1
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
2
|
Reese AJ, Gelin S, Maalouf M, Wadehra N, Zhang L, Hautier G, Schlom DG, Dabo I, Suntivich J. Tracking Water Dissociation on RuO 2(110) Using Atomic Force Microscopy and First-Principles Simulations. J Am Chem Soc 2024; 146:32080-32087. [PMID: 39513378 DOI: 10.1021/jacs.4c13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The interaction between interfacial water and transition metal oxides is a primary enabling step for the oxygen evolution reaction (OER). RuO2 is a prototypical OER electrocatalyst whose ability to activate interfacial water molecules is essential to its OER activity. We image the dissociation of surface water into OH* and O* on RuO2(110), where * denotes adsorbed species, using atomic force microscopy. Starting from the surface-bound water molecules, which form a one-dimensional network along the rows of Ru surface sites, increasing the oxidative potential strips hydrogen away and transforms the water molecules into OH* and O*. This oxidative step changes the pattern of the adsorbates from one- to two-dimensional. First-principles calculations with interfacial polarization, capacitive charging, and adsorbate interactions attribute this evolution to the cooperative dehydrogenation of adsorbed water and OH* on RuO2. We use these results to map the surface phase diagram of RuO2(110) and provide a quantitative interpretation of its cyclic voltammetry. Our result provides the visualization of the water dissociation on a conductive oxide surface, a critical step in the OER, and demonstrates that the water activation is a collective phenomenon at RuO2(110) electrodes.
Collapse
Affiliation(s)
- Austin J Reese
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simon Gelin
- Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maria Maalouf
- Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neha Wadehra
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Ismaila Dabo
- Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Rakov DA, Ahmed N, Kong Y, Nanjundan AK, Popov I, Sokolov AP, Huang X, Yu C. Exploring the Impact of In Situ-Formed Solid-Electrolyte Interphase on the Cycling Performance of Aluminum Metal Anodes. ACS NANO 2024; 18:28456-28468. [PMID: 39357008 DOI: 10.1021/acsnano.4c11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.
Collapse
Affiliation(s)
- Dmitrii A Rakov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Nashaat Ahmed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ashok Kumar Nanjundan
- School of Engineering and the Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | - Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xiaodan Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
4
|
Bao Y, Nishiwaki Y, Kawano T, Utsunomiya T, Sugimura H, Ichii T. Molecular-Resolution Imaging of Ionic Liquid/Alkali Halide Interfaces with Varied Surface Charge Densities via Atomic Force Microscopy. ACS NANO 2024; 18:25302-25315. [PMID: 39185607 DOI: 10.1021/acsnano.4c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
When in contact with charged solid surfaces, ionic liquids (ILs) are known to form solvation structures consisting of alternating cation and anion layers. This phenomenon is considered to originate from the adsorption layer of counterions overcompensating the surface charge, so-called overscreening. However, the response of these layers to surfaces with near-zero or extremely high surface charge density (σ) remains inadequately understood. Here, we probe the solvation structure of ILs on alkali halide surfaces with varied surface orientations: nearly zero-charged RbI(100) and highly charged RbI(111), by employing frequency modulation atomic force microscopy with atomic resolution. Two commonly used ILs are examined in this study: 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpyr][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). On RbI(100) surfaces with near zero σ, we observe alternating cation and anion layers, diverging from the previously proposed monolayer model for IL/alkali halide(100) interfaces. These results support the argument that overscreening occurs under low σ, even approaching zero, and reconcile conflicting experimental conclusions about low σ systems. On RbI(111) surfaces with high σ, we identify solvation structures consisting of two consecutive counterion layers. This structure aligns with the theoretically predicted crowding; a phenomenon rarely observed in commonly used ILs due to typically unreachable σ in electrochemical IL/electrode systems. Our findings indicate that alkali halide(111) surfaces are potentially valuable for exploring the crowding phenomenon in ILs, addressing the current scarcity of experimental observations.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Nishiwaki
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Touma Kawano
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Wang LX, Sun C, Huang SL, Kang B, Chen HY, Xu JJ. Single-Particle Imaging Reveals the Electrical Double-Layer Modulated Ion Dynamics at Crowded Interface. NANO LETTERS 2024; 24:9743-9749. [PMID: 39072414 DOI: 10.1021/acs.nanolett.4c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The dynamics of ion transport at the interface is the critical factor for determining the performance of an electrochemical energy storage device. While practical applications are realized in concentrated electrolytes and nanopores, there is a limited understanding of their ion dynamic features. Herein, we studied the interfacial ion dynamics in room-temperature ionic liquids by transient single-particle imaging with microsecond-scale resolution. We observed slowed-down dynamics at lower potential while acceleration was observed at higher potential. Combined with simulation, we found that the microstructure evolution of the electric double layer (EDL) results in potential-dependent kinetics. Then, we established a correspondence between the ion dynamics and interfacial ion composition. Besides, the ordered ion orientation within EDL is also an essential factor for accelerating interfacial ion transport. These results inspire us with a new possibility to optimize electrochemical energy storage through the good control of the rational design of the interfacial ion structures.
Collapse
Affiliation(s)
- Lu-Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Lan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Wang J, Li H, Warr GG, Chen F, Atkin R. Nanostructure and Dynamics of Aprotic Ionic Liquids at Graphite Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311353. [PMID: 38573945 DOI: 10.1002/smll.202311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Li Q, Zhu G, Liu Z, Xu J. Molecular dynamics simulation studies on the ionic liquid N-butylpyridinium tetrafluoroborate on the gold surface. Heliyon 2024; 10:e32710. [PMID: 38975103 PMCID: PMC11225740 DOI: 10.1016/j.heliyon.2024.e32710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.
