1
|
Pravdivtsev AN, Tickner BJ, Glöggler S, Hövener JB, Buntkowsky G, Duckett SB, Bowers CR, Zhivonitko VV. Unconventional Parahydrogen-Induced Hyperpolarization Effects in Chemistry and Catalysis: From Photoreactions to Enzymes. ACS Catal 2025; 15:6386-6409. [PMID: 40270879 PMCID: PMC12013695 DOI: 10.1021/acscatal.4c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025]
Abstract
Nuclear spin hyperpolarization utilizing parahydrogen has the potential for broad applications in chemistry, catalysis, biochemistry, and medicine. This review examines recent chemical and biochemical insights gained using parahydrogen-induced polarization (PHIP). We begin with photoinduced PHIP, which allows the investigation of short-lived and photoactivated catalysis. Next, we review the partially negative line effect, in which distinctive line shape helps to reveal information about rapid exchange with parahydrogen and the role of short-lived catalytic species. The NMR signal enhancement of a single proton in oneH-PHIP is discussed, challenging the underpinning concept of the necessity of pairwise hydrogenation. Furthermore, we examine metal-free PHIP facilitated by frustrated Lewis pair molecular tweezers and radicaloids, demonstrating alternative routes to hydrogenation. Although symmetric molecules incorporating parahydrogen are NMR silent, we showcase methods that reveal hyperpolarized states through post-hydrogenation reactions. We discuss chemical exchange processes that mediate polarization transfer between parahydrogen and a molecular target, expanding the reach of PHIP without synthesizing specialized precursors. We conclude this review by highlighting the role of PHIP in uncovering the H2 activation mechanisms of hydrogenases. By providing a detailed review of these diverse phenomena, we aim to familiarize the reader with the versatility of PHIP and its potential applications for mechanistic studies and chemical analysis.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Ben J. Tickner
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Stefan Glöggler
- Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Center
for Biostructural Imaging of Neurodegeneration (BIN), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Advanced
Imaging Research Center, The University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jan-Bernd Hövener
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Clifford R. Bowers
- Department
of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
2
|
Phuong J, Salgado B, Labusch T, Hasse H, Münnemann K. Overhauser Dynamic Nuclear Polarization Enables Single Scan Benchtop 13C NMR Spectroscopy in Continuous-Flow. Anal Chem 2025; 97:4308-4317. [PMID: 39984167 PMCID: PMC11883742 DOI: 10.1021/acs.analchem.4c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 02/23/2025]
Abstract
Benchtop 13C NMR spectroscopy is highly attractive for reaction and process monitoring. However, insufficient premagnetization and low signal intensities largely prevent its application to flowing liquids. We show that hyperpolarization by Overhauser dynamic nuclear polarization (ODNP) can be used to overcome these problems, as ODNP operates on short time scales and results in strong 13C signal enhancements. Benchtop 13C NMR spectra with ODNP enhancement acquired in continuous-flow are reported here for the first time. We have investigated two ODNP approaches: direct ODNP, which transfers the polarization of unpaired electrons to 13C nuclei via direct hyperfine coupling, and indirect ODNP, in which the electron polarization is first transferred to 1H nuclei before a polarization transfer pulse sequence finally transfers the polarization to the 13C nuclei. Experiments were carried out for three pure solvents and a mixture for different flow rates. The results show significant 13C signal enhancements for both approaches. However, their performance varies for different substances, depending on the strength and type of the hyperfine interaction as well as on the relaxation properties, but by selecting a suitable approach, good single-scan 13C NMR spectra can be obtained with benchtop NMR, even at high flow rates.
Collapse
Affiliation(s)
- Johnnie Phuong
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Billy Salgado
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Tom Labusch
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Pham P, Biswas O, Hilty C. Parahydrogen Polarization in Reverse Micelles and Application to Sensing of Protein-Ligand Binding. J Am Chem Soc 2024; 146:34274-34278. [PMID: 39652060 DOI: 10.1021/jacs.4c13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A medium containing reverse micelles supports non-hydrogenative parahydrogen induced polarization (nhPHIP) in the organic phase while solubilizing a protein in the aqueous phase. Strongly enhanced NMR signals from iridium hydride complexes report on a ligand, 4-amino-2-benzylaminopyrimidine, which crosses the phase boundary and interacts with the thiaminase protein TenA. The calculation of binding equilibria reveals a KD of 39.7 ± 8.9 μM for protein binding. The nanoscale separation of the two phases allows the separate optimization of the parahydrogen polarization and solubilization of a biological macromolecule. The reverse micelles may be used to study other biological questions using signal enhancement by parahydrogen polarization, such as enzyme reactions, protein-protein interactions, and protein binding epitopes.
Collapse
Affiliation(s)
- Pierce Pham
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Oindrila Biswas
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Qiu Z, Wei C, Kang L, Zhou L, Lai C, Li X, Yan B, Xu J, Wang S, Huang L. Sensitive quantitation of ultra-trace toxic aconitines in complex matrices by perfusion nano-electrospray ionization mass spectrometry combined with gas-liquid microextraction. Talanta 2024; 269:125402. [PMID: 37979510 DOI: 10.1016/j.talanta.2023.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.
Collapse
Affiliation(s)
- Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chaofa Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Parker AJ, Dey A, Usman Qureshi M, Steiner JM, Blanchard JW, Scheuer J, Tomek N, Knecht S, Josten F, Müller C, Hautle P, Schwartz I, Giraudeau P, Eichhorn TR, Dumez JN. Solution-State 2D NMR Spectroscopy of Mixtures HyperpolarizedUsing Optically Polarized Crystals. Angew Chem Int Ed Engl 2023; 62:e202312302. [PMID: 37837321 DOI: 10.1002/anie.202312302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods. The approach is illustrated with a mixture of terpene molecules and a benchtop NMR spectrometer, paving the way to a sensitive, information-rich and affordable analytical method.
