1
|
Nishihara T, Motohashi Y, Mio R, Sugawara M, Tanabe K. A detection system using sensing motif-tethered oligodeoxynucleotides for multiplex biomolecular analysis. Chem Commun (Camb) 2024; 60:6059-6062. [PMID: 38780054 DOI: 10.1039/d4cc01470g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We developed a system to detect multiple target biomolecules through sensing motif-tethered oligodeoxynucleotides. DNA-based molecular probes gave the primary amine motif upon reaction with the target biomolecules, glutathione (GSH) and H2O2. After labelling with biotin, the product DNAs were selectively collected to be quantified by qPCR.
Collapse
Affiliation(s)
- Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Yuto Motohashi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Reoto Mio
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Masato Sugawara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
2
|
Jiang T, Coin G, Bordi S, Nichols PL, Bode JW, Wanner BM. Automated Synthesis for the Safe Production of Organic Azides from Primary Amines. J Org Chem 2024. [PMID: 38780471 DOI: 10.1021/acs.joc.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Described herein is the development of an automated and reproducible process for the conversion of primary amines to organic azides utilizing prepacked capsules containing all the required reagents, including imidazole-1-sulfonyl azide tetrafluoroborate. Apart from manually loading the primary amine into the reaction vessel, the entire reaction and product isolation process can be achieved automatically, with no further user involvement, and delivers the desired organic azide in high purity. This practical and simple automated capsule-based method offers a convenient and safe way of generating organic azides without handling or exposure of potentially explosive reagents.
Collapse
Affiliation(s)
- Tuo Jiang
- Synple Chem AG, Kemptpark 18, 8310Kemptthal ,Switzerland
| | - Guillaume Coin
- Synple Chem AG, Kemptpark 18, 8310Kemptthal ,Switzerland
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Samuele Bordi
- Synple Chem AG, Kemptpark 18, 8310Kemptthal ,Switzerland
| | - Paula L Nichols
- Synple Chem AG, Kemptpark 18, 8310Kemptthal ,Switzerland
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
3
|
Fang X, Wang Y, He P, Liao H, Zhang G, Li Y, Li Y. Visible Light-Promoted Divergent Benzoheterocyclization from Aldehydes for DNA-Encoded Chemical Libraries. Org Lett 2022; 24:3291-3296. [PMID: 35467894 DOI: 10.1021/acs.orglett.2c01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Benzoheterocyclics have been widely adopted as drug-like core scaffolds that can be incorporated into DNA-encoded chemical library technology for high-throughput hit discovery. Here, we present a visible light-promoted divergent synthesis of on-DNA benzoheterocycles from aldehydes. Four types of DNA-conjugated benzoheterocyclics were obtained under mild conditions with a broad substrate scope. A cross substrate scope study, together with enzymatic ligation and subsequent chemical diversifications, were conducted, demonstrating the feasibility of this approach in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Pengyang He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
4
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
5
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
6
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
7
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Zheng F, Meng T, Jiang D, Sun J, Yao H, Zhu J, Min Q. Nanomediator–Effector Cascade Systems for Amplified Protein Kinase Activity Imaging and Phosphorylation‐Induced Drug Release In Vivo. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Difei Jiang
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jiamin Sun
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Haiyang Yao
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Zheng F, Meng T, Jiang D, Sun J, Yao H, Zhu JJ, Min Q. Nanomediator-Effector Cascade Systems for Amplified Protein Kinase Activity Imaging and Phosphorylation-Induced Drug Release In Vivo. Angew Chem Int Ed Engl 2021; 60:21565-21574. [PMID: 34322988 DOI: 10.1002/anie.202109108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases constitute a rich pool of biomarkers and therapeutic targets of tremendous diseases including cancer. However, sensing kinase activity in vivo while implementing treatments according to kinase hyperactivation remains challenging. Herein, we present a nanomediator-effector cascade system that can in situ magnify the subtle events of kinase-catalyzed phosphorylation via DNA amplification machinery to achieve kinase activity imaging and kinase-responsive drug release in vivo. In this cascade, the phosphorylation-mediated disassembly of DNA/peptide complex on the nanomediators initiated the detachment of fluorescent hairpin DNAs from the nanoeffectors via hybridization chain reaction (HCR), leading to fluorescence recovery and therapeutic cargo release. We demonstrated that this nanosystem simultaneously enabled trace protein kinase A (PKA) activity imaging and on-demand drug delivery for inhibition of tumor cell growth both in vitro and in vivo, affording a kinase-specific sense-and-treat paradigm for cancer theranostics.
