1
|
Wen Y, Di X, Chen Z, Zhang X, Pei Z, Pei Y. Supramolecular palladium complexes based on guanidinium pillar[5]arene for cancer therapy. Chem Commun (Camb) 2024; 60:12694-12697. [PMID: 39382516 DOI: 10.1039/d4cc04312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The supramolecular palladium complex G-Pd, formed via self-assembly of the Pd-complex of guanidinium pillar[5]arene with Pd2+, was used to encapsulate doxorubicin to form G-Pd@DOX. The nanoparticles exhibit responsiveness to glutathione, controlled drug release, the ability to damage mitochondria, and potent anticancer activity while maintaining low toxicity towards normal cells. This work provides a good example for the application of pillararene-based palladium complexes in cancer therapy and is significant for the discovery of new medicines from supramolecular coordination complexes.
Collapse
Affiliation(s)
- Yafei Wen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xiaojiao Di
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xuxu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
2
|
Jiang M, Li W, Liang J, Pang M, Li S, Xu G, Zhu M, Liang H, Zhang Z, Yang F. Developing a Palladium(II) Agent to Overcome Multidrug Resistance and Metastasis of Liver Tumor by Targeted Multiacting on Tumor Cell, Inactivating Cancer-Associated Fibroblast and Activating Immune Response. J Med Chem 2024; 67:16296-16310. [PMID: 39238096 DOI: 10.1021/acs.jmedchem.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| |
Collapse
|
3
|
Dietl MC, Maag M, Ber S, Rominger F, Rudolph M, Caligiuri I, Andele PK, Mkhalid IAI, Rizzolio F, Nogara PA, Orian L, Scattolin T, Hashmi ASK. Comparative study of the antiproliferative activity of heterometallic carbene gold(i)-platinum(ii) and gold(i)-palladium(ii) complexes in cancer cell lines. Chem Sci 2024:d4sc04585h. [PMID: 39246355 PMCID: PMC11376197 DOI: 10.1039/d4sc04585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
The stepwise, one-pot synthesis of heterobimetallic carbene gold(i) platinum(ii) complexes from readily available starting materials is presented. The protecting group free methodology is based on the graduated nucleophilicities of aliphatic and aromatic amines as linkers between both metal centers. This enables the selective, sequential installation of the metal fragments. In addition, the obtained complexes were tested as potential anticancer agents and directly compared to their gold(i) palladium(ii) counterparts.
Collapse
Affiliation(s)
- Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Melina Maag
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sophia Ber
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
| | - Pacome K Andele
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ibraheem A I Mkhalid
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Pablo A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul) Av. Leonel de Moura Brizola, 2501 96418-400 Bagé RS Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
4
|
Bortolamiol E, Mauceri M, Piccolo R, Cavarzerani E, Demitri N, Donati C, Gandin V, Brezar SK, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Palladium(II)-Indenyl Complexes Bearing N-Heterocyclic Carbene (NHC) Ligands as Potent and Selective Metallodrugs toward High-Grade Serous Ovarian Cancer Models. J Med Chem 2024; 67:14414-14431. [PMID: 39119630 DOI: 10.1021/acs.jmedchem.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Chiara Donati
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, 34100 Trieste, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Katkova SA, Bunev AS, Gasanov RE, Khochenkov DA, Kulsha AV, Ivashkevich OA, Serebryanskaya TV, Kinzhalov MA. Metal-(Acyclic Diaminocarbene) Complexes Demonstrate Nanomolar Antiproliferative Activity against Triple-Negative Breast Cancer. Chemistry 2024; 30:e202400101. [PMID: 38363795 DOI: 10.1002/chem.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Hydrolytically stable PdII and PtII complexes supported by acyclic diaminocarbene ligands represent a novel class of structural organometallic anticancer agents exhibiting nanomolar antiproliferative activity in a panel of cancer cell lines (IC50 0.07-0.81 μM) and up to 300-fold selectivity for cancer cells over normal primary fibroblasts. The lead drug candidate was 300 times more potent than cisplatin in vitro and showed higher efficacy in reducing the growth of aggressive MDA-MB-231 xenograft tumors in mice.
Collapse
Affiliation(s)
- Svetlana A Katkova
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| | - Alexander S Bunev
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
| | - Rovshan E Gasanov
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
| | - Dmitry A Khochenkov
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
- Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478, Moscow, Russian Federation
| | - Andrey V Kulsha
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Oleg A Ivashkevich
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Tatiyana V Serebryanskaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| |
Collapse
|
6
|
Müller VVL, Simpson PV, Peng K, Basu U, Moreth D, Nagel C, Türck S, Oehninger L, Ott I, Schatzschneider U. Taming the Biological Activity of Pd(II) and Pt(II) Complexes with Triazolato "Protective" Groups: 1H, 77Se Nuclear Magnetic Resonance and X-ray Crystallographic Model Studies with Selenocysteine to Elucidate Differential Thioredoxin Reductase Inhibition. Inorg Chem 2023; 62:16203-16214. [PMID: 37713601 DOI: 10.1021/acs.inorgchem.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The biological activity of Pd(II) and Pt(II) complexes toward three different cancer cell lines as well as inhibition of selenoenzyme thioredoxin reductase (TrxR) was modulated in an unexpected way by the introduction of triazolate as a "protective group" to the inner metal coordination sphere using the iClick reaction of [M(N3)(terpy)]PF6 [M = Pd(II) or Pt(II) and terpy = 2,2':6',2″-terpyridine] with an electron-poor alkyne. In a cell proliferation assay using A549, HT-29, and MDA-MB-231 human cancer cell lines, the palladium compound was significantly more potent than the isostructural platinum analogue and exhibited submicromolar activity on the most responsive cell line. This difference was also reflected in the inhibitory efficiency toward TrxR with IC50 values of 0.1 versus 5.4 μM for the Pd(II) and Pt(II) complexes, respectively. UV/Vis kinetic studies revealed that the Pt compound binds to selenocysteine faster than to cysteine [k = (22.9 ± 0.2)·10-3 vs (7.1 ± 0.2)·10-3 s-1]. Selective triazolato ligand exchange of the title compounds with cysteine (Hcys) and selenocysteine (Hsec)─but not histidine (His) and 9-ethylguanine (9EtG)─was confirmed by 1H, 77Se, and 195Pt NMR spectroscopy. Crystal structures of three of the four ligand exchange products were obtained, including [Pt(sec)(terpy)]PF6 as the first metal complex of selenocysteine to be structurally characterized.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter V Simpson
