2023]
Abstract
Transition metal hydroxides (M-OH) and their heterostructures (X|M-OH, where X can be a metal, metal oxide, metal chalcogenide, metal phosphide, etc.) have recently emerged as highly active electrocatalysts for hydrogen evolution reaction (HER) of alkaline water electrolysis. Lattice hydroxide anions in metal hydroxides are primarily responsible for observing such an enhanced HER activity in alkali that facilitate water dissociation and assist the first step, the hydrogen adsorption. Unfortunately, their poor electronic conductivity had been an issue of concern that significantly lowered its activity. Interesting advancements were made when heterostructured hydroxide materials with a metallic and or a semiconducting phase were found to overcome this pitfall. However, in the midst of recently evolving metal chalcogenide and phosphide based HER catalysts, significant developments made in the field of metal hydroxides and their heterostructures catalysed alkaline HER and their superiority have unfortunately been given negligible attention. This review, unlike others, begins with the question of why alkaline HER is difficult and will take the reader through evaluation perspectives, trends in metals hydroxides and their heterostructures catalysed HER, an understanding of how alkaline HER works on different interfaces, what must be the research directions of this field in near future, and eventually summarizes why metal hydroxides and their heterostructures are inevitable for energy-efficient alkaline HER.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - SungChul Yi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
19
|
Reduced Graphene Oxide Supported Cobalt-Calcium Phosphate Composite for Electrochemical Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11080960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We report the oxygen evolution reaction (OER) catalyst composed of cobalt–calcium phosphate on reduced graphene oxide (CoCaP/rGO). Our catalyst is prepared by the anodic electrolysis of calcium phosphate/rGO mixture loaded on indium-tin-oxide (ITO) in Co2+ aqueous solution. TEM, XPS and XRD experiments confirm that the crystal phase of calcium phosphate (CaP) is transferred into an amorphous phase of calcium oxide with phosphate (5.06 at%) after anodic electrolysis. Additionally, the main cation component of calcium is replaced by cobalt ion. The current–voltage characteristics of CoCaP/rGO showed a shoulder peak at 1.10 V vs. NHE, which originated from Co2+ to higher oxidation states (Co3+ or Co4+) and a strong wave from water oxidation higher +1.16 V vs. NHE at neutral condition (pH 7). CoCaP and CoCaP/rGO showed 4.8 and 10 mA/cm2 at 0.47 V of overpotential, respectively. The enhanced OER catalytic activity of CoCaP/rGO arises from the synergetic interaction between the amorphous phase of CoCaP and electric conducting graphene sheets.
Collapse
|
20
|
Ge M, Zhang X, Xia S, Luo W, Jin Y, Chen Q, Nie H, Yang Z. Uniform Formation of Amorphous Cobalt Phosphate on Carbon Nanotubes for Hydrogen Evolution Reaction
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mengzhan Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Xiaodong Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Shangzhou Xia
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Wenjie Luo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Qianqian Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang 325027, China AECC Hunan Aviation Powerplant Research Institute Zhuzhou Hunan 412002 China
| |
Collapse
|
21
|
Guo C, Shi Y, Lu S, Yu Y, Zhang B. Amorphous nanomaterials in electrocatalytic water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63740-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Zhang R, van Straaten G, di Palma V, Zafeiropoulos G, van de Sanden MC, Kessels WM, Tsampas MN, Creatore M. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catal 2021; 11:2774-2785. [PMID: 33842021 PMCID: PMC8025676 DOI: 10.1021/acscatal.0c04933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Indexed: 01/08/2023]
Abstract
The development of efficient and stable earth-abundant water oxidation catalysts is vital for economically feasible water-splitting systems. Cobalt phosphate (CoPi)-based catalysts belong to the relevant class of nonprecious electrocatalysts studied for the oxygen evolution reaction (OER). In this work, an in-depth investigation of the electrochemical activation of CoPi-based electrocatalysts by cyclic voltammetry (CV) is presented. Atomic layer deposition (ALD) is adopted because it enables the synthesis of CoPi films with cobalt-to-phosphorous ratios between 1.4 and 1.9. It is shown that the pristine chemical composition of the CoPi film strongly influences its OER activity in the early stages of the activation process as well as after prolonged exposure to the electrolyte. The best performing CoPi catalyst, displaying a current density of 3.9 mA cm-2 at 1.8 V versus reversible hydrogen electrode and a Tafel slope of 155 mV/dec at pH 8.0, is selected for an in-depth study of the evolution of its electrochemical properties, chemical composition, and electrochemical active surface area (ECSA) during the activation process. Upon the increase of the number of CV cycles, the OER performance increases, in parallel with the development of a noncatalytic wave in the CV scan, which points out to the reversible oxidation of Co2+ species to Co3+ species. X-ray photoelectron spectroscopy and Rutherford backscattering measurements indicate that phosphorous progressively leaches out the CoPi film bulk upon prolonged exposure to the electrolyte. In parallel, the ECSA of the films increases by up to a factor of 40, depending on the initial stoichiometry. The ECSA of the activated CoPi films shows a universal linear correlation with the OER activity for the whole range of CoPi chemical composition. It can be concluded that the adoption of ALD in CoPi-based electrocatalysis enables, next to the well-established control over film growth and properties, to disclose the mechanisms behind the CoPi electrocatalyst activation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Gerben van Straaten