Collapse
Affiliation(s)
- Anna J Parker
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM UMR6230, 44000, Nantes, France
| | | | - Jakob M Steiner
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
- Paul Scherrer Insititute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - John W Blanchard
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Jochen Scheuer
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Nikolas Tomek
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Stephan Knecht
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Christoph Müller
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Patrick Hautle
- Paul Scherrer Insititute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | | | - Tim R Eichhorn
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | | |
Collapse
|
7
|
Zheng Z, Liu M, Wang X, Jiang W, Peng Q, Sun H, Chen Z. The experimental approach for the interleaved joint modulation of PHIP and NMR. J Chem Phys 2023; 159:184201. [PMID: 37937935 DOI: 10.1063/5.0173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Nuclear spin hyperpolarization derived from parahydrogen is a technique for enhancing nuclear magnetic resonance (NMR) sensitivity. The key to hyperpolarization experiments is to achieve rapid transfer and detection to minimize relaxation losses, while also avoiding bubbles or turbulence to guarantee high spectral resolution. In this article, we describe an experimental approach for the interleaved joint modulation of parahydrogen-induced polarization and NMR. We provide schematic diagrams of parahydrogen-based polarizer with in situ high-pressure detection capability and low-field polarization transfer. This approach can help to control the experimental process and acquire experimental information, one example of which is the attainment of the highest hyperpolarization signal intensity at 3.6 s after closing the valve. The polarizer demonstrates in situ detection capability, allowing sample to be restabilized within 0.3 ± 0.1 s and high-resolution NMR sampling under a pressure of 3 bars. Moreover, it can transfer polarized samples from the polarization transfer field to the detection region of NMR within 1 ± 0.3 s for completing signal amplification by reversible exchange experiments.
Collapse
Affiliation(s)
- Zeyu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Min Liu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| | - Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
8
|
Alshehri A, Tickner BJ, Iali W, Duckett SB. Enhancing the NMR signals of plant oil components using hyperpolarisation relayed via proton exchange. Chem Sci 2023; 14:9843-9853. [PMID: 37736655 PMCID: PMC10510812 DOI: 10.1039/d3sc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of μM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.
Collapse
Affiliation(s)
- Adel Alshehri
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Ben J Tickner
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Wissam Iali
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Simon B Duckett
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| |
Collapse
|
9
|
Ellermann F, Saul P, Hövener JB, Pravdivtsev AN. Modern Manufacturing Enables Magnetic Field Cycling Experiments and Parahydrogen-Induced Hyperpolarization with a Benchtop NMR. Anal Chem 2023; 95:6244-6252. [PMID: 37018544 DOI: 10.1021/acs.analchem.2c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Benchtop NMR (btNMR) spectrometers are revolutionizing the way we use NMR and lowering the cost drastically. Magnetic field cycling (MFC) experiments with precise timing and control over the magnetic field, however, were hitherto not available on btNMRs, although some systems exist for high-field, high-resolution NMR spectrometers. Still, the need and potential for btNMR MFC is great─e.g., to perform and analyze parahydrogen-induced hyperpolarization, another method that has affected analytical chemistry and NMR beyond expectations. Here, we describe a setup that enables MFC on btNMRs for chemical analysis and hyperpolarization. Taking full advantage of the power of modern manufacturing, including computer-aided design, three-dimensional printing, and microcontrollers, the setup is easy to reproduce, highly reliable, and easy to adjust and operate. Within 380 ms, the NMR tube was shuttled reliably from the electromagnet to the NMR isocenter (using a stepper motor and gear rod). We demonstrated the power of this setup by hyperpolarizing nicotinamide using signal amplification by reversible exchange (SABRE), a versatile method to hyperpolarize a broad variety of molecules including metabolites and drugs. Here, the standard deviation of SABRE hyperpolarization was between 0.2 and 3.3%. The setup also allowed us to investigate the field dependency of the polarization and the effect of different sample preparation protocols. We found that redissolution of the activated and dried Ir catalyst always reduced the polarization. We anticipate that this design will greatly accelerate the ascension of MFC experiments for chemical analysis with btNMR─adding yet another application to this rapidly developing field.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Philip Saul
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Jan-Bernd Hövener
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Andrey N Pravdivtsev
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| |
Collapse
|
10
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
11
|
Silva Terra AI, Rossetto M, Dickson CL, Peat G, Uhrín D, Halse ME. Enhancing 19F Benchtop NMR Spectroscopy by Combining para-Hydrogen Hyperpolarization and Multiplet Refocusing. ACS MEASUREMENT SCIENCE AU 2023; 3:73-81. [PMID: 36817010 PMCID: PMC9936801 DOI: 10.1021/acsmeasuresciau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Benchtop NMR spectrometers provide a promising alternative to high-field NMR for applications that are limited by instrument size and/or cost. 19F benchtop NMR is attractive due to the larger chemical shift range of 19F relative to 1H and the lack of background signal in most applications. However, practical applications of benchtop 19F NMR are limited by its low sensitivity due to the relatively weak field strengths of benchtop NMR spectrometers. Here we present a sensitivity-enhancement strategy that combines SABRE (Signal Amplification By Reversible Exchange) hyperpolarization with the multiplet refocusing method SHARPER (Sensitive, Homogeneous, And Resolved PEaks in Real time). When applied to a range of fluoropyridines, SABRE-SHARPER achieves overall signal enhancements of up to 5700-fold through the combined effects of hyperpolarization and line-narrowing. This approach can be generalized to the analysis of mixtures through the use of a selective variant of the SHARPER sequence, selSHARPER. The ability of SABRE-selSHARPER to simultaneously boost sensitivity and discriminate between two components of a mixture is demonstrated, where selectivity is achieved through a combination of selective excitation and the choice of polarization transfer field during the SABRE step.
Collapse
Affiliation(s)
| | | | - Claire L. Dickson
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - George Peat
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Dušan Uhrín
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Meghan E. Halse
- Department
of Chemistry, University of York, YorkYO10 5DD, U.K.
| |
Collapse
|
12
|
Dreisewerd L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M. NMR Discrimination of d- and l-α-Amino Acids at Submicromolar Concentration via Parahydrogen-Induced Hyperpolarization. J Am Chem Soc 2023; 145:1518-1523. [PMID: 36626573 PMCID: PMC9880991 DOI: 10.1021/jacs.2c11285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Differentiation of enantiomers represents an important research area for pharmaceutical, chemical, and food industries. However, enantiomer separation is a laborious task that demands complex analytical techniques, specialized equipment, and expert personnel. In this respect, discrimination and quantification of d- and l-α-amino acids is no exception, generally requiring extensive sample manipulation, including isolation, functionalization, and chiral separation. This complex sample treatment results in high time costs and potential biases in the quantitative determination. Here, we present an approach based on the combination of non-hydrogenative parahydrogen-induced hyperpolarization and nuclear magnetic resonance that allows detection, discrimination, and quantification of d- and l-α-amino acids in complex mixtures such as biofluids and food extracts down to submicromolar concentrations. Importantly, this method can be directly applied to the system under investigation without any prior isolation, fractionation, or functionalization step.