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Uttara Basu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sebastian Türck
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Luciano Oehninger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
7
|
Omondi RO, Jaganyi D, Ojwach SO. Electronic and ring size effects of N-heterocyclic carbenes on the kinetics of ligand substitution reactions and DNA/protein interactions of their palladium(II) complexes. Biometals 2023; 36:1109-1123. [PMID: 37184626 PMCID: PMC10545578 DOI: 10.1007/s10534-023-00507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The synthesis, substitution kinetics and DNA/BSA interactions of four cationic Pd(II) complexes [Pd(1)Cl]BF4 (Pd1), [Pd(2)Cl]BF4 (Pd2), [Pd(3)Cl]BF4 (Pd3) and [Pd(4)Cl]BF4 (Pd4), derived from the reaction of [PdCl2(NCCH3)2] with ligands 2,6-bis(3-methylimidazolium-1-yl)pyridine dibromide (1), 2,6-bis(3-ethylimidazolium-1-yl)pyridine dibromide (2), 2,6-bis(1-methylimidazole-2-thione)pyridine (3), and 2,6-bis(1-ethylimidazole-2-thione)pyridine (4), respectively are reported. The complexes were characterised by various spectroscopic techniques and single crystal X-ray diffraction for compound Pd2. Kinetic reactivity of the complexes with the biologically relevant nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-monophosphate sodium salt (5'-GMP) was in the order: Pd1 > Pd2 > Pd3 > Pd4, which was largely dependent on the electronic and ring size of the chelate ligands, consistent with Density functional theory (DFT) simulations. The interactions of the complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) binding titrations showed strong binding. Both the experimental and in silico data reveal CT-DNA intercalative binding mode.
Collapse
Affiliation(s)
- Reinner O Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Deogratius Jaganyi
- School of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
8
|
Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246:112290. [PMID: 37327591 DOI: 10.1016/j.jinorgbio.2023.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Xanthine and its derivatives are considered an important class of N-heterocyclic purine compounds that have gained significant importance in medicinal chemistry. N-heterocyclic carbene (NHC) and N-coordinated metal complexes of xanthine and its derivatives have revealed a range of new possibilities for their use as therapeutic agents in addition to their established catalytic behavior. The metal complexes of xanthine and its derivatives have been designed and synthesized for the exploration of their potential therapeutic applications. These metal complexes based on the xanthine scaffold exhibited various potential medicinal applications including anticancer, antibacterial, and antileishmanial activity. The metal complexes of xanthine and its derivatives shall pave the way for the rational design and development of new therapeutic agents. In the present comprehensive review, we highlighted the recent advancements in the synthesis and medicinal applications of metal complexes based on N-heterocyclic carbene (NHC) derived from xanthine scaffolds.
Collapse
Affiliation(s)
- Mohammad Ovais Dar
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Roohi Mohiuddin
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| | - Mubashir H Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India.
| |
Collapse
|
9
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
10
|
Aleksanyan DV, Konovalov AV, Churusova SG, Rybalkina EY, Peregudov AS, Aksenova SA, Gutsul EI, Klemenkova ZS, Kozlov VA. Modulation of the Cytotoxic Properties of Pd(II) Complexes Based on Functionalized Carboxamides Featuring Labile Phosphoryl Coordination Sites. Pharmaceutics 2023; 15:pharmaceutics15041088. [PMID: 37111574 PMCID: PMC10146186 DOI: 10.3390/pharmaceutics15041088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Platinum-based drugs are commonly recognized as a keystone in modern cancer chemotherapy. However, intrinsic and acquired resistance as well as serious side effects often caused by the traditional Pt(II) anticancer agents prompt a continuous search for more selective and efficient alternatives. Today, significant attention is paid to the compounds of other transition metals, in particular those of palladium. Recently, our research group has suggested functionalized carboxamides as a useful platform for the creation of cytotoxic Pd(II) pincer complexes. In this work, a robust picolinyl- or quinoline-carboxamide core was combined with a phosphoryl ancillary donor group to achieve hemilabile coordination capable of providing the required level of thermodynamic stability and kinetic lability of the ensuing Pd(II) complexes. Several cyclopalladated derivatives featuring either a bi- or tridentate pincer-type coordination mode of the deprotonated phosphoryl-functionalized amides were selectively synthesized and fully characterized using IR and NMR spectroscopy as well as X-ray crystallography. The preliminary evaluation of the anticancer potential of the resulting palladocycles revealed a strong dependence of their cytotoxic properties on the binding mode of the deprotonated amide ligands and demonstrated certain advantages of the pincer-type ligation.
Collapse
|
11
|
Bulygina LA, Khrushcheva NS, Nelyubina YV, Dorovatovskii P, Strelkova TV, Alexeev MS, Mandegani Z, Nabavizadeh SM, Kuznetsov NY. Bilateral metalloheterocyclic systems based on palladacycle and piperidine-2,4-dione pharmacophores. Org Biomol Chem 2023; 21:2337-2354. [PMID: 36825470 DOI: 10.1039/d3ob00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The design of molecules with effective anticancer properties constructed from both dually active metal complex and organic fragments is a novel trend in medicinal chemistry. This concept suggests the impact of a drug on several biological targets or the synergistic action of both fragments as a single unit. We propose that the combination of a Pd-metallocomplex fragment and an organic unit can be an interesting model for anticancer drug discovery. The first phase in the development of such suggested molecules is the synthesis of bilateral metallosystems containing bioactive 6-substituted piperidin-2-one and a palladated N-phenylpyrazolic fragment. Both fragments were incorporated into one molecule through the fused pyrazole-piperidine-2-one unit followed by pyrazol-directed cyclopalladation of the phenyl-group with Pd(OAc)2. An effect of acceleration of the rate of the palladation by NH-lactam was observed. The synthesized hybrid palladacycles have been characterized and tested for their cytotoxic activity on three cancerous cell lines as PPh3 complexes, revealing structures with potential for further development and structural optimization.