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Valerio di Palma
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Georgios Zafeiropoulos
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Mauritius C.M. van de Sanden
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Wilhelmus M.M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mihalis N. Tsampas
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Mariadriana Creatore
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
23
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - SungChul Yi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
24
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Single-Entity Electrocatalysis of Individual "Picked-and-Dropped" Co 3 O 4 Nanoparticles on the Tip of a Carbon Nanoelectrode. Angew Chem Int Ed Engl 2021; 60:3576-3580. [PMID: 33210797 PMCID: PMC7898714 DOI: 10.1002/anie.202014384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Indexed: 12/01/2022]
Abstract
Nano-electrochemical tools to assess individual catalyst entities are critical to comprehend single-entity measurements. The intrinsic electrocatalytic activity of an individual well-defined Co3 O4 nanoparticle supported on a carbon-based nanoelectrode is determined by employing an efficient SEM-controlled robotic technique for picking and placing a single catalyst particle onto a modified carbon nanoelectrode surface. The stable nanoassembly is microscopically investigated and subsequently electrochemically characterized. The hexagonal-shaped Co3 O4 nanoparticles demonstrate size-dependent electrochemical activity and exhibit very high catalytic activity with a current density of up to 11.5 A cm-2 at 1.92 V (vs. RHE), and a turnover frequency of 532±100 s-1 at 1.92 V (vs. RHE) towards catalyzing the oxygen evolution reaction.
Collapse
Affiliation(s)
- Thomas Quast
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Harshitha Barike Aiyappa
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sascha Saddeler
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Patrick Wilde
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS)Ruhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Stephan Schulz
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
25
|
A Molecular Tetrahedral Cobalt-Seleno-Based Complex as an Efficient Electrocatalyst for Water Splitting. Molecules 2021; 26:molecules26040945. [PMID: 33579044 PMCID: PMC7916788 DOI: 10.3390/molecules26040945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
The cobalt-seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt-seleno-based complex exhibits a high mass activity (14.15 A g-1) and a much higher turn-over frequency (TOF) value (0.032 s-1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt-seleno systems as efficient OER electrocatalysts.
Collapse
|
26
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
27
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Elektrokatalyse einzelner, auf der Spitze einer Kohlenstoff‐Nanoelektrode platzierter Co
3
O
4
‐Nanopartikel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Harshitha Barike Aiyappa
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sascha Saddeler
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Patrick Wilde
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS) Ruhr University Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Stephan Schulz
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
28
|
Mousazade Y, Mohammadi MR, Chernev P, Bagheri R, Song Z, Dau H, Najafpour MM. Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorg Chem 2020; 59:15335-15342. [DOI: 10.1021/acs.inorgchem.0c02305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| | | | - Petko Chernev
- Department of Chemistry − Ångströmlaboratoriet, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robabeh Bagheri
- School of Physical Science and Technology, College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| |
Collapse
|
29
|
Oxidative dissolution of synthetic vivianites as a method for the crystallization of molecular structural motifs. Struct Chem 2020. [DOI: 10.1007/s11224-020-01644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Tiede DM, Kwon G, He X, Mulfort KL, Martinson ABF. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. NANOSCALE 2020; 12:13276-13296. [PMID: 32567636 DOI: 10.1039/d0nr02350g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amorphous thin film materials and heterogenized molecular catalysts supported on electrode and other functional interfaces are widely investigated as promising catalyst formats for applications in solar and electrochemical fuels catalysis. However the amorphous character of these catalysts and the complexity of the interfacial architectures that merge charge transport properties of electrode and semiconductor supports with discrete sites for multi-step catalysis poses challenges for probing mechanisms that activate and tune sites for catalysis. This minireview discusses advances in soft X-ray spectroscopy and high-energy X-ray scattering that provide opportunities to resolve interfacial electronic and atomic structures, respectively, that are linked to catalysis. This review discusses how these techniques can be partnered with advances in nanostructured interface synthesis for combined soft X-ray spectroscopy and high-energy X-ray scattering analyses of thin film and heterogenized molecular catalysts. These combined approaches enable opportunities for the characterization of both electronic and atomic structures underlying fundamental catalytic function, and that can be applied under conditions relevant to device applications.