Collapse
|
13
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
14
|
Fraser R, Rutjes FPJT, Feiters MC, Tessari M. Analysis of Complex Mixtures by Chemosensing NMR Using para-Hydrogen-Induced Hyperpolarization. Acc Chem Res 2022; 55:1832-1844. [PMID: 35709417 PMCID: PMC9260963 DOI: 10.1021/acs.accounts.1c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR) is a powerful technique for chemical
analysis. The use of NMR to investigate dilute analytes in complex
systems is, however, hampered by its relatively low sensitivity. An
additional obstacle is represented by the NMR signal overlap. Because
solutes in a complex mixture are usually not isotopically labeled,
NMR studies are often limited to 1H measurements, which,
because of the modest dispersion of the 1H resonances (typically
∼10 ppm), can result in challenging signal crowding. The low
NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization
(i.e., transiently increasing the differences in nuclear spin populations),
which determines large NMR signal enhancements. This has been demonstrated
for hyperpolarization methods such as dynamic nuclear polarization,
spin-exchange optical pumping and para-hydrogen-induced
polarization (PHIP). In particular, PHIP has grown into a fast, efficient,
and versatile technique since the recent discovery of non-hydrogenative
routes to achieve nuclear spin hyperpolarization. For instance,
signal amplification by reversible exchange (SABRE)
can generate proton as well as heteronuclear spin hyperpolarization
in a few seconds in compounds that are able to transiently bind to
an iridium catalyst in the presence of para-hydrogen
in solution. The hyperpolarization transfer catalyst acts as a chemosensor
in the sense that it is selective for analytes that can coordinate
to the metal center, such as nitrogen-containing aromatic heterocycles,
sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines,
carboxylic acids, and amines. We have demonstrated that the signal
enhancement achieved by SABRE allows rapid NMR detection and quantification
of a mixture of substrates down to low-micromolar concentration. Furthermore,
in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization
to produce up to 1000-fold enhanced NMR hydride signals. Because the
hydrides’ chemical shifts are highly sensitive to the structure
of the analyte associating with the iridium complex, they can be employed
as hyperpolarized “probes” to signal the presence of
specific compounds in the mixture. This indirect detection of the
analytes in solution provides important benefits in the case of complex
systems, as hydrides resonate in a region of the 1H spectrum
(at ca. −20 ppm) that is generally signal-free. The enhanced
sensitivity provided by non-hydrogenative PHIP (nhPHIP), together
with the absence of interference from the complex matrix (usually
resonating between 0 and 10 ppm), set the detection limit for this
NMR chemosensor down to sub-μM concentrations, approximately
3 orders of magnitude lower than for conventional NMR. This nhPHIP
approach represents, therefore, a powerful tool for NMR analysis of
dilute substrates in complex mixtures as it addresses at once the
issues of signal crowding and NMR sensitivity. Importantly, being
performed at high field inside the NMR spectrometer, the method allows
for rapid acquisition of multiple scans, multidimensional hyperpolarized
NMR spectra, in a fashion comparable to that of standard NMR measurements. In this Account, we focus on our chemosensing NMR technology, detailing
its principles, advantages, and limitations and presenting a number
of applications to real systems such as biofluids, beverages, and
natural extracts.
Collapse
Affiliation(s)
- Roan Fraser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martin C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
15
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
16
|
Roy SS, Iali W, Moustafa GAI, Levitt MH. Tuning of pH enables carbon-13 hyperpolarization of oxalates by SABRE. Chem Commun (Camb) 2022; 58:2291-2294. [PMID: 35080536 DOI: 10.1039/d1cc06973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear spin hyperpolarization transforms typically weak NMR responses into strong signals paving the way for low-gamma nuclei detection within practical time-frames. SABRE (Signal Amplification by Reversible Exchange) is a particularly popular hyperpolarization technique due to its simplicity but the pool of molecules it can polarize is limited. The recent advancement in the form of co-ligands has made SABRE applicable towards molecules with O-donor sites e.g. pyruvate, a key step towards its potential clinical application. Here we explore the SABRE hyperpolarization of another compound with an alpha-keto motif, namely oxalate. We show that hyperpolarization of oxalate may be achieved by adjusting the pH in the presence of sulfoxide co-ligands. The SABRE effect for oxalate in methanol solutions is most effective for the mono-protonated form, which is dominant in the solution around pH ∼2.8. The polarization levels become markedly lower at both higher and lower pH. Employing 50% enriched pH2 we achieve up to 0.33% net 13C polarization in mono-protonated oxalate. In an alternative procedure we show that the hyperpolarization effect in oxalates can also be realised by synthesizing an esterified version of it, without any substantive pH implications. Further, the procedures to create hyperpolarized singlet orders in such substrates are also investigated.
Collapse
Affiliation(s)
- Soumya S Roy
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK. .,CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia. .,Center for Refining & Advanced Chemicals, Dhahran 31261, Saudi Arabia
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
17
|
Tickner BJ, Komulainen S, Palosaari S, Heikkinen J, Lehenkari P, Zhivonitko VV, Telkki VV. Hyperpolarised NMR to aid molecular profiling of electronic cigarette aerosols. RSC Adv 2022; 12:1479-1485. [PMID: 35425197 PMCID: PMC8979170 DOI: 10.1039/d1ra07376a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Signal amplification by reversible exchange (SABRE) hyperpolarisation is used to enhance the NMR signals of nicotine and acrolein in methanol-d4 solutions of electronic cigarette aerosols. Consequently, detection of 74 μM nicotine is possible in just a single scan 1H NMR spectrum. The first example of an aldehyde hyperpolarised using SABRE is demonstrated and we work towards novel real-world applications of SABRE-hyperpolarised NMR for chemical analysis.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu 90014 Finland
| | - Sanna Komulainen
- NMR Research Unit, Faculty of Science, University of Oulu 90014 Finland
| | - Sanna Palosaari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
- Medical Research Center Oulu, Faculty of Medicine, University of Oulu and Oulu University Hospital 90014 Finland
| | - Janne Heikkinen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu 90014 Finland
- Medical Research Center Oulu, Faculty of Medicine, University of Oulu and Oulu University Hospital 90014 Finland
- Division of Orthopedic Surgery, Oulu University Hospital 90220 Finland
| | | | | |
Collapse
|
18
|
Norcott PL. Selective NMR detection of individual reaction components hyperpolarised by reversible exchange with para-hydrogen. Phys Chem Chem Phys 2022; 24:13527-13533. [DOI: 10.1039/d2cp01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy can sometimes be hampered by two inherent weaknesses: low sensitivity and overlap of signals in complex mixtures. Hyperpolarisation techniques using para-hydrogen (including the method known as SABRE) can...