Collapse
Affiliation(s)
- Ludmila A Bulygina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Natalya S Khrushcheva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Pavel Dorovatovskii
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova pl., 1, Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation. .,A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky Prospect 29, 119991, Moscow, Russian Federation
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation. .,A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky Prospect 29, 119991, Moscow, Russian Federation
| |
Collapse
|
12
|
Theiss T, Buss S, Maisuls I, López-Arteaga R, Brünink D, Kösters J, Hepp A, Doltsinis NL, Weiss EA, Strassert CA. Room-Temperature Phosphorescence from Pd(II) and Pt(II) Complexes as Supramolecular Luminophores: The Role of Self-Assembly, Metal-Metal Interactions, Spin-Orbit Coupling, and Ligand-Field Splitting. J Am Chem Soc 2023; 145:3937-3951. [PMID: 36780431 DOI: 10.1021/jacs.2c09775] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The synthesis as well as the structural and photophysical characterization of two isoleptic bis-cyclometalated Pt(II) and Pd(II) complexes, namely [PtL] and [PdL], bearing a tailored dianionic tetradentate ligand (L2-) are reported. The isostructural character and intermolecular interactions of [PtL] and [PdL] were assessed by NMR spectroscopy and X-ray diffraction analysis. Both complexes show fully ligand-controlled aggregation, demonstrating that a judicious molecular design can tune the photophysical properties. In fact, by introduction of fluorine atoms on defined positions and methoxy groups on complementary sites, metal-metal interactions can be forced by a head-to-tail stacking. Hence, [PtL] shows luminescence from metal-perturbed ligand-centered or from metal-metal-to-ligand charge-transfer triplet states in diluted solutions, in frozen glasses and in crystals, with high photoluminescence quantum yields and long lifetimes in the microsecond range. At room temperature (RT) in concentrated fluid solutions, the palladium analogue [PdL] surprisingly emits luminescence from aggregated species involving supramolecular interactions. Time-resolved photoluminescence and transient absorption spectroscopies demonstrated that ultrafast intersystem crossing occurs for both metals, which outruns any competitive relaxation pathway from the photoexcited singlet state. Furthermore, we demonstrate that the radiationless deactivation can be suppressed in frozen glassy matrices at 77 K and by intermolecular interactions in fluid solutions at RT. In both cases and as indicated by density functional theory calculations, the lowest emissive state acts as an energy trap from which the thermal population of dissociative states with formal occupation of an antibonding Pd-centered 4dx2-y2 orbital is suppressed. This occurs as the energy gap between the emissive and the dark states surpasses kT.
Collapse
Affiliation(s)
- Tobias Theiss
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CiMIC, SoN, CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CiMIC, SoN, CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CiMIC, SoN, CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States
| | - Dana Brünink
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, United States
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CiMIC, SoN, CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| |
Collapse
|
13
|
Tikhonov S, Morozova N, Plutinskaya A, Plotnikova E, Pankratov A, Abramova O, Diachkova E, Vasil’ev Y, Grin M. N-Heterocyclic Carbenes and Their Metal Complexes Based on Histidine and Histamine Derivatives of Bacteriopurpurinimide for the Combined Chemo- and Photodynamic Therapy of Cancer. Int J Mol Sci 2022; 23:ijms232415776. [PMID: 36555417 PMCID: PMC9779690 DOI: 10.3390/ijms232415776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is currently regarded as a promising method for the treatment of oncological diseases. However, it involves a number of limitations related to the specific features of the method and the specific characteristics of photosensitizer molecules, including tumor hypoxia, small depth of light penetration into the tumor tissue, and low accumulation sensitivity. These drawbacks can be overcome by combining PDT with other treatment methods, for example, chemotherapy. In this work, we were the first to obtain agents that contain bacteriopurpurinimide as a photodynamic subunit and complexes of gold(I) that implement the chemotherapy effect. To bind the latter agents, N-heterocyclic carbenes (NHC) based on histidine and histamine were obtained. We considered alternative techniques for synthesizing the target conjugates and selected an optimal one that enabled the production of preparative amounts for biological assays. In vitro studies showed that all the compounds obtained exhibited high photoinduced activity. The C-donor Au(I) complexes exhibited the maximum specific activity at longer incubation times compared to the other derivatives, both under exposure to light and without irradiation. In in vivo studies, the presence of histamine in the NHC-derivative of dipropoxy-BPI (7b) had no significant effect on its antitumor action, whereas the Au(I) metal complex of histamine NHC-derivative with BPI (8b) resulted in enhanced antitumor activity and in an increased number of remissions after photodynamic treatment.