Collapse
Affiliation(s)
- Qiang Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
- Faculty of Engineering, Anhui Sanlian University, Hefei, 230601, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Zhicong Liu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
8
|
Gittins J, Ge K, Balhatchet CJ, Taberna PL, Simon P, Forse AC. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors. J Am Chem Soc 2024; 146:12473-12484. [PMID: 38716517 PMCID: PMC11082900 DOI: 10.1021/jacs.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Layered metal-organic frameworks (MOFs) have emerged as promising materials for next-generation supercapacitors. Understanding how and why electrolyte ion size impacts electrochemical performance is crucial for developing improved MOF-based devices. To address this, we investigate the energy storage performance of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with a series of 1 M tetraalkylammonium tetrafluoroborate (TAABF4) electrolytes with different cation sizes. Three-electrode experiments show that Cu3(HHTP)2 exhibits an asymmetric charging response with all ion sizes, with higher energy storage upon positive charging and a greater charging asymmetry with larger TAA+ cations. The results further show that smaller TAA+ cations demonstrate superior capacitive performances upon both positive and negative charging compared to larger TAA+ cations. To gain further insights, electrochemical quartz crystal microbalance measurements were performed to probe ion electrosorption during charging and discharging. These reveal that Cu3(HHTP)2 has a cation-dominated charging mechanism, but interestingly indicate that the solvent also participates in the charging process with larger cations. Overall, the results of this study suggest that larger TAA+ cations saturate the pores of the Cu3(HHTP)2-based electrodes. This leads to more asymmetric charging behavior and forces solvent molecules to play a role in the charge storage mechanism. These findings significantly enhance our understanding of ion electrosorption in layered MOFs, and they will guide the design of improved MOF-based supercapacitors.
Collapse
Affiliation(s)
- Jamie
W. Gittins
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kangkang Ge
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
| | - Chloe J. Balhatchet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Pierre-Louis Taberna
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
- RS2E,
Réseau Français sur le Stockage Electrochimique de l’Energie,
FR CNRS 3459, Amiens Cedex 80039, France
| | - Patrice Simon
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
- RS2E,
Réseau Français sur le Stockage Electrochimique de l’Energie,
FR CNRS 3459, Amiens Cedex 80039, France
| | - Alexander C. Forse
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
9
|
Hausen F. Relaxation Times of Ionic Liquids under Electrochemical Conditions Probed by Friction Force Microscopy. SMALL METHODS 2023; 7:e2300250. [PMID: 37551063 DOI: 10.1002/smtd.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Indexed: 08/09/2023]
Abstract
Ionic liquids (ILs) represent an important class of liquids considered for a broad range of applications such as lubrication, catalysis, or as electrolytes in batteries. It is well-known that in the case of charged surfaces, ILs form a pronounced layer structure that can be easily triggered by an externally applied electrode potential. Information about the time required to form a stable interface under varying electrode potentials is of utmost importance in many applications. For the first time, probing of relaxation times of ILs by friction force microscopy is demonstrated. The friction force is extremely sensitive to even subtle changes in the interfacial configuration of ILs. Various relaxation processes with different time scales are observed. A significant difference dependent on the direction of switching the applied potential, i.e., from a more cation-rich to a more anion-rich interface or vice versa, is found. Furthermore, variations in height immediately after the potential step and the presence of trace amounts of water are discussed as well.
Collapse
Affiliation(s)
- Florian Hausen
- Forschungszentrum Jülich, Institute of Energy and Climate Research, IEK-9, 52425, Jülich, Germany
- RWTH Aachen University, Institute of Physical Chemistry, 52074, Aachen, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Jülich-Aachen Research Alliance, Section: JARA-Energy, 52425, Jülich, Germany
| |
Collapse
|
10
|
Chatterjee A, Sun J, Rawat KS, Van Speybroeck V, Van Der Voort P. Exploring the Charge Storage Dynamics in Donor-Acceptor Covalent Organic Frameworks Based Supercapacitors by Employing Ionic Liquid Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303189. [PMID: 37471172 DOI: 10.1002/smll.202303189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Two donor-acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor-acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g-1 , TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g-1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g-1 capacitance in IL.
Collapse
Affiliation(s)
- Amrita Chatterjee
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| | - Jiamin Sun
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Ghent, B-9052, Belgium
| | | | - Pascal Van Der Voort
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| |
Collapse
|
11
|
Elkhafif OW, Hassan HK, Ceblin MU, Farkas A, Jacob T. Influence of Residual Water Traces on the Electrochemical Performance of Hydrophobic Ionic Liquids for Magnesium-Containing Electrolytes. CHEMSUSCHEM 2023; 16:e202300421. [PMID: 37338003 DOI: 10.1002/cssc.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
A trace amount of water is typically unavoidable as an impurity in ionic liquids, which is a huge challenge for their application in Mg-ion batteries. Here, we employed molecular sieves of different pore diameters (3, 4, and 5 Å), to effectively remove the trace amounts of water from 1-methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPip-TFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI). Notably, after sieving (water content <1 mg ⋅ L-1 ), new anodic peaks arise that are attributed to the formation of different anion-cation structures induced by minimizing the influence of hydrogen bonds. Furthermore, electrochemical impedance spectroscopy (EIS) reveals that the electrolyte resistance decreases by ∼10 % for MPPip-TFSI and by ∼28 % for BMP-TFSI after sieving. The electrochemical Mg deposition/dissolution is investigated in MPPip-TFSI/tetraglyme (1 : 1)+100 mM Mg(TFSI)2 +10 mM Mg(BH4 )2 using Ag/AgCl and Mg reference electrodes. The presence of a trace amount of water leads to a considerable shift of 0.9 V vs. Mg2+/ Mg in the overpotential of Mg deposition. In contrast, drying of MPPip-TFSI enhances the reversibility of Mg deposition/dissolution and suppresses the passivation of the Mg electrode.