Collapse
|
19
|
Sellies L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M. Parahydrogen Hyperpolarization Allows Direct NMR Detection of α-Amino Acids in Complex (Bio)mixtures. Angew Chem Int Ed Engl 2021; 60:26954-26959. [PMID: 34534406 PMCID: PMC9299667 DOI: 10.1002/anie.202109588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 12/12/2022]
Abstract
The scope of non-hydrogenative parahydrogen hyperpolarization (nhPHIP) techniques has been expanding over the last years, with the continuous addition of important classes of substrates. For example, pyruvate can now be hyperpolarized using the Signal Amplification By Reversible Exchange (SABRE) technique, offering a fast, efficient and low-cost PHIP alternative to Dynamic Nuclear Polarization for metabolic imaging studies. Still, important biomolecules such as amino acids have so far resisted PHIP, unless properly functionalized. Here, we report on an approach to nhPHIP for unmodified α-amino acids that allows their detection and quantification in complex mixtures at sub-micromolar concentrations. This method was tested on human urine, in which natural α-amino acids could be measured after dilution with methanol without any additional sample treatment.
Collapse
Affiliation(s)
- Lisanne Sellies
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Martin C. Feiters
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Marco Tessari
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
20
|
Sellies L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M. Parahydrogen Hyperpolarization Allows Direct NMR Detection of α‐Amino Acids in Complex (Bio)mixtures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lisanne Sellies
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525AJ Nijmegen The Netherlands
| |
Collapse
|
21
|
Ausmees K, Reimets N, Reile I. Parahydrogen hyperpolarization of minimally altered urine samples for sensitivity enhanced NMR metabolomics. Chem Commun (Camb) 2021; 58:463-466. [PMID: 34908034 DOI: 10.1039/d1cc05665d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parahydrogen hyperpolarization has been shown to enhance NMR sensitivity in urine analysis by several orders of magnitude if urine samples are prepared by solid phase extraction (SPE). We present a different approach, developed for minimal sample alteration before analysis. Removing SPE from the workflow allows to retain a wider range of metabolites and paves the way towards more universal hyperpolarized NMR metabolomics of low abundance metabolites.
Collapse
Affiliation(s)
- Kerti Ausmees
- The National Institute of Chemical Physics and Biophysics (NICPB), Tallinn, Estonia.
| | - Nele Reimets
- The National Institute of Chemical Physics and Biophysics (NICPB), Tallinn, Estonia.
| | - Indrek Reile
- The National Institute of Chemical Physics and Biophysics (NICPB), Tallinn, Estonia.
| |
Collapse
|
22
|
Rayner PJ, Burns MJ, Fear EJ, Duckett SB. Steric and electronic effects on the 1 H hyperpolarisation of substituted pyridazines by signal amplification by reversible exchange. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1187-1198. [PMID: 33729592 PMCID: PMC8650576 DOI: 10.1002/mrc.5152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Utility of the pyridazine motif is growing in popularity as pharmaceutical and agrochemical agents. The detection and structural characterisation of such materials is therefore imperative for the successful development of new products. Signal amplification by reversible exchange (SABRE) offers a route to dramatically improve the sensitivity of magnetic resonance methods, and we apply it here to the rapid and cost-effective hyperpolarisation of substituted pyridazines. The 33 substrates investigated cover a range of steric and electronic properties and their capacity to perform highly effective SABRE is assessed. We find the method to be tolerant to a broad range of electron donating and withdrawing groups; however, good sensitivity is evident when steric bulk is added to the 3- and 6-positions of the pyridazine ring. We optimise the method by reference to a disubstituted ester that yields signal gains of >9000-fold at 9.4 T (>28% spin polarisation).
Collapse
Affiliation(s)
- Peter J. Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Michael J. Burns
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Elizabeth J. Fear
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| |
Collapse
|
23
|
MacCulloch K, Tomhon P, Browning A, Akeroyd E, Lehmkuhl S, Chekmenev EY, Theis T. Hyperpolarization of common antifungal agents with SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1225-1235. [PMID: 34121211 PMCID: PMC8595556 DOI: 10.1002/mrc.5187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 05/09/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a robust and inexpensive hyperpolarization (HP) technique to enhance nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) signals using parahydrogen (pH2 ). The substrate scope of SABRE is continually expanding. Here, we present the polarization of three antifungal drugs (voriconazole, clotrimazole, and fluconazole) and elicit the detailed HP mechanisms for 1 H and 15 N nuclei. In this exploratory work, 15 N polarization values of ~1% were achieved using 50% pH2 in solution of 3-mM catalyst and 60-mM substrate in perdeuterated methanol. All hyperpolarized 15 N sites exhibited long T1 in excess of 1 min at a clinically relevant field of 1 T. Hyperpolarizing common drugs is of interest due to their potential biomedical applications as MRI contrast agents or to enable studies on protein dynamics at physiological concentrations. We optimize the polarization with respect to temperature and the polarization transfer field (PTF) for 1 H nuclei in the millitesla regime and for 15 N nuclei in the microtesla regime, which provides detailed insights into exchange kinetics and spin evolution. This work broadens the SABRE substrate scope and provides mechanistic and kinetic insights into the HP process.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Patrick Tomhon
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Evan Akeroyd
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, USA
- Chemistry, Russian Academy of Sciences, Moscow, Moscow Region, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Kiryutin AS, Yurkovskaya AV, Petrov PA, Ivanov KL. Simultaneous 15 N polarization of several biocompatible substrates in ethanol-water mixtures by signal amplification by reversible exchange (SABRE) method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1216-1224. [PMID: 34085303 DOI: 10.1002/mrc.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
Singh K, Jacquemmoz C, Giraudeau P, Frydman L, Dumez JN. Ultrafast 2D 1H- 1H NMR spectroscopy of DNP-hyperpolarised substrates for the analysis of mixtures. Chem Commun (Camb) 2021; 57:8035-8038. [PMID: 34291258 PMCID: PMC8477446 DOI: 10.1039/d1cc03079e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