Collapse
Affiliation(s)
- Sergey Tikhonov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Natalia Morozova
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Anna Plutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Ekaterina Plotnikova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Andrey Pankratov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Olga Abramova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 249031 Obninsk, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery of Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
| | - Yuriy Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. Bldg. 8\2, 119435 Moscow, Russia
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- Correspondence:
| |
Collapse
|
14
|
Geyl KK, Baykov SV, Kasatkina SO, Savko PY, Boyarskiy VP. Reaction of coordinated isocyanides with substituted N-(2-pyridyl) ureas as a route to new cyclometallated Pd(II) complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Zanetti RD, da Cunha GA, Moreira MB, Farias RL, de Souza RF, de Godoy PR, Brassesco MS, Rocha FV, Lima MA, Mauro AE, Netto AV. Orthopalladated N,N-Dimethyl-1-Phenethylamine Compounds Containing 2,6-Lutidine: Synthesis, Dna Binding Studies and Cytotoxicity Evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Albert J, Janabi BA, Granell J, Hashemi MS, Sainz D, Khosa MK, Calvis C, Messeguer R, Baldomà L, Badia J, Font-Bardia M. Synthesis and biological properties of palladium(II) cyclometallated compounds derived from (E)-2-((4-hydroxybenzylidene)amino)phenol. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Van-Ha N, T. T. Hien P, Dat DT, Thao DT. Highly cytotoxic palladium(ii) complexes with 1,2,4-triazole-derived carbene ligands. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
A novel heterometallic ruthenium-silver complex as potential antitumor agent: Studies on its synthesis, in vitro assays and interactions with biomolecular targets. Eur J Pharm Sci 2022; 179:106276. [PMID: 35977652 DOI: 10.1016/j.ejps.2022.106276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Certain ruthenium compounds are found to be potent growth inhibitors for cancer cells. In the current study, a novel ruthenium-triphenylphosphine (PPh3) cation and silver-2-mercapto nicotinate acid (H2mna) anion complex (RSC) was synthesized, and its molecular structure was determined by IR, NMR and X-ray crystallography. Biological assays revealed that RSC strongly inhibited the viability of MCF-7 and MDA-MB-231 cells with IC50 values of 9.6±1.1 and 7.5±0.8 µM, respectively, and significantly blocked their migration rates. Ultraviolet spectroscopy and fluorescence emission experiments demonstrated that RSC interacted with BSA, but not DNA. Further studies on [Ag6(Hmna)2(mna)4]4- binding with BSA and DNA found the anion did not interact with these biomolecules, indicating that RSC exerted its biological functions through its ruthenium-PPh3 complex (RTC) moiety, and molecular docking provided additional evidence supporting this result. Fluorescence resonance energy transfer showed that the number of binding sites (n) and binding constant of RTC-BSA complex were 1 and 8.60 × 104 M-1 at 310K, suggesting a strong interaction between RTC and BSA. The thermodynamic parameters ΔG0, ΔH0 and ΔS0 of the binding were calculated, and it was demonstrated that the binding of RTC with BSA was enthalpy-driven, and the main forces between RTC and BSA were electrostatic force and hydrogen bonding. Molecular docking showed that the binding site of BSA with RSC was located on the interface between the domains IIA and IIB of the protein. The present study sheds light on that a ruthenium mono-coordinated with PPh3 complex could help to design and develop a new class of antitumor drugs.
Collapse
|
19
|
Godínez-Loyola Y, Gracia-Mora J, Rojas-Montoya ID, Hernández-Ayala LF, Reina M, Ortiz-Frade LA, Rascón-Valenzuela LA, Robles-Zepeda RE, Gómez-Vidales V, Bernad-Bernad MJ, Ruiz-Azuara L. Casiopeinas® third generation, with indomethacin: synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation. RSC Adv 2022; 12:21662-21673. [PMID: 35975050 PMCID: PMC9347768 DOI: 10.1039/d2ra03346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Seven new Casiopeinas® were synthesized and properly characterized. These novel compounds have a general formula [Cu(N-N)(Indo)]NO3, where Indo is deprotonated indomethacin and N-N is either bipyridine or phenanthroline with some methyl-substituted derivatives, belonging to the third generation of Casiopeinas®. Spectroscopic characterization suggests a square-based pyramid geometry and voltammetry experiments indicate that the redox potential is strongly dependent on the N-N ligand. All the presented compounds show high cytotoxic efficiency, and most of them exhibit higher efficacy compared to the well-known cisplatin drug and acetylacetonate analogs of the first generation. Computational calculations show that antiproliferative behavior can be directly related to the volume of the molecules. Besides, a chitosan (CS)-polyacrylamide (PNIPAAm) nanogel was synthesized and characterized to examine the encapsulation and release properties of the [Cu(4,7-dimethyl-1,10-phenanthroline)(Indo)]NO3 compound. The results show good encapsulation performance in acidic conditions and a higher kinetic drug release in acidic media than at neutral pH. This result can be described by the Peppas-Sahlin model and indicates a release mechanism predominantly by Fick diffusion.