Collapse
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Difei Jiang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Jiamin Sun
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Haiyang Yao
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Cavett V, Paegel BM. Multiplexed Enzyme Activity-Based Probe Display via Hybridization. ACS COMBINATORIAL SCIENCE 2020; 22:579-585. [PMID: 32803953 DOI: 10.1021/acscombsci.0c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emulsions offer the means to miniaturize and parallelize high-throughput screening but require a robust method to localize activity-based fluorescent probes in each droplet. Multiplexing probes in droplets is impractical, though highly desirable for identifying library members that possess very specific activity. Here, we present multiplexed probe immobilization on library beads for emulsion screening. During library bead preparation, we quantitated ∼106 primers per bead by fluorescence in situ hybridization, however emulsion PCR yielded only ∼103 gene copies per bead. We leveraged the unextended bead-bound primers to hybridize complementary probe-oligonucleotide heteroconjugates to the library beads. The probe-hybridized bead libraries were then used to program emulsion in vitro transcription/translation reactions and analyzed by FACS to perform multiplexed activity-based screening of trypsin and chymotrypsin mutant libraries for novel proteolytic specificity. The approach's modularity should permit a high degree of probe multiplexing and appears extensible to other enzyme classes and library types.
Collapse
Affiliation(s)
- Valerie Cavett
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Brian M. Paegel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Departments of Chemistry & Biomedical Engineering, University of California, Irvine, California 92617, United States
| |
Collapse
|
11
|
Richer AL, Riemondy KA, Hardie L, Hesselberth JR. Simultaneous measurement of biochemical phenotypes and gene expression in single cells. Nucleic Acids Res 2020; 48:e59. [PMID: 32286626 PMCID: PMC7261187 DOI: 10.1093/nar/gkaa240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Methods to measure heterogeneity among cells are rapidly transforming our understanding of biology but are currently limited to molecular abundance measurements. We developed an approach to simultaneously measure biochemical activities and mRNA abundance in single cells to understand the heterogeneity of DNA repair activities across thousands of human lymphocytes, identifying known and novel cell-type-specific DNA repair phenotypes.
Collapse
Affiliation(s)
- Amanda L Richer
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- Molecular Biology Program
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lakotah Hardie
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- Molecular Biology Program
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Fleming SR, Himes PM, Ghodge SV, Goto Y, Suga H, Bowers AA. Exploring the Post-translational Enzymology of PaaA by mRNA Display. J Am Chem Soc 2020; 142:5024-5028. [PMID: 32109054 DOI: 10.1021/jacs.0c01576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PaaA is a RiPP enzyme that catalyzes the transformation of two glutamic acid residues within a substrate peptide into the bicyclic core of Pantocin A. Here, for the first time, we use mRNA display techniques to understand RiPP enzyme-substrate interactions to illuminate PaaA substrate recognition. Additionally, our data revealed insights into the enzymatic timing of glutamic acid modification. The technique developed is quite sensitive and a significant advancement over current RiPP studies and opens the door to enzyme modified mRNA display libraries for natural product-like inhibitor pans.