Collapse
Affiliation(s)
- Omar W Elkhafif
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Hagar K Hassan
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU) - Electrochemical Energy Storage, Helmholtzstr. 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021, Karlsruhe, Germany
| | - Maximilian U Ceblin
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Attila Farkas
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU) - Electrochemical Energy Storage, Helmholtzstr. 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021, Karlsruhe, Germany
| |
Collapse
|
12
|
Bühlmeyer H, Hauner J, Eschenbacher R, Steffen J, Trzeciak S, Taccardi N, Görling A, Zahn D, Wasserscheid P, Libuda J. Structure Formation in an Ionic Liquid Wetting Layer: A Combined STM, IRAS, DFT and MD Study of [C 2 C 1 Im][OTf] on Au(111). Chemistry 2023; 29:e202301328. [PMID: 37277680 DOI: 10.1002/chem.202301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
In a solid catalyst with ionic liquid layer (SCILL), ionic liquid (IL) coatings are used to improve the selectivity of noble metal catalysts. To understand the origins of this selectivity control, we performed model studies by surface science methods in ultrahigh vacuum (UHV). We investigated the growth and thermal stability of ultrathin IL films by infrared reflection absorption spectroscopy (IRAS). We combined these experiments with scanning tunneling microscopy (STM) to obtain information on the orientation of the ions, the interactions with the surface, the intermolecular interactions, and the structure formation. Additionally, we performed DFT calculations and molecular dynamics (MD) simulations to interpret the experimental data. We studied the IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [C2 C1 Im][OTf] on Au(111) surfaces. We observe a weakly bound multilayer of [C2 C1 Im][OTf], which is stable up to 390 K, while the monolayer desorbs at ∼450 K. [C2 C1 Im][OTf] preferentially adsorbs at the step edges and elbows of the herringbone reconstruction of Au(111). The anion adsorbs via the SO3 group with the molecular axis perpendicular to the surface. At low coverage, the [C2 C1 Im][OTf] crystallizes in a glass-like 2D phase with short-range order. At higher coverage, we observe a phase transition to a 6-membered ring structure with long-range order.
Collapse
Affiliation(s)
- Hanna Bühlmeyer
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Jonas Hauner
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Roman Eschenbacher
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Julien Steffen
- Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Simon Trzeciak
- Computer Chemistry Center, CCC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Nicola Taccardi
- Chair of Chemical Engineering I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Andreas Görling
- Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dirk Zahn
- Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Computer Chemistry Center, CCC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Peter Wasserscheid
- Chair of Chemical Engineering I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
13
|
Liu RZ, Shen ZZ, Wen R, Wan LJ. Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. J Electroanal Chem (Lausanne) 2023; 938:117443. [DOI: 10.1016/j.jelechem.2023.117443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
14
|
Li H, Liang Y, Ju W, Schneider O, Stimming U. In Situ Monitoring of the Surface Evolution of a Silver Electrode from Polycrystalline to Well-Defined Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14981-14987. [PMID: 36395357 DOI: 10.1021/acs.langmuir.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials. We found silver underwent a surface change from a polycrystalline structure to a well-defined surface arrangement in both electrolytes. In NaOH aqueous solution, the silver surface transferred in several minutes at a turning-point potential where hydrogen adsorbed and formed mainly (111) and (100) pits. Controversially, the surface evolution in the ionic liquid was much slower than that in the aqueous solution, and cation adsorption was observed in a wide potential range. The surface evolution of silver is proposed to be linked to the surface adsorbates as well as the formation of their complexes with undercoordinated silver atoms. The results also show that cathodic annealing of polycrystalline silver is a cheap, easy, and reliable way to obtain quasi-ordered crystal surfaces.
Collapse
Affiliation(s)
- Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Oliver Schneider
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Ulrich Stimming
- Department of Physics E19, Technische Universität München, James-Franck-Str.1, Garching b. München 85748, Germany
| |
Collapse
|
15
|
Wang YQ, Dan XH, Wang X, Yi ZY, Fu J, Feng YC, Hu JS, Wang D, Wan LJ. Probing the Synergistic Effects of Mg 2+ on CO 2 Reduction Reaction on CoPc by In Situ Electrochemical Scanning Tunneling Microscopy. J Am Chem Soc 2022; 144:20126-20133. [PMID: 36259686 DOI: 10.1021/jacs.2c09862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the in situ electrochemical scanning tunneling microscopy (ECSTM) study on the synergistic effect of Mg2+ in CO2 reduction reaction (CO2RR) catalyzed by cobalt phthalocyanine (CoPc). ECSTM measurement molecularly resolves the self-assembled CoPc monolayer on the Au(111) substrate. In the CO2 environment, high-contrast species are observed in the adlayer and assigned to the CO2 adsorption on CoPc. Furthermore, the contrast of the CO2-bound complex is higher in Mg2+-containing electrolytes than in Mg2+-free electrolytes, indicating the formation of the CoPc-CO2-Mg2+ complex. The surface coverage of adsorbed CO2 is positively correlated with the Mg2+ concentration as the additive in electrolytes up to a plateau of 30.8 ± 2.7% when c(Mg2+) > 30 mM. The potential step experiment indicates the higher CO2 adsorption dynamics in Mg2+-containing electrolytes than without Mg2+. The rate constants of CO2 adsorption and dissociation in different electrolytes are extracted from the data fitting of statistical results from in situ ECSTM experiments.