Collapse
Affiliation(s)
- Yokari Godínez-Loyola
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Jesús Gracia-Mora
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Iván D Rojas-Montoya
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Luis Felipe Hernández-Ayala
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Miguel Reina
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | | | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora Boulevard Luis Encinas y Rosales S/N Hermosillo Sonora C.P. 83000 Mexico
| | - Ramón Enrique Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora Boulevard Luis Encinas y Rosales S/N Hermosillo Sonora C.P. 83000 Mexico
| | - Virginia Gómez-Vidales
- Instituto de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - María Josefa Bernad-Bernad
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Lena Ruiz-Azuara
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| |
Collapse
|
20
|
Schulz E, Mawamba V, Löhr M, Hagemann C, Friedrich A, Schatzschneider U. Structure‐activity relations of Pd(II) and Pt(II) thiosemicarbazone complexes on different human glioblastoma cell lines. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | - Ulrich Schatzschneider
- Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland D-97074 Würzburg GERMANY
| |
Collapse
|
21
|
Barma A, Ghosh D, Karmakar P, Roy P. Synthesis and characterization of a mononuclear nickel(II) complex with N,O-donor ligand: Its DNA/HSA protein binding properties and tumor suppressive function. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Probing the interaction of new and biologically active Pd(II) complex with DNA/BSA via joint experimental and computational studies along with thermodynamic, NLO, FMO and NBO analysis. Biometals 2022; 35:245-266. [PMID: 35039973 DOI: 10.1007/s10534-022-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Treatment with transition metal complexes is an efficient method to fight with cancer. Therefore, a new transition metal complex formulated as [Pd(1, 3-pn)(acac)]Cl (pn and acac stand for propylendiamine and acetylacetonate, respectively) was synthesized and analyzed using 1H NMR, Fourier transform infrared, electronic absorption spectroscopy techniques as well as elemental analysis and conductivity measurement. The geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis and nonlinear optical (NLO) property were accomplished by density functional theory (DFT) at B3LYP level with 6-311G(d,p)/aug-cc-pVTZ-PP basis set. Preliminary determination of antitumor activity and lipophilicity of this metal complex was performed experimentally and the promising results were obtained. This encouraged us to study the interaction and binding mode/modes of this complex with DNA as the primary receptor for the chemotropic drugs and BSA as the transporter protein in the circulatory system. For this reason, the binding of newly made complex was assessed in-vitro under physiological state using experimental and in-silico molecular modeling studies. So, the CT-DNA binding study of this complex was explored using spectrofluorometric as well as spectrophotometric techniques, viscosity and gel electrophoresis experiments. Furthermore, fluorescence, UV-Vis, F[Formula: see text]rster resonance energy transfer and circular dichroism studies were carried out for BSA binding. The experimental and computational interaction studies showed that [Pd(1, 3-pn)(acac)]Cl complex binds to the minor groove of CT-DNA and interacts with BSA by van der Waals forces and hydrogen bond.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
23
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
24
|
Selvam P, De S, Paira P, Kumar SKA, Kumar R S, Moorthy A, Ghosh A, Kuo YC, Banerjee S, Jenifer SK. In vitro studies on the selective cytotoxic effect of luminescent Ru( ii)- p-cymene complexes of imidazo-pyridine and imidazo quinoline ligands. Dalton Trans 2022; 51:17263-17276. [DOI: 10.1039/d2dt02237k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, Ru(ii) complexes have gained high importance in medicinal chemistry due to their significant anti-cancer activities, which are directly related to their DNA binding ability.
Collapse
Affiliation(s)
- Pravinkumar Selvam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Selva Kumar R
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai – 602105, Tamil Nadu, India
| | - Anbalagan Moorthy
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arjita Ghosh
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences. Asansol-713301, West Bengal, India
| | - Shantha Kumar Jenifer
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600 036, India
| |
Collapse
|
25
|
Naderizadeh B, Bayat M, Ranjbaran M, Salehzadeh S. Towards computational prediction of anti-cancer activity: Making connection between IC50 values and metal–ligand interaction energies in some NHC complexes of groups 10 and 11. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Peng K, Moreth D, Schatzschneider U. C^N^N Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
27
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Susova OY, Peregudov AS, Brunova VV, Gutsul EI, Klemenkova ZS, Nelyubina YV, Glushko VN, Kozlov VA. Palladium(II) Pincer Complexes of Functionalized Amides with S-Modified Cysteine and Homocysteine Residues: Cytotoxic Activity and Different Aspects of Their Biological Effect on Living Cells. Inorg Chem 2021; 60:9880-9898. [PMID: 34130457 DOI: 10.1021/acs.inorgchem.1c01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the search for potential new metal-based antitumor agents, two series of nonclassical palladium(II) pincer complexes based on functionalized amides with S-modified cysteine and homocysteine residues have been prepared and fully characterized by 1D and 2D NMR (1H, 13C, COSY, HMQC or HSQC, 1H-13C, and 1H-15N HMBC) and IR spectroscopy and, in some cases, X-ray diffraction. Most of the resulting complexes exhibit a high level of cytotoxic activity against several human cancer cell lines, including colon (HCT116), breast (MCF7), and prostate (PC3) cancers. Some of the compounds under consideration are also efficient in both native and doxorubicin-resistant transformed breast cells HBL100, suggesting the prospects for the creation of therapeutic agents based on the related compounds that would be able to overcome drug resistance. An analysis of different aspects of their biological effects on living cells has revealed a remarkable ability of the S-modified derivatives to induce cell apoptosis and efficient cellular uptake of their fluorescein-conjugated counterpart, confirming the high anticancer potential of Pd(II) pincer complexes derived from functionalized amides with S-donor amino acid pendant arms.
Collapse
Affiliation(s)
- Svetlana G Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Diana V Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Ekaterina Yu Rybalkina
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 23, Moscow 115478, Russia
| | - Olga Yu Susova
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 23, Moscow 115478, Russia
| | - Alexander S Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Valentina V Brunova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Evgenii I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Zinaida S Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Valentina N Glushko
- Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre "Kurchatov Institute", Bogorodskii val 3, Moscow 107076, Russia
| | - Vladimir A Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| |
Collapse
|
28
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
29
|
Strong in vitro and in vivo cytotoxic effects of two platinum(II) complexes with cryptolepine derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Shimizu M, Okuda Y, Toyoda K, Akiyama R, Shinozaki H, Yamamoto T. Pd-catalyzed synthesis of 1-(hetero)aryl-2,2,2-trichloroethanols using chloral hydrate and (hetero)arylboroxines. RSC Adv 2021; 11:17734-17739. [PMID: 35480199 PMCID: PMC9033206 DOI: 10.1039/d1ra02403e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 01/24/2023] Open
Abstract
1-(Hetero)aryl-2,2,2-trichloroethanols are useful key intermediates for the synthesis of various bioactive compounds. Herein, we describe N-heterocyclic carbene (NHC)-coordinated cyclometallated palladium complex (CYP)-catalyzed (hetero)aryl addition of chloral hydrate using (hetero)arylboroxines, providing a new approach to 1-(hetero)aryl-2,2,2-trichloroethanols. Notably, PhS-IPent-CYP which coordinated the bulky yet flexible 2,6-di(pentan-3-yl)aniline (IPent)-based NHC showed good catalytic activities and promoted the transformation in 24-97% yields.