Collapse
Affiliation(s)
- Steven R Fleming
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul M Himes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Swapnil V Ghodge
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Early Discovery Biochemistry Department, Genentech Inc., South San Francisco, California 94114, United States
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Wang S, Denton KE, Hobbs KF, Weaver T, McFarlane JMB, Connelly KE, Gignac MC, Milosevich N, Hof F, Paci I, Musselman CA, Dykhuizen EC, Krusemark CJ. Optimization of Ligands Using Focused DNA-Encoded Libraries To Develop a Selective, Cell-Permeable CBX8 Chromodomain Inhibitor. ACS Chem Biol 2020; 15:112-131. [PMID: 31755685 DOI: 10.1021/acschembio.9b00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycomb repressive complex 1 (PRC1) is critical for mediating gene expression during development. Five chromobox (CBX) homolog proteins, CBX2, CBX4, CBX6, CBX7, and CBX8, are incorporated into PRC1 complexes, where they mediate targeting to trimethylated lysine 27 of histone H3 (H3K27me3) via the N-terminal chromodomain (ChD). Individual CBX paralogs have been implicated as drug targets in cancer; however, high similarities in sequence and structure among the CBX ChDs provide a major obstacle in developing selective CBX ChD inhibitors. Here we report the selection of small, focused, DNA-encoded libraries (DELs) against multiple homologous ChDs to identify modifications to a parental ligand that confer both selectivity and potency for the ChD of CBX8. This on-DNA, medicinal chemistry approach enabled the development of SW2_110A, a selective, cell-permeable inhibitor of the CBX8 ChD. SW2_110A binds CBX8 ChD with a Kd of 800 nM, with minimal 5-fold selectivity for CBX8 ChD over all other CBX paralogs in vitro. SW2_110A specifically inhibits the association of CBX8 with chromatin in cells and inhibits the proliferation of THP1 leukemia cells driven by the MLL-AF9 translocation. In THP1 cells, SW2_110A treatment results in a significant decrease in the expression of MLL-AF9 target genes, including HOXA9, validating the previously established role for CBX8 in MLL-AF9 transcriptional activation, and defining the ChD as necessary for this function. The success of SW2_110A provides great promise for the development of highly selective and cell-permeable probes for the full CBX family. In addition, the approach taken provides a proof-of-principle demonstration of how DELs can be used iteratively for optimization of both ligand potency and selectivity.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Kathryn F. Hobbs
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Tyler Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | | | - Katelyn E. Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Natalia Milosevich
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Catherine A. Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
Cai B, Kim D, Akhand S, Sun Y, Cassell RJ, Alpsoy A, Dykhuizen EC, Van Rijn RM, Wendt MK, Krusemark CJ. Selection of DNA-Encoded Libraries to Protein Targets within and on Living Cells. J Am Chem Soc 2019; 141:17057-17061. [PMID: 31613623 DOI: 10.1021/jacs.9b08085] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the selection of DNA-encoded small molecule libraries against protein targets within the cytosol and on the surface of live cells. The approach relies on generation of a covalent linkage of the DNA to protein targets by affinity labeling. This cross-linking event enables subsequent copurification by a tag on the recombinant protein. To access targets within cells, a cyclic cell-penetrating peptide is appended to DNA-encoded libraries for delivery across the cell membrane. As this approach assesses binding of DELs to targets in live cells, it provides a strategy for selection of DELs against challenging targets that cannot be expressed and purified as active.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Saeed Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Richard M Van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
15
|
Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Molecules 2019; 24:molecules24152764. [PMID: 31366048 PMCID: PMC6695731 DOI: 10.3390/molecules24152764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50's ranging from of 8-100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
Collapse
|
16
|
Shi B, Deng Y, Li X. Polymerase-Extension-Based Selection Method for DNA-Encoded Chemical Libraries against Nonimmobilized Protein Targets. ACS COMBINATORIAL SCIENCE 2019; 21:345-349. [PMID: 30920794 DOI: 10.1021/acscombsci.9b00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) have become an important ligand discovery technology in biomedical research and drug discovery. DELs can be comprised of hundreds of millions to billions of candidate molecules and provide outstanding chemical diversity for discovering novel ligands and inhibitors for a large variety of biological targets. However, in most cases, DELs are selected against purified and immobilized proteins based on binding affinity. The development and application of DELs to more complex biological targets requires selection methods compatible with nonimmobilized and unpurified proteins. Here, we describe an approach using polymerase-based extension and target-directed photo-cross-linking and its application to the interrogation of a solution-phase protein target, carbonic anhydrase II.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Food Science, Tibet Agriculture and Animal Husbandry University, 100 Yucai Road West, Nyingchi, China 860000