Collapse
Affiliation(s)
- Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiao-Han Dan
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - JiaJu Fu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Ya-Chen Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Jin-Song Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
16
|
Peng K, Lin J, Yang D, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuilin Peng
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Deshuai Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
17
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wang L, Zhang M, Sun C, Yin L, Kang B, Xu J, Chen H. Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angew Chem Int Ed Engl 2022; 61:e202117177. [DOI: 10.1002/anie.202117177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Lu‐Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Miao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
19
|
Seebeck J, Merlet C, Meißner RH. Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. PHYSICAL REVIEW LETTERS 2022; 128:086001. [PMID: 35275675 DOI: 10.1103/physrevlett.128.086001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale surface curvatures, either convex or concave, strongly influence the charging behavior of supercapacitors. Rationalizing individual influences of electrode atoms to the capacitance is possible by interpreting distinct elements of the charge-charge covariance matrix derived from individual charge variations of the electrode atoms. An ionic liquid solvated in acetonitrile and confined between two electrodes, each consisting of three undulated graphene layers, serves as a demonstrator to illustrate pronounced and nontrivial features of the capacitance with respect to the electrode curvature. In addition, the applied voltage determines whether a convex or concave surface contributes to increased capacitance. While at lower voltages capacitance variations are in general correlated with ion number density variations in the double layer formed in the concave region of the electrode, for certain electrode designs a surprisingly strong contribution of the convex part to the differential capacitance is found both at higher and lower voltages.
Collapse
Affiliation(s)
- Jannes Seebeck
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9 - France and Réseau sur le Stockage Electrochimique de l'Energie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Energie, Rue Baudelocque, 80039 Amiens, France
| | - Robert H Meißner
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany and Helmholtz-Zentrum Hereon, Institute of Surface Science, 21502 Geesthacht, Germany
| |
Collapse
|
20
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
21
|
Shimizu M, Sugiyama Y, Horita M, Yoshii K, Arai S. Cation‐Structure Effects on Zinc Electrodeposition and Crystallographic Orientation in Ionic Liquids. ChemElectroChem 2022. [DOI: 10.1002/celc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Shimizu
- Shinshu University Graduate School of Engineering Faculty of Engineering: Shinshu Daigaku Materials Chemistry 4-17-1 Wakasato, Nagano 380-8553 Nagano JAPAN
| | - Yusuke Sugiyama
- Shinshu University Graduate School of Engineering Faculty of Engineering: Shinshu Daigaku Materials Chemistry JAPAN
| | - Masaomi Horita
- Shinshu University Graduate School of Engineering Faculty of Engineering: Shinshu Daigaku Technical division JAPAN
| | - Kazuki Yoshii
- National Institute of Advanced Industrial Science and Technology Battery Technology Research Division: Sangyo Gijutsu Sogo Kenkyujo Denchi Gijutsu Kenkyu Bumon Energy and Environment JAPAN
| | - Susumu Arai
- Shinshu University Graduate School of Engineering Faculty of Engineering: Shinshu Daigaku Materials Chemistry JAPAN
| |
Collapse
|
22
|
Wang L, Zhang M, Sun C, Yin L, Kang B, Xu J, Chen H. Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu‐Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Miao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Sieling T, Petersen T, Alpers T, Christoffers J, Klüner T, Brand I. CD Stretching Modes are Sensitive to the Microenvironment in Ionic Liquids. Chemistry 2021; 27:17808-17817. [PMID: 34510599 PMCID: PMC9298891 DOI: 10.1002/chem.202102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Knowledge of the structure of the electrical double layer in ionic liquids (IL) is crucial for their applications in electrochemical technologies. We report the synthesis and applicability of an imidazolium-based amphiphilic ionic liquid with a perdeuterated alkyl chain for studies of electric potential-dependent rearrangements, and changes in the microenvironment in a monolayer on a Au(111) surface. Electrochemical measurements show two states of the organization of ions on the electrode surface. In situ IR spectroscopy shows that the alkyl chains in imidazolium cations change their orientation depending on the adsorption state. The methylene-d2 stretching modes in the perdeuterated IL display a reversible, potential-dependent appearance of a new band. The presence of this mode also depends on the anion in the IL. Supported by quantum chemical calculations, this new mode is assigned to a second νas (CD2 ) band in alkyl-chain fragments embedded in a polar environment of the anions/solvent present in the vicinity of the imidazolium cation and electrode. It is a measure of the potential-dependent segregation between polar and nonpolar environments in the layers of an IL closest to the electrode.
Collapse
Affiliation(s)
- Thorben Sieling
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Thorben Petersen
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Torben Alpers
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | | | - Thorsten Klüner
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Izabella Brand
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| |
Collapse
|
24
|
YOSHII K. Electrodeposition of Metals and Preparation of Metal Nanoparticles in Nonaqueous Electrolytes and Their Application to Energy Devices. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuki YOSHII
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
25
|
Lu Y, Xu Y, Lu L, Xu Z, Liu H. Interfacial interactions and structures of protic ionic liquids on a graphite surface: A first-principles study and comparison with aprotic ionic liquids. Phys Chem Chem Phys 2021; 23:18338-18348. [PMID: 34612375 DOI: 10.1039/d1cp02100a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protic ionic liquids (PILs) have currently been indicated as promising alternative electrolytes in electrical storage devices, such as lithium-ion batteries and supercapacitors. However, compared with the well-studied aprotic ionic liquids (AILs), the knowledge of the interface between PILs and electrode material surfaces is very rare to date. In this work, the adsorption behaviors of three groups of PILs, i.e. pyrrolidinium-based, imidazolium-based, and ammonium-based, on graphite was systematically investigated using first-principles calculations. The corresponding AILs were also taken into account for comparison. The adsorption mechanism of these ILs on the surface is controlled by the interplay of strong electrostatic interactions between adsorbed ions, weak vdW forces between ILs and substrate, and many aromatic interactions including π-π stacking and C-H/N-Hπ contacts. PILs do show quite different preferential interfacial interactions and structures on the graphite surface with respect to AILs, arising mainly from the anion-substrate interactions. Particularly, proton transfer takes place in the PILs consisting of the imidazolium/ammonium cation and the nitrate anion in the gas phase, but it tends to be attenuated or even disappears on graphite caused by interfacial interactions.