Collapse
Affiliation(s)
- Minori Shimizu
- Department of Materials and Life Sciences, Tokyo Denki University 5 Senju-Asahicho Adachi Tokyo 120-8551 Japan
| | - Yuta Okuda
- Department of Materials Science and Engineering, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
| | - Koki Toyoda
- Department of Applied Chemistry, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
| | - Ryo Akiyama
- Department of Materials Science and Engineering, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
| | - Hiraku Shinozaki
- Department of Applied Chemistry, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
| | - Tetsuya Yamamoto
- Department of Materials and Life Sciences, Tokyo Denki University 5 Senju-Asahicho Adachi Tokyo 120-8551 Japan
- Department of Materials Science and Engineering, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
- Department of Applied Chemistry, Tokyo Denki University 5 Senju-Asahicho, Adachi-ku Tokyo 120-8551 Japan
| |
Collapse
|
31
|
Structure-dependent regioselectivity of a roll-over cyclopalladation occuring at 2,2′-bipyridine-type ligands. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Du L, Nosratabad NA, Jin Z, Zhang C, Wang S, Chen B, Mattoussi H. Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands. J Am Chem Soc 2021; 143:1873-1884. [PMID: 33448803 DOI: 10.1021/jacs.0c10592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have tested the ability of N-heterocyclic carbene (NHC)-modified ligands to coordinate and stabilize luminescent CdSe-ZnS core-shell quantum dot (QD) dispersions in hydrophilic media. In particular, we probed the effects of ligand structure and coordination number on the coating affinity to the nanocrystals. We find that such NHC-based ligands rapidly coordinate onto the QDs (requiring ∼5-10 min of reaction time), which reflects the soft Lewis base nature of the NHC groups, with its two electrons sharing capacity. Removal of the hydrophobic cap and promotion of carbene-driven coordination on the nanocrystals have been verified by 1H NMR spectroscopy, while 13C NMR was used to identify the formation of carbene-Zn complexes. The newly coated QD dispersions exhibit great long-term colloidal stability over a wide range of conditions. Additionally, we find that coordination onto the QD surfaces affects the optical and spectroscopic properties of the nanocrystals. These include a size-dependent red-shift of the absorption and fluorescence spectra and a pronounced increase in the measured fluorescence intensity when the samples are stored under white light exposure compared to those stored in the dark.
Collapse
Affiliation(s)
- Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Neda Arabzadeh Nosratabad
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Chengqi Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Banghao Chen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
33
|
Slimani I, Şahin-Bölükbaşı S, Ulu M, Evren E, Gürbüz N, Özdemir İ, Hamdi N, Özdemir İ. Rhodium( i) N-heterocyclic carbene complexes: synthesis and cytotoxic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj00144b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of benzimidazolium salts and their [RhCl(NHC)(COD)] complexes were synthesized. All compounds were screened for in vitro cytotoxic activities against a panel of human cancer cells (HT-29 colon, Ishikawa endometrial, U-87 glioblastoma) using the MTT assay for 48 h incubation time.
Collapse
Affiliation(s)
- Ichraf Slimani
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - Serap Şahin-Bölükbaşı
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Mustafa Ulu
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Enes Evren
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
| | - Nevin Gürbüz
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| | - İlknur Özdemir
- Inönü University
- Faculty of Science and Arts
- Department of Chemistry
- 44280 Malatya
- Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - İsmail Özdemir
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| |
Collapse
|
34
|
Amoah C, Obuah C, Ainooson MK, Adokoh CK, Muller A. Synthesis, characterization and antibacterial applications of pyrazolyl-sulfonamides and their palladium complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj05143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrazolylsulphonamides compounds and their palladium complexes exhibiting good potential anti-bacterial activities.
Collapse
Affiliation(s)
- Cephas Amoah
- Department of Chemistry
- University of Ghana
- Legon
- Ghana
- Department of Chemical Sciences
| | - Collins Obuah
- Department of Chemistry
- University of Ghana
- Legon
- Ghana
- Department of Chemical Sciences
| | | | - Christian Kwaku Adokoh
- Department of Chemical Sciences
- University of Johannesburg
- Auckland Park 2006
- Johannesburg
- South Africa
| | - Alfred Muller
- Department of Chemical Sciences
- University of Johannesburg
- Auckland Park 2006
- Johannesburg
- South Africa
| |
Collapse
|
35
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|
36
|
Biological Activities of NHC–Pd(II) Complexes Based on Benzimidazolylidene N-heterocyclic Carbene (NHC) Ligands Bearing Aryl Substituents. Catalysts 2020. [DOI: 10.3390/catal10101190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-heterocyclic carbene (NHC) precursors (2a–i), their pyridine-enhanced precatalyst preparation stabilization and initiation (PEPPSI)-themed palladium N-heterocyclic carbene complexes (3a–i) and palladium N-heterocyclic triphenylphosphines complexes (4a–i) were synthesized and characterized by elemental analysis and 1H NMR, 13C NMR, IR, and LC–MS spectroscopic techniques. The (NHC)Pd(II) complexes 3–4 were tested against MCF7 and MDA-MB-231 cancer cells, Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Candida albicans microorganisms, Leishmania major promastigotes and amastigotes, Toxoplasma gondii parasites, and Vero cells in vitro. The biological assays indicated that all compounds are highly active against cancer cells, with an IC50 < 1.5 µg mL−1. Eight compounds proved antibacterial and antileishmanial activities, while only three compounds had strong antifungal activities against C. albicans. In our conclusion, compounds 3 (b, f, g, and h) and 4b are the most suitable drug candidates for anticancer, antimicrobial, and antiparasitical.