We show that TOCSY and multiple-quantum (MQ) 2D NMR spectra can be obtained for mixtures of substrates hyperpolarised by dissolution dynamic nuclear polarisation (D-DNP). This is achieved by combining optimised transfer settings for D-DNP, with ultrafast 2D NMR experiments based on spatiotemporal encoding. TOCSY and MQ experiments are particularly well suited for mixture analysis, and this approach opens the way to significant sensitivity gains for analytical applications of NMR, such as authentication and metabolomics.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | | | | | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | | |
Collapse
|
26
|
Kiryutin AS, Yurkovskaya AV, Ivanov KL. 15 N SABRE Hyperpolarization of Metronidazole at Natural Isotope Abundance. Chemphyschem 2021; 22:1470-1477. [PMID: 34009704 DOI: 10.1002/cphc.202100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is gaining increased attention as a tool to enhance weak Nuclear Magnetic Resonance (NMR) signals. In SABRE, spin order is transferred from parahydrogen (H2 in its nuclear singlet spin state) to a substrate molecule in a transient Ir-based complex. In recent years, SABRE polarization of biologically active substrates has been demonstrated, notably of metronidazole - an antibiotic and antiprotozoal drug. In this work, we study 15 N SABRE polarization of metronidazole at natural isotope abundance. We are able to demonstrate significant 15 N polarization reaching 15 %, which corresponds to a signal enhancement of 46,000 at 9.4 T for the nitrogen atom with lone electron pair. Additionally, the other two N-atoms can be polarized, although less efficiently. We present a detailed study of the field dependence of polarization and explain the maxima in the field dependence using the concept of coherent polarization transfer at level anti-crossings in the SABRE complex. A study of spin relaxation phenomena presented here enables optimization of the magnetic field for efficient storage of non-thermal polarization.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
27
|
Reimets N, Ausmees K, Vija S, Reile I. Developing Analytical Applications for Parahydrogen Hyperpolarization: Urinary Elimination Pharmacokinetics of Nicotine. Anal Chem 2021; 93:9480-9485. [PMID: 34180227 DOI: 10.1021/acs.analchem.1c01281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclear magnetic resonance spectroscopy (NMR) is a valuable analytical tool with applications in a vast array of research fields from chemistry and biology to medicine and beyond. NMR is renowned for its straightforward data interpretation and quantitative properties, making it attractive for pharmacokinetic applications, where drug metabolism pathways, concentrations, and kinetics need to be evaluated. However, pharmacologically active compounds and their metabolites in biofluids often appear in minute concentrations, well below the detection limit of NMR. Herein, we demonstrate how parahydrogen hyperpolarization overcomes this sensitivity barrier, allowing us to detect mid-nanomolar concentrations of a drug and a drug metabolite in a biofluid matrix. The performance of the method is demonstrated by monitoring nicotine and cotinine urinary elimination, reflected by their concentrations in urine during the onset and withdrawal from nicotine consumption. An NMR limit of detection of 0.1 μM and a limit of quantitation of 0.7 μM is achieved in a practical pharmacokinetics scenario where precise quantitative and qualitative analysis is desired.
Collapse
Affiliation(s)
- Nele Reimets
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kerti Ausmees
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sirje Vija
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
28
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
Affiliation(s)
- Thomas Tennant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Matthew C Hulme
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Thomas B R Robertson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
29
|
Letertre MPM, Dervilly G, Giraudeau P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal Chem 2020; 93:500-518. [PMID: 33155816 DOI: 10.1021/acs.analchem.0c04371] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Giraudeau P. NMR-based metabolomics and fluxomics: developments and future prospects. Analyst 2020; 145:2457-2472. [DOI: 10.1039/d0an00142b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent NMR developments are acting as game changers for metabolomics and fluxomics – a critical and perspective review.
Collapse
|
31
|
Tickner BJ, Parker RR, Whitwood AC, Duckett SB. Probing the Hydrogenation of Vinyl Sulfoxides Using para-Hydrogen. Organometallics 2019; 38:4377-4382. [PMID: 31787798 PMCID: PMC6880776 DOI: 10.1021/acs.organomet.9b00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Vinyl sulfoxides are an important functional group used in a wide range of organic transformations. Here, we use [IrCl(COD)(IMes)] where IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene and COD = cis,cis-1,5-cyclooctadiene to rapidly hydrogenate phenylvinylsulfoxide. We use para-hydrogen-induced hyperpolarization (PHIP) to follow this reaction with [IrCl(H)2(IMes)(S(O)(Ph)(Et))2] dominating in the later stages. Decomposition to form the reduced C-S bond cleavage product [Ir2(H)3(κ2-H)(κ2-SPh)2(IMes)2(S(Et)(Ph)O)] limits turnover. The related product [Ir2(H)4(κ2-S)(IMes)2(S(O)(CH2Ph)2)2] is formed from dibenzylsulfoxide, demonstrating the wider utility of this transformation.
Collapse
Affiliation(s)
- Ben J. Tickner
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| | - Rachel R. Parker
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| |
Collapse
|
32
|
Buckenmaier K, Scheffler K, Plaumann M, Fehling P, Bernarding J, Rudolph M, Back C, Koelle D, Kleiner R, Hövener J, Pravdivtsev AN. Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields. Chemphyschem 2019; 20:2823-2829. [PMID: 31536665 PMCID: PMC6900040 DOI: 10.1002/cphc.201900757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/17/2019] [Indexed: 11/26/2022]
Abstract
The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by signal amplification by reversible exchange (SABRE) and detected at ULF with a superconducting quantum interference device (SQUID)-based NMR system.
Collapse
Affiliation(s)
- Kai Buckenmaier
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Klaus Scheffler
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenHoppe-Seyler-Str. 372076TübingenGermany
| | - Markus Plaumann
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Paul Fehling
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Johannes Bernarding
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Matthias Rudolph
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Christoph Back
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Dieter Koelle
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Reinhold Kleiner
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| |
Collapse
|
33
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
34
|
Richardson PM, Iali W, Roy SS, Rayner PJ, Halse ME, Duckett SB. Rapid 13C NMR hyperpolarization delivered from para-hydrogen enables the low concentration detection and quantification of sugars. Chem Sci 2019; 10:10607-10619. [PMID: 32110347 PMCID: PMC7020793 DOI: 10.1039/c9sc03450a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
The monosaccharides glucose and fructose are rapidly detected and quantified by 13C NMR in conjunction with the hyperpolarisation method signal amplification by reversible exchange-relay.