Collapse
Affiliation(s)
- Yunxiang Lu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | | | | | |
Collapse
|
26
|
Schuett FM, Heubach MK, Mayer J, Ceblin MU, Kibler LA, Jacob T. Electrodeposition of Zinc onto Au(111) and Au(100) from the Ionic Liquid [MPPip][TFSI]. Angew Chem Int Ed Engl 2021; 60:20461-20468. [PMID: 34197037 PMCID: PMC8456931 DOI: 10.1002/anie.202107195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 11/10/2022]
Abstract
The improvement of rechargeable zinc/air batteries was a hot topic in recent years. Predominantly, the influence of water and additives on the structure of the Zn deposit and the possible dendrite formation were studied. However, the effect of the surface structure of the underlying substrate was not focused on in detail, yet. We now show the differences in electrochemical deposition of Zn onto Au(111) and Au(100) from the ionic liquid N‐methyl‐N‐propylpiperidinium bis(trifluoromethanesulfonyl)imide. The fundamental processes were initially characterized via cyclic voltammetry and in situ scanning tunnelling microscopy. Bulk deposits were then examined using Auger electron spectroscopy and scanning electron microscopy. Different structures of Zn deposits are observed during the initial stages of electrocrystallisation on both electrodes, which reveals the strong influence of the crystallographic orientation on the metal deposition of zinc on gold.
Collapse
Affiliation(s)
- Fabian M Schuett
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Maren-Kathrin Heubach
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Jerome Mayer
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Maximilian U Ceblin
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Ludwig A Kibler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
27
|
Schuett FM, Heubach M, Mayer J, Ceblin MU, Kibler LA, Jacob T. Electrodeposition of Zinc onto Au(111) and Au(100) from the Ionic Liquid [MPPip][TFSI]. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fabian M. Schuett
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Maren‐Kathrin Heubach
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Jerome Mayer
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Maximilian U. Ceblin
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| | - Ludwig A. Kibler
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| |
Collapse
|
28
|
Zhang S, Nishi N, Katakura S, Sakka T. Evaluation of static differential capacitance at the [C 4mim +][TFSA -]/electrode interface using molecular dynamics simulation combined with electrochemical surface plasmon resonance measurements. Phys Chem Chem Phys 2021; 23:13905-13917. [PMID: 34132289 DOI: 10.1039/d1cp01435h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular dynamic (MD) simulations have been performed for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C4mim+][TFSA-]), an ionic liquid (IL), on a charged graphene electrode to achieve the quantitative analysis of the static differential capacitance using the electrochemical surface plasmon resonance (ESPR). The MD simulations have provided the surface charge density on the electrode and ionic distributions in the electric double layer, both of which are indispensable for the evaluation of static differential capacitance using ESPR but are difficult to be measured by experimental techniques. This approach has allowed the quantitative analysis and explanation of the SPR angle shift in ESPR. The major contribution to the SPR angle shift is found to be the change in ionic concentrations of the first ionic layer on the electrode, owing to higher polarizabilities of ions in the first ionic layer than those in the overlayers. Moreover, the ionic orientation on the electrode and ionic multilayer structure have also been investigated in detail. The butyl group of C4mim+ in the first ionic layer is found to provide extra room for C4mim+ in the second ionic layer but exclude TFSA-, which affects the interval and regularity of ionic multilayers.
Collapse
Affiliation(s)
- Shiwei Zhang
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
29
|
Wang Y, Sun Y, Dong Y, Tian G. Characterization of the Interface Structure of 1-Ethyl-2,3-alkylimidazolium Bis(trifluoromethylsulfonyl)imide on a Au(111) Surface with Molecular Dynamics Simulations. J Phys Chem B 2021; 125:3677-3689. [PMID: 33797248 DOI: 10.1021/acs.jpcb.0c09994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a new type of green electrolyte, ionic liquids have been extensively and successfully used in electrochemical systems. It is extremely important to understand the structure and characteristics of their electric double layers. The microscopic structures of room-temperature ionic liquids 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]TFSI) were studied on a flat Au(111) surface using molecular dynamics simulations. Since the interactions of [Emmim]TFSI, [Emmim]+, and TFSI- with the Au(111) surface are stronger than those of molecules (or ions) in the [Emim]TFSI system, the linear arrangement of [Emmim]TFSI and the worm-like pattern of the [Emim]TFSI system can be found near the Au(111) surface. Meanwhile, cations are all parallel to the electrode in the [Emmim]TFSI/Au(111) system and tilted toward the surface in the [Emim]TFSI/Au(111) system. TFSI- presents trans and cis conformations in [Emim]TFSI and [Emmim]TFSI systems adjacent to Au(111), respectively. A Helmholtz-like layer structure with alternating oscillations of anionic and cationic layers can be found in the [Emim]TFSI system, while the molecular layer with cations and anions existing simultaneously can be found in [Emmim]TFSI. Our results confirm that the substitution of hydrogen on C1 by methyl groups in the imidazole ring increases the interaction between the particles. It has also been proved that the change in the anion conformation and cation orientation in the [Emmim]TFSI system can be attributed to the different interaction energies of various particles. The above reasons ultimately make the images on Au(111) different in the two systems. The results provide a new perspective for studying the structure of double layers. They are helpful in deepening the understanding of the interface behavior of ionic liquids and providing a theoretical basis for the design of functional ionic liquids that are suitable for electrochemical equipment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.,Yunnan Open University, Kunming 650223, China
| | - Yifei Sun
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yubin Dong
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
30
|