Collapse
Affiliation(s)
- David M Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| | | | | | | | | |
Collapse
|
31
|
Schweinar K, Gault B, Mouton I, Kasian O. Lattice Oxygen Exchange in Rutile IrO 2 during the Oxygen Evolution Reaction. J Phys Chem Lett 2020; 11:5008-5014. [PMID: 32496784 PMCID: PMC7341534 DOI: 10.1021/acs.jpclett.0c01258] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 05/27/2023]
Abstract
The development of efficient acidic water electrolyzers relies on understanding dynamic changes of the Ir-based catalytic surfaces during the oxygen evolution reaction (OER). Such changes include degradation, oxidation, and amorphization processes, each of which somehow affects the material's catalytic performance and durability. Some mechanisms involve the release of oxygen atoms from the oxide's lattice, the extent of which is determined by the structure of the catalyst. While the stability of hydrous Ir oxides suffers from the active participation of lattice oxygen atoms in the OER, rutile IrO2 is more stable and the lattice oxygen involvement is still under debate due to the insufficient sensitivity of commonly used online electrochemical mass spectrometry. Here, we revisit the case of rutile IrO2 at the atomic scale by a combination of isotope labeling and atom probe tomography and reveal the exchange of oxygen atoms between the oxide lattice and water. Our approach enables direct visualization of the electrochemically active volume of the catalysts and allows for the estimation of an oxygen exchange rate during the OER that is discussed in view of surface restructuring and subsequent degradation. Our work presents an unprecedented opportunity to quantitatively assess the exchange of surface species during an electrochemical reaction, relevant for the optimization of the long-term stability of catalytic systems.
Collapse
Affiliation(s)
- Kevin Schweinar
- Max-Planck-Institut
für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Baptiste Gault
- Max-Planck-Institut
für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- Department
of Materials, Imperial College London, Royal
School of Mines, London SW7 2AZ, U.K.
| | - Isabelle Mouton
- Max-Planck-Institut
für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- CEA
Saclay, DES/DMN/Service de Recherches Métallurgiques Appliquées
(SRMA), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Olga Kasian
- Max-Planck-Institut
für Eisenforschung GmbH, Interface Chemistry and Surface Science, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- Helmholtz-Zentrum
Berlin GmbH, Helmholtz Institut Erlangen-Nürnberg, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Department
of Materials Science and Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
32
|
Cai W, Chen R, Yang H, Tao HB, Wang HY, Gao J, Liu W, Liu S, Hung SF, Liu B. Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. NANO LETTERS 2020; 20:4278-4285. [PMID: 32391698 DOI: 10.1021/acs.nanolett.0c00840] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic water splitting driven by renewable electricity offers a promising strategy to produce molecular hydrogen, but its efficiency is severely restricted by the sluggish kinetics of the anodic water oxidation reaction. Amorphous catalysts are reported to show better activities of water oxidation than their crystalline counterparts, but little is known about the underlying origin, which retards the development of high-performance amorphous oxygen evolution reaction catalysts. Herein, on the basis of cyclic voltammetry, electrochemical impedance spectroscopy, isotope labeling, and in situ X-ray absorption spectroscopy studies, we demonstrate that an amorphous catalyst can be electrochemically activated to expose active sites in the bulk thanks to the short-range order of the amorphous structure, which greatly increases the number of active sites and thus improves the electrocatalytic activity of the amorphous catalyst in water oxidation.