Monosaccharides, such as glucose and fructose, are important to life. In this work we highlight how the rapid delivery of improved 13C detectability for sugars by nuclear magnetic resonance (NMR) can be achieved using the para-hydrogen based NMR hyperpolarization method SABRE-Relay (Signal Amplification by Reversible Exchange-Relay). The significant 13C signal enhancements of 250 at a high field of 9.4 T, and 3100 at a low field of 1 T, enable the detection of trace amounts of these materials as well as the quantification of their tautomeric makeup. Using studies on 13C and 2H isotopically labelled agents we demonstrate how hyperpolarization lifetime (T1) values can be extended, and how singlet states with long lifetimes can be created. The precise quantification of d-glucose-13C6-d7 at the millimolar concentration level is shown to be possible within minutes in conjunction with a linear hyperpolarized response as a function of concentration. In addition to the measurements using labelled materials, low concentration detection is also illustrated for millimolar samples with natural abundance 13C where isomeric form quantification can be achieved with a single transient.
Collapse
Affiliation(s)
- Peter M Richardson
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Wissam Iali
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Soumya S Roy
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Peter J Rayner
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Meghan E Halse
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Simon B Duckett
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| |
Collapse
|
35
|
Rayner PJ, Tickner BJ, Iali W, Fekete M, Robinson AD, Duckett SB. Relayed hyperpolarization from para-hydrogen improves the NMR detectability of alcohols. Chem Sci 2019; 10:7709-7717. [PMID: 31588319 PMCID: PMC6764278 DOI: 10.1039/c9sc02765c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/28/2019] [Indexed: 01/02/2023] Open
Abstract
The detection of alcohols by magnetic resonance techniques is important for their characterization and the monitoring of chemical change. Hyperpolarization processes can make previously inpractical measurements, such as the determination of low concentration intermediates, possible. Here, we investigate the SABRE-Relay method in order to define its key characteristics and improve the resulting 1H NMR signal gains which subsequently approach 103 per proton. We identify optimal amine proton transfer agents for SABRE-Relay and show how catalyst structure influences the outcome. The breadth of the method is revealed by expansion to more complex alcohols and the polarization of heteronuclei.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Alastair D Robinson
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| |
Collapse
|
36
|
Ariyasingha NM, Lindale JR, Eriksson SL, Clark GP, Theis T, Shchepin RV, Chukanov NV, Kovtunov KV, Koptyug IV, Warren WS, Chekmenev EY. Quasi-Resonance Fluorine-19 Signal Amplification by Reversible Exchange. J Phys Chem Lett 2019; 10:4229-4236. [PMID: 31291106 PMCID: PMC6675627 DOI: 10.1021/acs.jpclett.9b01505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on an extension of the quasi-resonance (QUASR) pulse sequence used for signal amplification by reversible exchange (SABRE), showing that we may target distantly J-coupled 19F-spins. Polarization transfer from the parahydrogen-derived hydrides to the 19F nucleus is accomplished via weak five-bond J-couplings using a shaped QUASR radio frequency pulse at a 0.05 T magnetic field. The net result is the direct generation of hyperpolarized 19F z-magnetization, derived from the parahydrogen singlet order. An accumulation of 19F polarization on the free ligand is achieved with subsequent repetition of this pulse sequence. The hyperpolarized 19F signal exhibits clear dependence on the pulse length, irradiation frequency, and delay time in a manner similar to that reported for 15N QUASR-SABRE. Moreover, the hyperpolarized 19F signals of 3-19F-14N-pyridine and 3-19F-15N-pyridine isotopologues are similar, suggesting that (i) polarization transfer via QUASR-SABRE is irrespective of the nitrogen isotopologue and (ii) the presence or absence of the spin-1/2 15N nucleus has no impact on the efficiency of QUASR-SABRE polarization transfer. Although optimization of polarization transfer efficiency to 19F (P19F ≈ 0.1%) was not the goal of this study, we show that high-field SABRE can be efficient and broadly applicable for direct hyperpolarization of 19F spins.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Jacob R. Lindale
- Duke University Department of Chemistry, Durham, North Carolina, 27708, United States
| | - Shannon L. Eriksson
- Duke University Department of Chemistry, Durham, North Carolina, 27708, United States
- Duke University School of Medicine, Durham, North Carolina, 27708, United States
| | - Grayson P. Clark
- Duke Department of Biomedical Engineering, Durham, North Carolina, 27708, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Roman V. Shchepin
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota, 57701, United States
| | - Nikita V. Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Warren S. Warren
- Duke University Departments of Physics, Chemistry, Biomedical Engineering, and Radiology Durham, North Carolina, 27708, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
37
|
Tickner BJ, John RO, Roy SS, Hart SJ, Whitwood AC, Duckett SB. Using coligands to gain mechanistic insight into iridium complexes hyperpolarized with para-hydrogen. Chem Sci 2019; 10:5235-5245. [PMID: 31191878 PMCID: PMC6540910 DOI: 10.1039/c9sc00444k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
We report the formation of a series of novel [Ir(H)2(IMes)(α-13C2-carboxyimine)L] complexes in which the identity of the coligand L is varied. When examined with para-hydrogen, complexes in which L is benzylamine or phenethylamine show significant 1H hydride and 13C2 imine enhancements and may exist in 13C2 singlet spin order. Isotopic labeling techniques are used to double 13C2 enhancements (up to 750-fold) and singlet state lifetimes (up to 20 seconds) compared to those previously reported. Exchange spectroscopy and Density Functional Theory are used to investigate the stability and mechanism of rapid hydrogen exchange in these complexes, a process driven by dissociative coligand loss to form a key five coordinate intermediate. When L is pyridine or imidazole, competitive binding to such intermediates leads to novel complexes whose formation, kinetics, behaviour, structure, and hyperpolarization is investigated. The ratio of the observed PHIP enhancements were found to be affected not only by the hydrogen exchange rates but the identity of the coligands. This ligand reactivity is accompanied by decoherence of any 13C2 singlet order which can be preserved by isotopic labeling. Addition of a thiol coligand proved to yield a thiol oxidative addition product which is characterized by NMR and MS techniques. Significant 870-fold 13C enhancements of pyridine can be achieved using the Signal Amplification By Reversible Exchange (SABRE) process when α-carboxyimines are used to block active coordination sites. [Ir(H)2(IMes)(α-13C2-carboxyimine)L] therefore acts as unique sensors whose 1H hydride chemical shifts and corresponding hyperpolarization levels are indicative of the identity of a coligand and its binding strength.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Richard O John
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Soumya S Roy
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Sam J Hart
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| |
Collapse
|
38
|
Knecht S, Ivanov KL. Quantitative quantum mechanical approach to SABRE hyperpolarization at high magnetic fields. J Chem Phys 2019; 150:124106. [DOI: 10.1063/1.5084129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
- Medical Physics, Department of Radiology, Medical Center–University of Freiburg, Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Guduff L, Berthault P, van Heijenoort C, Dumez J, Huber G. Single‐Scan Diffusion‐Ordered NMR Spectroscopy of SABRE‐Hyperpolarized Mixtures. Chemphyschem 2019; 20:392-398. [DOI: 10.1002/cphc.201800983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ludmilla Guduff
- Institut de Chimie des Substances Naturelles, CNRS UPR2301 Univ. Paris SudUniversité Paris-Saclay 91190 Gif-sur-Yvette France
| | - Patrick Berthault
- NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301 Univ. Paris SudUniversité Paris-Saclay 91190 Gif-sur-Yvette France
| | - Jean‐Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301 Univ. Paris SudUniversité Paris-Saclay 91190 Gif-sur-Yvette France
| | - Gaspard Huber
- NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
40
|
Pravdivtsev AN, Sönnichsen F, Hövener JB. OnlyParahydrogen SpectrosopY (OPSY) pulse sequences - One does not fit all. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:86-95. [PMID: 30366223 DOI: 10.1016/j.jmr.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The hyperpolarization of nuclear spins using parahydrogen is an interesting effect that allows to increase the magnetic resonance signal by several orders of magnitude. Known as ParaHydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment (PASADENA) and ParaHydrogen Induced Polarization (PHIP), the method was successfully used for in vitro analysis and in vivo imaging. In this contribution, we investigated four known and four new variants of Only Parahydrogen SpectroscopY (OPSY) sequences (Aguilar et al., 2007) with respect to the selective preparation of hyperpolarized NMR signal and background suppression. Depending on the method chosen, either anti-phase, in-phase or a mixture of both signals are obtained: anti-phase signals are beneficial to identify hyperpolarized signals and the structure or J-coupling constants; in-phase signals are useful for imaging applications or when the lines are broad. This comprehensive overview of sequences new and old facilitates selecting the right sequence for the task at hand.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany.