Collapse
|
37
|
Omondi RO, Bellam R, Ojwach SO, Jaganyi D, Fatokun AA. Palladium(II) complexes of tridentate bis(benzazole) ligands: Structural, substitution kinetics, DNA interactions and cytotoxicity studies. J Inorg Biochem 2020; 210:111156. [DOI: 10.1016/j.jinorgbio.2020.111156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/21/2023]
|
38
|
Xu Z, Huang J, Kong D, Yang Y, Guo L, Jia X, Zhong G, Liu Z. Potent half-sandwich Ru(Ⅱ) N^N (aryl-BIAN) complexes: Lysosome-mediated apoptosis, in vitro and in vivo anticancer activities. Eur J Med Chem 2020; 207:112763. [PMID: 32882612 DOI: 10.1016/j.ejmech.2020.112763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022]
Abstract
Herein a new series of organometallic half-sandwich Ru(Ⅱ) complexes bearing aryl-BIAN chelating ligands with various electron-withdrawing and electron-donating substituents have been developed as theranostic agents. All the complexes display much higher anti-proliferative potency than the clinical chemotherapeutic drug cisplatin towards seven cancer cell lines. The anti-proliferative efficacy of these complexes is correlated to their electron-withdrawing ability. Interestingly, complex Ru1 also potently suppresses cancer cell migration in vitro and effectively inhibit tumor growth in vivo in a CT26 colon cancer mouse xenograft model. Mechanisms of action studies display that Ru1 can favorably accumulate in lysosome and exerts anti-cancer potency by inducing a series of events related to lysosomal dysfunction in CT26 cells. Interestingly, inhibition of lysosomal enzymes leads to suppression of cytotoxicity and apoptosis induced by Ru1. Our results elucidate that complex Ru1 can elicit cytotoxicity through lysosome-mediated apoptosis in vitro and suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Zhishan Xu
- College of Chemistry, Chemistry Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jie Huang
- Qingdao University of Science and Technology, Qingdao, 266061, China.
| | - Deliang Kong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xianglei Jia
- Henan Key Laboratory of Neural Regeneration, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Genshen Zhong
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
39
|
Scattolin T, Bortolamiol E, Visentin F, Palazzolo S, Caligiuri I, Perin T, Canzonieri V, Demitri N, Rizzolio F, Togni A. Palladium(II)-η 3 -Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids. Chemistry 2020; 26:11868-11876. [PMID: 32368809 DOI: 10.1002/chem.202002199] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 01/14/2023]
Abstract
The first palladium organometallic compounds bearing N-trifluoromethyl N-heterocyclic carbenes have been synthesized. These η3 -allyl complexes are potent antiproliferative agents against different cancer lines (for the most part, IC50 values fall in the range 0.02-0.5 μm). By choosing 1,3,5-triaza-7-phosphaadamantane (PTA) as co-ligand, we can improve the selectivity toward tumor cells, whereas the introduction of 2-methyl substituents generally reduces the antitumor activity slightly. A series of biochemical assays, aimed at defining the cellular targets of these palladium complexes, has shown that mitochondria are damaged before DNA, thus revealing a behavior substantially different from that of cisplatin and its derivatives. We assume that the specific mechanism of action of these organometallic compounds involves nucleophilic attack on the η3 -allyl fragment. The effectiveness of a representative complex, 4 c, was verified on ovarian cancer tumoroids derived from patients. The results are promising: unlike carboplatin, our compound turned out to be very active and showed a low toxicity toward normal liver organoids.
Collapse
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Enrica Bortolamiol
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Stefano Palazzolo
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.,Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
40
|
Scattolin T, Bortolamiol E, Rizzolio F, Demitri N, Visentin F. Allyl palladium complexes bearing carbohydrate‐based
N
‐heterocyclic carbenes: Anticancer agents for selective and potent
in vitro
cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 (S‐3) Ghent 9000 Belgium
| | - Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
- Pathology unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS via F. Gallini 2 Aviano 33081 Italy
| | - Nicola Demitri
- Hard X‐ray Diffraction Beamlines Elettra Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, Basovizza Trieste 34149 Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| |
Collapse
|
41
|
Qin QP, Wang ZF, Huang XL, Tan MX, Luo ZH, Wang SL, Zou BQ, Liang H. Two telomerase-targeting Pt(ii) complexes of jatrorrhizine and berberine derivatives induce apoptosis in human bladder tumor cells. Dalton Trans 2020; 48:15247-15254. [PMID: 31577283 DOI: 10.1039/c9dt02381j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two novel Pt(ii) complexes, [Pt(B-TFA)Cl]Cl (Pt1) and [Pt(J-TFA)Cl]Cl (Pt2) with jatrorrhizine and berberine derivatives (B-TFA and J-TFA) were first prepared as desirable luminescent agents for cellular applications and potent telomerase inhibitors, which can induce bladder T-24 tumor cell apoptosis by targeting telomerase, together with induction of mitochondrial dysfunction, telomere DNA damage and cell-cycle arrest. Importantly, T-24 tumor inhibition rate (TIR) was 50.4% for Pt2, which was higher than that of Pt1 (26.4%) and cisplatin (37.1%). Taken together, all the results indicated that jatrorrhizine and berberine derivatives Pt1 and Pt2 show low toxicity and could be novel Pt-based anti-cancer drug candidates.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Oliveira CG, Romero-Canelón I, Coverdale JPC, Maia PIS, Clarkson GJ, Deflon VM, Sadler PJ. Novel tetranuclear PdII and PtII anticancer complexes derived from pyrene thiosemicarbazones. Dalton Trans 2020; 49:9595-9604. [DOI: 10.1039/d0dt01133a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclometallated palladium(ii) and platinum(ii) pyrenyl-derived thiosemicarbazone (H2PrR) complexes of the type [M4(μ-S-PrR-κ3-C,N,S)4] (M = PdII, PtII; R = ethyl, cyclohexyl) have been synthesised in good yields and fully characterised.