Collapse
Affiliation(s)
- Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Rong Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hua Bing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hsin-Yi Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Song Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Sung-Fu Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
33
|
Che Q, Ma Q, Wang J, Zhu Y, Shi R, Yang P. In-situ evolution of NH4CoPO4·H2O nanoplates on cobalt foil as an efficient and stable electrocatalyst for oxygen evolution reaction. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Qi J, Lin Y, Chen D, Zhou T, Zhang W, Cao R. Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2020; 59:8917-8921. [DOI: 10.1002/anie.202001737] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yang‐Peng Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Dandan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
35
|
Qi J, Lin Y, Chen D, Zhou T, Zhang W, Cao R. Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yang‐Peng Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Dandan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
36
|
Wang T, Zhang X, Zhu X, Liu Q, Lu S, Asiri AM, Luo Y, Sun X. Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis. NANOSCALE 2020; 12:5359-5362. [PMID: 32100817 DOI: 10.1039/d0nr00752h] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great importance to design and develop complex heterostructured nanocatalysts with superior electrochemical performance to that of single structured ones. Here, we report the hydrothermal fabrication of a hierarchical heterostructured CuO@ZnCo layered double hydroxide nanowire array on a copper foil (CuO@ZnCo LDH/CF). As a self-supported electrocatalyst for water oxidation, CuO@ZnCo LDH/CF has superior catalytic activity with the requirement of a low overpotential of 270 mV to attain 10 mA cm-2 in 1.0 M KOH. In addition, it shows strong durability to maintain its activity for at least 24 h.
Collapse
Affiliation(s)
- Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Xiaoxue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Xiaojuan Zhu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Qian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yonglan Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
37
|
Chakraborty D, Shyamal S, Bhaumik A. A New Porous Ni‐W Mixed Metal Phosphonate Open Framework Material for Efficient Photoelectrochemical OER. ChemCatChem 2020. [DOI: 10.1002/cctc.201901944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Debabrata Chakraborty
- School of Materials SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanjib Shyamal
- School of Materials SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
38
|
Vandichel M, Busch M, Laasonen K. Oxygen Evolution on Metal‐oxy‐hydroxides: Beneficial Role of Mixing Fe, Co, Ni Explained via Bifunctional Edge/acceptor Route. ChemCatChem 2020. [DOI: 10.1002/cctc.201901951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Vandichel
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick Ireland
- Department of applied physicsAalto University Otakaari 1 02150 Espoo Finland
| | - Michael Busch
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
| | - Kari Laasonen
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
| |
Collapse
|
39
|
ÜLKER E. Polyethylene Glycol Coated Prussian Blue Nanocubes as Water Oxidation Electrocatalysts. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.554229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
Shih MC, Jhang RH, Tsai YT, Huang CW, Hung YJ, Liao MY, Huang J, Chen CH. Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903363. [PMID: 31608571 DOI: 10.1002/smll.201903363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Thin film electrocatalysts allow strong binding and intimate electrical contact with electrodes, rapid mass transfer during reaction, and are generally more durable than powder electrocatalysts, which is particularly beneficial for gas evolution reactions. In this work, using cobalt manganese oxyhydroxide, an oxygen evolution reaction (OER) electrocatalyst that can be grown directly on various electrodes as a model system, it is demonstrated that breaking a continuous film into discontinuous patches can significantly enhance the overall OER performance without sacrificing long-term stability even under elevated electrocatalytic stress. Discontinuous films with higher edge-to-area ratios exhibits reduced overpotentials, increased turnover frequency, and more pronounced current increase after electrochemical conditioning. Operando Raman spectroscopy studies during electrocatalysis reveal that the film edges require lower potential barrier for activation. Introducing discontinuity into thin film electrocatalysis can thus lead to the realization of high performance yet highly robust systems for harsh gas evolution reactions.