| | - Frank Sönnichsen
- Faculty of Mathematics and Natural Sciences, Chemistry Section, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
41
|
Pravdivtsev AN, Skovpin IV, Svyatova AI, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Chekmenev EY, Kovtunov KV, Koptyug IV, Hövener JB. Chemical Exchange Reaction Effect on Polarization Transfer Efficiency in SLIC-SABRE. J Phys Chem A 2018; 122:9107-9114. [PMID: 30295488 DOI: 10.1021/acs.jpca.8b07163] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a new and rapidly developing hyperpolarization technique. The recent discovery of Spin-Lock Induced Crossing SABRE (SLIC-SABRE) showed that high field hyperpolarization transfer techniques developed so far were optimized for singlet spin order that does not coincide with the experimentally produced spin state. Here, we investigated the SLIC-SABRE approach and the most advanced quantitative theoretical SABRE model to date. Our goal is to achieve the highest possible polarization with SLIC-SABRE at high field using the standard SABRE system, IrIMes catalyst with pyridine. We demonstrated the accuracy of the SABRE model describing the effects of various physical parameters such as the amplitude and frequency of the radio frequency field, and the effects of chemical parameters such as the exchange rate constants. By fitting the model to the experimental data, the effective life time of the SABRE complex was estimated, as well as the entropy and enthalpy of the complex-dissociation reaction. We show, for the first time, that this SLIC-SABRE model can be useful for the evaluation of the chemical exchange parameters that are very important for the production of highly polarized contrast agents via SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology , University Medical Center Schleswig-Holstein (UKSH), Kiel University , Am Botanischen Garten 14 , 24118 Kiel , Germany
| | - Ivan V Skovpin
- International Tomography Center , Siberian Branch of the Russian Academy of the Sciences , Institutskaya st. 3 A , 630090 Novosibirsk , Russia.,Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia
| | - Alexandra I Svyatova
- International Tomography Center , Siberian Branch of the Russian Academy of the Sciences , Institutskaya st. 3 A , 630090 Novosibirsk , Russia.,Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia
| | - Nikita V Chukanov
- International Tomography Center , Siberian Branch of the Russian Academy of the Sciences , Institutskaya st. 3 A , 630090 Novosibirsk , Russia.,Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia
| | - Larisa M Kovtunova
- Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia.,Boreskov Institute of Catalysis , Siberian Branch of the Russian Academy of the Sciences , 5 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis , Siberian Branch of the Russian Academy of the Sciences , 5 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russia
| | - Eduard Y Chekmenev
- Department of Chemistry , Wayne State University, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio) , Detroit , Michigan 48202 , United States.,Russian Academy of Sciences , Leninskiy Prospekt 14 , 119991 Moscow , Russia
| | - Kirill V Kovtunov
- International Tomography Center , Siberian Branch of the Russian Academy of the Sciences , Institutskaya st. 3 A , 630090 Novosibirsk , Russia.,Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia
| | - Igor V Koptyug
- International Tomography Center , Siberian Branch of the Russian Academy of the Sciences , Institutskaya st. 3 A , 630090 Novosibirsk , Russia.,Novosibirsk State University , Pirogova st. 2 , 630090 Novosibirsk , Russia
| | - Jan-Bernd Hövener
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology , University Medical Center Schleswig-Holstein (UKSH), Kiel University , Am Botanischen Garten 14 , 24118 Kiel , Germany
| |
Collapse
|
42
|
Richardson PM, John RO, Parrott AJ, Rayner PJ, Iali W, Nordon A, Halse ME, Duckett SB. Quantification of hyperpolarisation efficiency in SABRE and SABRE-Relay enhanced NMR spectroscopy. Phys Chem Chem Phys 2018; 20:26362-26371. [PMID: 30303501 PMCID: PMC6202922 DOI: 10.1039/c8cp05473h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022]
Abstract
para-Hydrogen (p-H2) induced polarisation (PHIP) is an increasingly popular method for sensitivity enhancement in NMR spectroscopy. Its growing popularity is due in part to the introduction of the signal amplification by reversible exchange (SABRE) method that generates renewable hyperpolarisation in target analytes in seconds. A key benefit of PHIP and SABRE is that p-H2 can be relatively easily and cheaply produced, with costs increasing with the desired level of p-H2 purity. In this work, the efficiency of the SABRE polarisation transfer is explored by measuring the level of analyte hyperpolarisation as a function of the level of p-H2 enrichment. A linear relationship was found between p-H2 enrichment and analyte 1H hyperpolarisation for a range of molecules, polarisation transfer catalysts, NMR detection fields and for both the SABRE and SABRE-Relay transfer mechanisms over the range 29-99% p-H2 purity. The gradient of these linear relationships were related to a simple theoretical model to define an overall efficiency parameter, E, that quantifies the net fraction of the available p-H2 polarisation that is transferred to the target analyte. We find that the efficiency of SABRE is independent of the NMR detection field and exceeds E = 20% for methyl-4,6-d2-nicotinate when using a previously optimised catalyst system. For the SABRE-Relay transfer mechanism, efficiencies of up to E = 1% were found for 1H polarisation of 1-propanol, when ammonia was used as the polarisation carrier.