Shin S, Greco F, Maier F, Steinrück HP. Enrichment effects of ionic liquid mixtures at polarized electrode interfaces monitored by potential screening. Phys Chem Chem Phys 2021; 23:10756-10762. [PMID: 33978646 PMCID: PMC8115399 DOI: 10.1039/d0cp04811a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The behavior of ionic liquids (ILs) at charged interfaces is pivotal for their application in supercapacitors and electrochemical cells. Recently, we demonstrated for neat ILs that potential screening at polarized electrode interfaces shows a characteristic voltage dependence, as determined in situ by X-ray photoelectron spectroscopy. Herein, we use this fingerprint-type behavior to characterize the nature of the IL/electrode interfaces for IL mixtures of [C8C1Im][Tf2N] and [C8C1Im]Cl on Au and Pt electrodes. For Au, the IL/electrode interfaces are dominated by the Cl− anions, even down to a 0.1 mol% [C8C1Im]Cl content. In contrast, [Tf2N]− anions enrich at the IL/Pt electrode interfaces down to 10 mol% [C8C1Im][Tf2N]; only at lower concentrations does a transition to Cl− enrichment occur. These mixture studies demonstrate that even small concentrations of another IL or contamination, e.g. remaining from synthesis, can strongly influence the situation at charged IL interfaces. The interface of electrodes and IL mixtures has been studied by in situ XPS. We found that the concentration of counterions at the interface can strongly deviate from the bulk composition due to interactions between electrode and IL.![]()
Collapse
Affiliation(s)
- Sunghwan Shin
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
31
|
Zhang G, Straub S, Shen L, Hermans Y, Schmatz P, Reichert AM, Hofmann JP, Katsounaros I, Etzold BJM. Probing CO 2 Reduction Pathways for Copper Catalysis Using an Ionic Liquid as a Chemical Trapping Agent. Angew Chem Int Ed Engl 2020; 59:18095-18102. [PMID: 32697377 PMCID: PMC7589334 DOI: 10.1002/anie.202009498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/28/2022]
Abstract
The key to fully leveraging the potential of the electrochemical CO2 reduction reaction (CO2RR) to achieve a sustainable solar-power-based economy is the development of high-performance electrocatalysts. The development process relies heavily on trial and error methods due to poor mechanistic understanding of the reaction. Demonstrated here is that ionic liquids (ILs) can be employed as a chemical trapping agent to probe CO2RR mechanistic pathways. This method is implemented by introducing a small amount of an IL ([BMIm][NTf2 ]) to a copper foam catalyst, on which a wide range of CO2RR products, including formate, CO, alcohols, and hydrocarbons, can be produced. The IL can selectively suppress the formation of ethylene, ethanol and n-propanol while having little impact on others. Thus, reaction networks leading to various products can be disentangled. The results shed new light on the mechanistic understanding of the CO2RR, and provide guidelines for modulating the CO2RR properties. Chemical trapping using an IL adds to the toolbox to deduce the mechanistic understanding of electrocatalysis and could be applied to other reactions as well.
Collapse
Affiliation(s)
- Gui‐Rong Zhang
- Ernst-Berl-Institut für Technische und Makromolekulare ChemieTechnical University of DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Sascha‐Dominic Straub
- Ernst-Berl-Institut für Technische und Makromolekulare ChemieTechnical University of DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Liu‐Liu Shen
- Ernst-Berl-Institut für Technische und Makromolekulare ChemieTechnical University of DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Yannick Hermans
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto-Berndt-Str. 364287DarmstadtGermany
| | - Patrick Schmatz
- Ernst-Berl-Institut für Technische und Makromolekulare ChemieTechnical University of DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| | - Andreas M. Reichert
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstraße 391058ErlangenGermany
| | - Jan P. Hofmann
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto-Berndt-Str. 364287DarmstadtGermany
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstraße 391058ErlangenGermany
| | - Bastian J. M. Etzold
- Ernst-Berl-Institut für Technische und Makromolekulare ChemieTechnical University of DarmstadtAlarich-Weiss-Str. 864287DarmstadtGermany
| |
Collapse
|
32
|
Zhang G, Straub S, Shen L, Hermans Y, Schmatz P, Reichert AM, Hofmann JP, Katsounaros I, Etzold BJM. Probing CO
2
Reduction Pathways for Copper Catalysis Using an Ionic Liquid as a Chemical Trapping Agent. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gui‐Rong Zhang
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| | - Sascha‐Dominic Straub
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| | - Liu‐Liu Shen
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| | - Yannick Hermans
- Surface Science Laboratory Department of Materials and Earth Sciences Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Patrick Schmatz
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| | - Andreas M. Reichert
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Forschungszentrum Jülich GmbH Egerlandstraße 3 91058 Erlangen Germany
| | - Jan P. Hofmann
- Surface Science Laboratory Department of Materials and Earth Sciences Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Forschungszentrum Jülich GmbH Egerlandstraße 3 91058 Erlangen Germany
| | - Bastian J. M. Etzold
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| |
Collapse
|
33
|
Ochs O, Martsinovich N, Heckl WM, Lackinger M. Quantifying the Ultraslow Desorption Kinetics of 2,6-Naphthalenedicarboxylic Acid Monolayers at Liquid-Solid Interfaces. J Phys Chem Lett 2020; 11:7320-7326. [PMID: 32787298 DOI: 10.1021/acs.jpclett.0c01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kinetic effects in monolayer self-assembly at liquid-solid interfaces are not well explored but can provide unique insights. We use variable-temperature scanning tunneling microscopy (STM) to quantify the desorption kinetics of 2,6-naphthalenedicarboxylic acid (NDA) monolayers at nonanoic acid-graphite interfaces. Quantitative tracking of the decline of molecular coverages by STM between 57.5 and 65.0 °C unveiled single-exponential decays over the course of days. An Arrhenius plot of rate constants derived from fits results in a surprisingly high energy barrier of 208 kJ mol-1 that strongly contrasts with the desorption energy of 16.4 kJ mol-1 with respect to solution as determined from a Born-Haber cycle. This vast discrepancy indicates a high-energy transition state. Expanding these studies to further systems is the key to pinpointing the molecular origin of the remarkably large NDA desorption barrier.