Collapse
Affiliation(s)
- Ming-Chi Shih
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ren-Huai Jhang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ya-Ting Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chia-Wei Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yung-Jr Hung
- Department of Photonics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90004, Taiwan
| | - Jiaxing Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
41
|
Reith L, Lienau K, Triana CA, Siol S, Patzke GR. Preparative History vs Driving Force in Water Oxidation Catalysis: Parameter Space Studies of Cobalt Spinels. ACS OMEGA 2019; 4:15444-15456. [PMID: 31572845 PMCID: PMC6761687 DOI: 10.1021/acsomega.9b01677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The development of efficient, stable, and economic water oxidation catalysts (WOCs) is a forefront topic of sustainable energy research. We newly present a comprehensive three-step approach to systematically investigate challenging relationships among preparative history, properties, and performance in heterogeneous WOCs. To this end, we studied (1) the influence of the preparative method on the material properties and (2) their correlation with the performance as (3) a function of the catalytic test method. Spinel-type Co3O4 was selected as a clear-cut model WOC and synthesized via nine different preparative routes. In search of the key material properties for high catalytic performance, these cobalt oxide samples were characterized with a wide range of analytical methods, including X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, Raman spectroscopy, BET surface area analysis, and transmission electron microscopy. Next, the corresponding catalytic water oxidation activities were assessed with the three most widely applied protocols to date, namely, photocatalytic, electrocatalytic, and chemical oxidation. The activity of the Co3O4 samples was found to clearly depend on the applied test method. Increasing surface area and disorder as well as a decrease in oxidation states arising from low synthesis temperatures were identified as key parameters for high chemical oxidation activity. Surprisingly, no obvious property-performance correlations were found for photocatalytic water oxidation. In sharp contrast, all samples showed similar activity in electrochemical water oxidation. The substantial performance differences between the applied protocols demonstrate that control and comprehensive understanding of the preparative history are crucial for establishing reliable structure-performance relationships in WOC design.
Collapse
Affiliation(s)
- Lukas Reith
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Karla Lienau
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - C. A. Triana
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sebastian Siol
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Greta R. Patzke
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
42
|
Kwon G, Cho YH, Kim KB, Emery JD, Kim IS, Zhang X, Martinson ABF, Tiede DM. Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1600-1611. [PMID: 31490150 PMCID: PMC6730625 DOI: 10.1107/s1600577519007240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm-50 nm crystalline indium tin oxide or a 100 nm-150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure-function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.
Collapse
Affiliation(s)
- Gihan Kwon
- Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Tech Room L110, Evanston, IL 60208-3113, USA
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Yeong-Ho Cho
- Nano Fabrication Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu 151-744, South Korea
| | - Ki-Bum Kim
- Nano Fabrication Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu 151-744, South Korea
| | - Jonathan D. Emery
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - In Soo Kim
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Alex B. F. Martinson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Davd M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| |
Collapse
|
43
|
Yu X, Yu ZY, Zhang XL, Zheng YR, Duan Y, Gao Q, Wu R, Sun B, Gao MR, Wang G, Yu SH. “Superaerophobic” Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. J Am Chem Soc 2019; 141:7537-7543. [DOI: 10.1021/jacs.9b02527] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xingxing Yu
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Zi-You Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Ya-Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Yu Duan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Rui Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Bing Sun
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| | - Guoxiu Wang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Liu H, Peng X, Liu X, Qi G, Luo J. Porous Mn-Doped FeP/Co 3 (PO 4 ) 2 Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. CHEMSUSCHEM 2019; 12:1334-1341. [PMID: 30672152 DOI: 10.1002/cssc.201802437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/22/2019] [Indexed: 05/27/2023]
Abstract
Development of highly active and stable electrocatalysts for overall water splitting is important for future renewable energy systems. In this study, porous Mn-doped FeP/Co3 (PO4 )2 (PMFCP) nanosheets on carbon cloth are utilized as a highly efficient 3 D self-supported binder-free integrated electrode for the oxygen evolution and hydrogen evolution reactions (OER and HER) over a wide pH range. Specifically, overpotentials of 27, 117, 85 mV are required for the PMFCP nanosheets to attain 10 mA cm-2 for HER in 0.5 m H2 SO4 , 1.0 m phosphatebuffered saline (PBS), and 1.0 m KOH, respectively. In addition to the excellent performance for HER electrocatalysis, PMFCP nanosheets were also efficient electrocatalysts for the OER. Thus, the PMFCP nanosheets can serve as anodes and cathodes for overall water splitting (OWS). The OWS working voltages to attain 10 mA cm-2 are found to be 1.75, 1.82, and 1.61 V in acid, neutral, and alkaline electrolytes, respectively. Chronopotentiometric tests show that the PMFCP electrode can maintain its excellent pH-universal OWS activity for more than 30 000 s. This work also provides new insights into developing high-performance electrocatalysts for water splitting over a wide pH range. The improvement in electrochemical performance by introduction of Mn dopant and nano-holes offers new opportunities in the development of effective electrodes for other energy-related applications.