Collapse
Affiliation(s)
- Peter M Richardson
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| | - Andrew J Parrott
- WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, Glasgow, UK
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, Glasgow, UK
| | - Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, UK.
| |
Collapse
|
43
|
Tickner BJ, Iali W, Roy SS, Whitwood AC, Duckett SB. Iridium α
-Carboxyimine Complexes Hyperpolarized with para
-Hydrogen Exist in Nuclear Singlet States before Conversion into Iridium Carbonates. Chemphyschem 2018; 20:241-245. [DOI: 10.1002/cphc.201800829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Ben. J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Adrian C. Whitwood
- Department of Chemistry; University of York; Heslington U.K. Kingdom YO10 5DD
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| |
Collapse
|
44
|
Reile I, Eshuis N, Hermkens NKJ, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Tessari M. NMR detection in biofluid extracts at sub-μM concentrations via para-H2 induced hyperpolarization. Analyst 2018; 141:4001-5. [PMID: 27221513 DOI: 10.1039/c6an00804f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NMR spectroscopy is one of the most powerful techniques to simultaneously obtain qualitative and quantitative information in chemical analysis. Despite its versatility, the applications of NMR in the study of biofluids are often limited by the insensitivity of the technique, further aggravated by the poor signal dispersion in the (1)H spectra. Recent advances in para-H2 induced hyperpolarization have proven to address both these limitations for specific classes of compounds. Herein, this approach is for the first time applied for quantitative determination in biofluid extracts. We demonstrate that a combination of solid phase extraction, para-hydrogen induced hyperpolarization and selective NMR detection quickly reveals a doping substance, nikethamide, at sub-μM concentrations in urine. We suggest that this method can be further optimized for the detection of different analytes in various biofluids, anticipating a wider application of hyperpolarized NMR in metabolomics and pharmacokinetics studies in the near future.
Collapse
Affiliation(s)
- I Reile
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - N Eshuis
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - N K J Hermkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - B J A van Weerdenburg
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - M C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - F P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - M Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Rayner PJ, Duckett SB. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis. Angew Chem Int Ed Engl 2018; 57:6742-6753. [DOI: 10.1002/anie.201710406] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| |
Collapse
|
46
|
Rayner PJ, Duckett SB. Signalverstärkung durch reversiblen Austausch (SABRE): von der Entdeckung zur diagnostischen Anwendung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| |
Collapse
|
47
|
Iali W, Rayner PJ, Alshehri A, Holmes AJ, Ruddlesden AJ, Duckett SB. Direct and indirect hyperpolarisation of amines using parahydrogen. Chem Sci 2018; 9:3677-3684. [PMID: 29780498 PMCID: PMC5935062 DOI: 10.1039/c8sc00526e] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 01/13/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are two widely used techniques for the study of molecules and materials. Hyperpolarisation methods, such as Signal Amplification By Reversible Exchange (SABRE), turn typically weak magnetic resonance responses into strong signals. In this article we detail how it is possible to hyperpolarise the 1H, 13C and 15N nuclei of a range of amines. This involved showing how primary amines form stable but labile complexes of the type [Ir(H)2(IMes)(amine)3]Cl that allow parahydrogen to relay its latent polarisation into the amine. By optimising the temperature and parahydrogen pressure a 1000-fold per proton NH signal gain for deuterated benzylamine is achieved at 9.4 T. Additionally, we show that sterically hindered and electron poor amines that bind poorly to iridium can be hyperpolarised by either employing a co-ligand for complex stabilisation, or harnessing the fact that it is possible to exchange hyperpolarised protons between amines in a mixture, through the recently reported SABRE-RELAY method. These chemical refinements have significant potential to extend the classes of agent that can be hyperpolarised by readily accessible parahydrogen.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Adel Alshehri
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - A Jonathan Holmes
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Amy J Ruddlesden
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| |
Collapse
|
48
|
Knecht S, Kiryutin AS, Yurkovskaya AV, Ivanov KL. Re-polarization of nuclear spins using selective SABRE-INEPT. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:10-14. [PMID: 29274936 DOI: 10.1016/j.jmr.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 05/22/2023]
Abstract
A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.
Collapse
Affiliation(s)
- Stephan Knecht
- Dept. of Radiology, Medical Physics, Medical Center Freiburg-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
49
|
Shchepin RV, Jaigirdar L, Theis T, Warren WS, Goodson BM, Chekmenev EY. Spin Relays Enable Efficient Long-Range Heteronuclear Signal Amplification By Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:28425-28434. [PMID: 29955243 PMCID: PMC6017995 DOI: 10.1021/acs.jpcc.7b11485] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A systematic experimental study is reported on the polarization transfer to distant spins, which do not directly bind to the polarization transfer complexes employed in Signal Amplification By Reversible Exchange (SABRE) experiments. Both, long-range transfer to protons and long-range transfer to heteronuclei i.e. 13C and 15N are examined. Selective destruction of hyperpolarization on 1H, 13C, and 15N sites is employed, followed by their re-hyperpolarization from neighboring spins within the molecules of interest (pyridine for 1H studies and metronidazole-15N2-13C2 for 13C and 15N studies). We conclude that long-range sites can be efficiently hyperpolarized when a network of spin-½ nuclei enables relayed polarization transfer (i.e. via short-range interactions between sites). In case of proton SABRE in the milli-Tesla regime, a relay network consisting of protons only is sufficient. However, in case 13C and 15N are targeted (i.e. via SABRE in SHield Enables Alignment Transfer to Heteronuclei or SABRE-SHEATH experiment), the presence of a heteronuclear network (e.g. consisting of 15N) enables a relay mechanism that is significantly more efficient than the direct transfer of spin order from para-H2-derived hydrides.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
50
|
Schievano E, Tonoli M, Rastrelli F. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey. Anal Chem 2017; 89:13405-13414. [DOI: 10.1021/acs.analchem.7b03656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Schievano
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Tonoli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|