Collapse
Affiliation(s)
- Oliver Ochs
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | | | - Wolfgang M Heckl
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Markus Lackinger
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| |
Collapse
|
34
|
Kemna A, Braunschweig B. Potential-Induced Adsorption and Structuring of Water at the Pt(111) Electrode Surface in Contact with an Ionic Liquid. J Phys Chem Lett 2020; 11:7116-7121. [PMID: 32787322 DOI: 10.1021/acs.jpclett.0c02037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water adsorption is important in many fields from surface electrochemistry to electrocatalysis, where molecular-level information is much needed in order to gain a detailed understanding of the role of interfacial water. Here we report on water at Pt(111) surfaces in contact with an [EIMIM][BF4] ionic liquid, which was spectroscopically resolved by using in situ sum-frequency generation (SFG). O-H modes are used to study water adsorption and water structure as a function of electrode potential, while the analysis of C-H modes is used to infer orientational changes of [EMIM] cations at the interface. Different from the bulk where free water molecules are found, SFG spectra provide evidence that an interfacial layer with an extended network of hydrogen-bonded water molecules exists and grows with increasing absolute potential which is used to identify the potential of zero charge at +0.1 V SHE, where a pronounced minimum in O-H intensity is found.
Collapse
Affiliation(s)
- Andre Kemna
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
35
|
Meusel M, Lexow M, Gezmis A, Schötz S, Wagner M, Bayer A, Maier F, Steinrück HP. Atomic Force and Scanning Tunneling Microscopy of Ordered Ionic Liquid Wetting Layers from 110 K up to Room Temperature. ACS NANO 2020; 14:9000-9010. [PMID: 32609482 PMCID: PMC7391993 DOI: 10.1021/acsnano.0c03841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/01/2020] [Indexed: 05/31/2023]
Abstract
Ionic liquids (ILs) are used as ultrathin films in many applications. We studied the nanoscale arrangement within the first layer of 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C1C1Im] [Tf2N]) on Au(111) between 400 and 110 K in ultrahigh vacuum by scanning tunneling and noncontact atomic force microscopy with molecular resolution. Compared to earlier studies on similar ILs, a different behavior is observed, which we attribute to the small size and symmetrical shape of the cation: (a) In both AFM and STM only the anions are imaged; (b) only long-range-ordered but no amorphous phases are observed; (c) the hexagonal room-temperature phase melts 30-50 K above the IL's bulk melting point; (d) at 110 K, striped and hexagonal superstructures with two and three ion pairs per unit cell, respectively, are found. AFM turned out to be more stable at higher temperature, while STM revealed more details at low temperature.
Collapse
Affiliation(s)
- Manuel Meusel
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Matthias Lexow
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Afra Gezmis
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Simon Schötz
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Margareta Wagner
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/134, 1040 Vienna, Austria
| | - Andreas Bayer
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Florian Maier
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
36
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Wang X, Cai ZF, Wang YQ, Feng YC, Yan HJ, Wang D, Wan LJ. In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2020; 59:16098-16103. [PMID: 32495960 DOI: 10.1002/anie.202005242] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Indexed: 01/01/2023]
Abstract
We report a molecular investigation of a cobalt phthalocyanine (CoPc)-catalyzed CO2 reduction reaction by electrochemical scanning tunneling microscopy (ECSTM). An ordered adlayer of CoPc was prepared on Au(111). Approximately 14 % of the adsorbed species appeared with high contrast in a CO2 -purged electrolyte environment. The ECSTM experiments indicate the proportion of high-contrast species correlated with the reduction of CoII Pc (-0.2 V vs. saturated calomel electrode (SCE)). The high-contrast species is ascribed to the CoPc-CO2 complex, which is further confirmed by theoretical simulation. The sharp contrast change from CoPc-CO2 to CoPc is revealed by in situ ECSTM characterization of the reaction. Potential step experiments provide dynamic information for the initial stage of the reaction, which include the reduction of CoPc and the binding of CO2 , and the latter is the rate-limiting step. The rate constant of the formation and dissociation of CoPc-CO2 is estimated on the basis of the in situ ECSTM experiment.
Collapse
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Feng Cai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Chen Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Wang X, Cai Z, Wang Y, Feng Y, Yan H, Wang D, Wan L. In Situ Scanning Tunneling Microscopy of Cobalt‐Phthalocyanine‐Catalyzed CO
2
Reduction Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhen‐Feng Cai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ya‐Chen Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui‐Juan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Sieling T, Brand I. In Situ Spectroelectrochemical Investigation of Potential‐Dependent Changes in an Amphiphilic Imidazolium‐Based Ionic Liquid Film on the Au(111) Electrode Surface. ChemElectroChem 2020. [DOI: 10.1002/celc.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thorben Sieling
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| | - Izabella Brand
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| |
Collapse
|
40
|
Li Y, Intikhab S, Malkani A, Xu B, Snyder J. Ionic Liquid Additives for the Mitigation of Nafion Specific Adsorption on Platinum. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yawei Li
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Saad Intikhab
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnav Malkani
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joshua Snyder
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Shao H, Wu YC, Lin Z, Taberna PL, Simon P. Nanoporous carbon for electrochemical capacitive energy storage. Chem Soc Rev 2020; 49:3005-3039. [DOI: 10.1039/d0cs00059k] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of nanoporous carbon materials in the application of EDLCs, including a better understanding of the charge storage mechanisms by combining the advanced techniques and simulations methods.
Collapse
Affiliation(s)
- Hui Shao
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Yih-Chyng Wu
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Zifeng Lin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Pierre-Louis Taberna
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Patrice Simon
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| |
Collapse
|
42
|
Greco F, Shin S, Williams FJ, Heller BSJ, Maier F, Steinrück H. Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ X-ray Photoelectron Spectroscopy. ChemistryOpen 2019; 8:1365-1368. [PMID: 31844602 PMCID: PMC6892450 DOI: 10.1002/open.201900211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/12/2022] Open
Abstract
A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.