Collapse
Affiliation(s)
- Haoxuan Liu
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xianyun Peng
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
45
|
Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y, Liu M, Sun X. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805103. [PMID: 30773809 DOI: 10.1002/smll.201805103] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Indexed: 05/06/2023]
Abstract
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Runbo Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hongyu Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Huanbo Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Peipei Wei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| |
Collapse
|
46
|
Pasquini C, Zaharieva I, González-Flores D, Chernev P, Mohammadi MR, Guidoni L, Smith RDL, Dau H. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. J Am Chem Soc 2019; 141:2938-2948. [PMID: 30650965 DOI: 10.1021/jacs.8b10002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the mechanism for electrochemical water oxidation is important for the development of more efficient catalysts for artificial photosynthesis. A basic step is the proton-coupled electron transfer, which enables accumulation of oxidizing equivalents without buildup of a charge. We find that substituting deuterium for hydrogen resulted in an 87% decrease in the catalytic activity for water oxidation on Co-based amorphous-oxide catalysts at neutral pH, while 16O-to-18O substitution lead to a 10% decrease. In situ visible and quasi-in situ X-ray absorption spectroscopy reveal that the hydrogen-to-deuterium isotopic substitution induces an equilibrium isotope effect that shifts the oxidation potentials positively by approximately 60 mV for the proton coupled CoII/III and CoIII/IV electron transfer processes. Time-resolved spectroelectrochemical measurements indicate the absence of a kinetic isotope effect, implying that the precatalytic proton-coupled electron transfer happens through a stepwise mechanism in which electron transfer is rate-determining. An observed correlation between Co oxidation states and catalytic current for both isotopic conditions indicates that the applied potential has no direct effect on the catalytic rate, which instead depends exponentially on the average Co oxidation state. These combined results provide evidence that neither proton nor electron transfer is involved in the catalytic rate-determining step. We propose a mechanism with an active species composed by two adjacent CoIV atoms and a rate-determining step that involves oxygen-oxygen bond formation and compare it with models proposed in the literature.
Collapse
Affiliation(s)
- Chiara Pasquini
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Ivelina Zaharieva
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Diego González-Flores
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Petko Chernev
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Mohammad Reza Mohammadi
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany.,Department of Physics , University of Sistan and Baluchestan , Zahedan , 98167-45845 , Iran
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche , Università degli studi dell'Aquila,Via Vetoio (Coppito) , 67100 L'Aquila , Italy
| | - Rodney D L Smith
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany.,Department of Chemistry , University of Waterloo , 200 University Avenue W , N2L 3G1 Waterloo , ON , Canada
| | - Holger Dau
- Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
47
|
Di Palma V, Zafeiropoulos G, Goldsweer T, Kessels W, van de Sanden M, Creatore M, Tsampas M. Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Huang ZQ, Lu WX, Wang B, Chen WJ, Xie JL, Pan DS, Zhou LL, Song JL. A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00973f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from 2D phosphate MOFs has been explored and exhibits highly efficient OER performance.
Collapse
Affiliation(s)
- Zhao-Qian Huang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Wen-Xiu Lu
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Bin Wang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Wei-Jun Chen
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jie-Ling Xie
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
49
|
Villalobos J, González-Flores D, Klingan K, Chernev P, Kubella P, Urcuyo R, Pasquini C, Mohammadi MR, Smith RDL, Montero ML, Dau H. Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Phys Chem Chem Phys 2019; 21:12485-12493. [DOI: 10.1039/c9cp01754b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenate ions are incorporated in amorphous cobalt oxide catalysts at the periphery of the lattice or substituting cobalt ions.
Collapse
Affiliation(s)
- Javier Villalobos
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Diego González-Flores
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
- Department of Physics
| | | | - Petko Chernev
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Paul Kubella
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Chiara Pasquini
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | | | | - Mavis L. Montero
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Holger Dau
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
50
|
Wang Z, Lin Z, Diao P. Hybrids of iridium–cobalt phosphates as a highly efficient electrocatalyst for the oxygen evolution reaction in neutral solution. Chem Commun (Camb) 2019; 55:3000-3003. [DOI: 10.1039/c8cc10278c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iridium–cobalt phosphates act as highly efficient electrocatalysts for water oxidation with an intrinsic activity even superior to iridium phosphate.
Collapse
Affiliation(s)
- Zhaoying Wang
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Zheng Lin
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Peng Diao
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|