Collapse
Affiliation(s)
- Carolina G. Oliveira
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
- Institute of Chemistry
| | | | | | - Pedro Ivo S. Maia
- Department of Chemistry
- Federal University of the Triângulo Mineiro
- 38025-440 Uberaba
- Brazil
| | | | - Victor M. Deflon
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
43
|
Anti-cancer gold, platinum and iridium compounds with porphyrin and/or N-heterocyclic carbene ligand(s). Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Li Y, Wang KN, He L, Ji LN, Mao ZW. Synthesis, photophysical and anticancer properties of mitochondria-targeted phosphorescent cyclometalated iridium(III) N-heterocyclic carbene complexes. J Inorg Biochem 2019; 205:110976. [PMID: 31926377 DOI: 10.1016/j.jinorgbio.2019.110976] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Metal N-Heterocyclic carbene (NHC) complexes are expected to be new opportunities for the development of anticancer metallodrugs. In this work, two near-infrared (NIR) emitting iridium(III)-NHC complexes Ir1 and Ir2 have been explored as mitochondria-targeted anticancer and photodynamic agents. These complexes are more cytotoxic than cisplatin against the cancer cells screened, and display higher cytotoxicity in the presence of 450 nm and 630 nm LED light. Colocalization and quantitative studies indicated that these complexes could specially localize to mitochondria. Mechanism studies show that these complexes increase intracellular reactive oxygen species (ROS) level, reduce mitochondrial membrane potential (MMP) and induce some degree of early apoptosis. Further studies found that Ir1could induce mitophagy at dark and necrocytosis under the irradiation of 630 nm LED light. The in vitro and in vivo photoxicity studies revealed that Ir1 is a promising photodynamic therapy (PDT) agent and could significantly inhibit tumor growth.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liang He
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
45
|
Mohammadnezhad G, Abad S, Farrokhpour H. Theoretical Evaluation of One-Pot Synthesis of Aliphatic PNP Pincer Ligands. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Tian S, Siu FM, Lok CN, Fung YME, Che CM. Anticancer auranofin engages 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) as a target. Metallomics 2019; 11:1925-1936. [PMID: 31631207 DOI: 10.1039/c9mt00185a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Auranofin (AuRF) has been reported to display anticancer activity and has entered several clinical trials; however, its mechanism of action remains largely unknown. In this work, the anticancer mechanism of auranofin was investigated using a proteomics strategy entailing subcellular fractionation prior to mass spectrometric analysis. Bioinformatics analysis of the nuclear sub-proteomes revealed that tumor suppressor p14ARF is a key regulator of transcription. Through independent analysis, we validated that up-regulation of p14ARF is associated with E2F-dependent transcription and increased p53 expression. Our analyses further reveal that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is the rate-determining enzyme of the mevalonate pathway, is a novel target of auranofin with half maximal inhibitory concentration at micromolar levels. The auranofin-induced cancer cell death could be partially reverted by the addition of downstream products of the mevalonate pathway (mevalonolactone or geranyleranyl pyrophosphate (GGPP)), implying that auranofin may target the mevalonate pathway to exert its anticancer effect.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Chemistry, The University of Hong Kong, Chemical Biology Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, Sassoon Road, Hong Kong SAR, China.
| | - Fung-Ming Siu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Chun-Nam Lok
- Department of Chemistry, The University of Hong Kong, Chemical Biology Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, Sassoon Road, Hong Kong SAR, China.
| | - Yi Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Chemical Biology Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, Sassoon Road, Hong Kong SAR, China.
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
47
|
Wei X, Yang Y, Ge J, Lin X, Liu D, Wang S, Zhang J, Zhou G, Li S. Synthesis, characterization, DNA/BSA interactions and in vitro cytotoxicity study of palladium(II) complexes of hispolon derivatives. J Inorg Biochem 2019; 202:110857. [PMID: 31669695 DOI: 10.1016/j.jinorgbio.2019.110857] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/17/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Thirteen novel palladium(II) complexes of the general formula [Pd(bipy)(O,O'-dkt)](PF6), (where bipy is 2,2'-bipyridine and O,O'-dkt is β-diketonate ligand hispolon or its derivative) have been prepared through a metal-ligand coordination method that involves spontaneous formation of the corresponding diketonate scaffold. The obtained palladium(II) complexes have been characterized by NMR spectroscopy, ESI-mass spectrometry as well as elemental analysis. The cytotoxicity analysis indicates that most of the obtained palladium(II) complexes show promising growth inhibition in three human cancer cell lines. Flow cytometry analysis shows complex 3e could promote intracellular reactive oxygen species (ROS) accumulation and lead cancer cell death. And the suppression of ROS accumulation and the rescue of cell viability in HeLa cells by N-acetyl-L-cysteine (NAC) suggest the possible link between the increase in ROS generation and cytotoxicity of complex 3e. Flow cytometry analysis also reveal that complex 3e cause cell cycle arrest in the G2/M phase and collapse of the mitochondrial membrane potential, promote the generation of ROS and lead to tumor cell apoptosis. The interactions of complex 3e with calf thymus DNA (CT-DNA) have been evaluated by UV-Vis spectroscopy, fluorescence quenching experiments and viscosity measurements, which reveal that the complex interact with CT-DNA through minor groove binding and/or electrostatic interactions. Further, the results of fluorescence titration and site marker competitive experiment on bovine serum albumin (BSA) suggest that complex 3e can quench the fluorescence of BSA via a static quenching process and bind to BSA in Sudlow's site II.
Collapse
Affiliation(s)
- Xiaonan Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jiangfeng Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Xue Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shenghui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
48
|
Türker F, Gürses C, Barut Celepci D, Aktaş A, Ateş B, Gök Y. New morpholine‐liganded palladium(II)
N
‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure, and DNA‐binding studies. Arch Pharm (Weinheim) 2019; 352:e1900187. [DOI: 10.1002/ardp.201900187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ferhat Türker
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Canbolat Gürses
- Department of Molecular Biology and Genetics, Faculty of Scienceİnönü University Malatya Turkey
| | - Duygu Barut Celepci
- Department of Physics, Faculty of ScienceDokuz Eylül University Buca Izmir Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| |
Collapse
|
49
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|
50
|
Scattolin T, Moro G, Rizzolio F, Santo C, Moretto LM, Visentin. F. Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Ten‐Term Coordinative Ring. ChemistrySelect 2019. [DOI: 10.1002/slct.201902316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Giulia Moro
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
- Pathology UnitIRCCS CRO Aviano-National Cancer Institute 33081 Aviano Italy
| | - Claudio Santo
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ligia Maria Moretto
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Fabiano Visentin.
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| |
Collapse
|