Collapse
Affiliation(s)
- Francesco Greco
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Sunghwan Shin
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Federico J. Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICETUniversidad de Buenos Aires, Ciudad UniversitariaPabellón 2Buenos AiresC1428EHAArgentina
| | - Bettina S. J. Heller
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Hans‐Peter Steinrück
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
43
|
Kim J, Weber I, Buchner F, Schnaidt J, Behm RJ. Surface chemistry and electrochemistry of an ionic liquid and lithium on Li4Ti5O12(111)—A model study of the anode|electrolyte interface. J Chem Phys 2019; 151:134704. [DOI: 10.1063/1.5119765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jihyun Kim
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Isabella Weber
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
- Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Florian Buchner
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Johannes Schnaidt
- Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
- Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
| |
Collapse
|
44
|
Magnussen OM. Atomic‐Scale Insights into Electrode Surface Dynamics by High‐Speed Scanning Probe Microscopy. Chemistry 2019; 25:12865-12883. [DOI: 10.1002/chem.201901709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied PhysicsKiel University Olshausenstr. 40 24098 Kiel Germany
| |
Collapse
|
45
|
Liu S, Peng J, Chen L, Sebastián P, Feliu JM, Yan J, Mao B. In-situ STM and AFM Studies on Electrochemical Interfaces in imidazolium-based ionic liquids. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Alwast D, Schnaidt J, Hancock K, Yetis G, Behm RJ. Effect of Li
+
and Mg
2+
on the Electrochemical Decomposition of the Ionic Liquid 1‐Butyl‐1‐ methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and Related Electrolytes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dorothea Alwast
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
| | - Johannes Schnaidt
- Helmholtz-Institute Ulm (HIU)Electrochemical Energy Storage Helmholtzstr. 11 D-89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640 D-76021 Karlsruhe Germany
| | - Kurtus Hancock
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
| | - Gülsah Yetis
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU)Electrochemical Energy Storage Helmholtzstr. 11 D-89081 Ulm Germany
| |
Collapse
|
47
|
Docampo-Álvarez B, Gómez-González V, Cabeza O, Ivaništšev VB, Gallego LJ, Varela LM. Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Radiom M. Ionic liquid–solid interface and applications in lubrication and energy storage. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Jusys Z, Schnaidt J, Behm RJ. O 2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg 2+ ions: Product formation and adlayer dynamics. J Chem Phys 2019; 150:041724. [PMID: 30709319 DOI: 10.1063/1.5051982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aiming at a detailed understanding of the interaction between an ionic liquid, O2, and electrodes in Mg-air batteries, we performed a combined differential electrochemical mass spectrometry and in situ infrared spectroscopy model study on the interaction between the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) and a gold film electrode in the presence and absence of O2 and Mg2+ ions in the potential range relevant for the oxygen reduction reaction (ORR) and evolution reaction. Detailed information on the dynamic exchange of adsorbed ions, on the stability/decomposition of the ionic liquid, and on the activity/selectivity/reversibility of the ORR is derived from measurements performed under potentiodynamic and potentiostatic conditions. In neat BMP-TFSI, we find the dynamics of the potential induced exchange of adsorbed ions to depend significantly on the exchange direction. In the presence of O2, the anions formed in the ORR distinctly affect the adsorption characteristics of the IL ions and the exchange dynamics. Furthermore, the ORR changes from reduction to superoxide anions at moderate potentials to reduction to peroxide anion at more negative potentials. In the additional presence of Mg2+ ions, dominant magnesium peroxide and oxide formation result in an irreversible ORR, in contrast to the requirements of an efficient re-chargeable Mg-air battery. In addition, these ions result in the increasing formation of a blocking adlayer, reducing the coverage of adsorbed IL species.
Collapse
Affiliation(s)
- Zenonas Jusys
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Johannes Schnaidt
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, D-89081 Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| |
Collapse
|
50
|
Panhwar GM, Mysyk R, Rojo T, Shaikhutdinov S, Bondarchuk O. Electrowetting of Ionic Liquid on Graphite: Probing via in Situ Electrochemical X-ray Photoelectron Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14528-14536. [PMID: 30412414 DOI: 10.1021/acs.langmuir.8b02900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thin films of ionic liquid 1-ethyl-3-methylimidazolium bis(fluoromethylsulfonyl)imide ([EMIm][FSI]) vapor-deposited on highly oriented pyrographite (HOPG) were studied by X-ray photoelectron spectroscopy and atomic force microscopy. The results revealed a reversible morphological transition from a "drop-on-layer" structure to a "flat-layer" structure at positive, and not at negative, polarization. The effect is rationalized in terms of electric-field-induced reduction of the liquid-solid transition temperature in the ionic liquid film, when its thickness is comparable to the charge screening length. The observed bias asymmetry of [EMIm][FSI] electrowetting on HOPG is tentatively explained by the bilayer structure at the interface driven by the affinity of the imidazolium ring to the HOPG surface.
Collapse
Affiliation(s)
- Ghulam M Panhwar
- CIC Energigune , Parque Tecnológico de Alava , c/A. Einstein 48 , 01510 Miñano , Alava , Spain
| | - Roman Mysyk
- CIC Energigune , Parque Tecnológico de Alava , c/A. Einstein 48 , 01510 Miñano , Alava , Spain
| | - Teófilo Rojo
- CIC Energigune , Parque Tecnológico de Alava , c/A. Einstein 48 , 01510 Miñano , Alava , Spain
| | - Shamil Shaikhutdinov
- Abteilung Chemische Physik , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Oleksandr Bondarchuk
- CIC Energigune , Parque Tecnológico de Alava , c/A. Einstein 48 , 01510 Miñano , Alava , Spain
| |
Collapse
|