| | - Yuqing Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
17
|
Mayerthaler F, Finley MF, Pfeifer TA, Antolin AA. Meeting Proceedings from ICBS 2018- Toward Translational Impact. ACS Chem Biol 2019; 14:567-578. [PMID: 30860357 DOI: 10.1021/acschembio.9b00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Michael F. Finley
- Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| | - Tom A. Pfeifer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Albert A. Antolin
- The Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
- The Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| |
Collapse
|
18
|
Shinde A, Hardy SD, Kim D, Akhand SS, Jolly MK, Wang WH, Anderson JC, Khodadadi RB, Brown WS, George JT, Liu S, Wan J, Levine H, Willey CD, Krusemark CJ, Geahlen RL, Wendt MK. Spleen Tyrosine Kinase-Mediated Autophagy Is Required for Epithelial-Mesenchymal Plasticity and Metastasis in Breast Cancer. Cancer Res 2019; 79:1831-1843. [PMID: 30733195 PMCID: PMC6467765 DOI: 10.1158/0008-5472.can-18-2636] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
The ability of breast cancer cells to transiently transition between epithelial and mesenchymal states contributes to their metastatic potential. Therefore, driving tumor cells into a stable mesenchymal state, as opposed to complete tumor cell eradication, presents an opportunity to pharmacologically limit disease progression by promoting an asymptomatic state of dormancy. Here, we compare a reversible model of epithelial-mesenchymal transition (EMT) induced by TGFβ to a stable mesenchymal phenotype induced by chronic exposure to the ErbB kinase inhibitor lapatinib. Only cells capable of returning to an epithelial phenotype resulted in skeletal metastasis. Gene expression analyses of the two mesenchymal states indicated similar transition expression profiles. A potently downregulated gene in both datasets was spleen tyrosine kinase (SYK). In contrast to this similar diminution in mRNA, kinome analyses using a peptide array and DNA-conjugated peptide substrates showed a robust increase in SYK activity upon TGFβ-induced EMT only. SYK was present in cytoplasmic RNA processing depots known as P-bodies formed during the onset of EMT, and SYK activity was required for autophagy-mediated clearance of P-bodies during mesenchymal-epithelial transition (MET). Genetic knockout of autophagy-related 7 (ATG7) or pharmacologic inhibition of SYK activity with fostamatinib, a clinically approved inhibitor of SYK, prevented P-body clearance and MET, inhibiting metastatic tumor outgrowth. Overall, this study suggests assessment of SYK activity as a biomarker for metastatic disease and the use of fostamatinib as a means to stabilize the latency of disseminated tumor cells. SIGNIFICANCE: These findings present inhibition of spleen tyrosine kinase as a therapeutic option to limit breast cancer metastasis by promoting systemic tumor dormancy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/1831/F1.large.jpg.See related commentary by Farrington and Narla, p. 1756.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Shana D Hardy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Saeed Salehin Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Wen-Hung Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Ryan B Khodadadi
- Department of Graduate Medical Education, Mayo Clinic, Rochester. Minnesota
| | - Wells S Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Medical Science Training Program, Baylor College of Medicine, Houston, Texas
| | - Sheng Liu
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | | | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
19
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
20
|
Denton KE, Wang S, Gignac MC, Milosevich N, Hof F, Dykhuizen EC, Krusemark CJ. Robustness of In Vitro Selection Assays of DNA-Encoded Peptidomimetic Ligands to CBX7 and CBX8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:417-428. [PMID: 29309209 PMCID: PMC5962403 DOI: 10.1177/2472555217750871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification of protein ligands from a DNA-encoded library is commonly conducted by an affinity selection assay. These assays are often not validated for robustness, raising questions about selections that fail to identify ligands and the utility of enrichment values for ranking ligand potencies. Here, we report a method for optimizing and utilizing affinity selection assays to identify potent and selective peptidic ligands to the highly related chromodomains of CBX proteins. To optimize affinity selection parameters, statistical analyses (Z' factors) were used to define the ability of selection assay conditions to identify and differentiate ligands of varying affinity. A DNA-encoded positional scanning library of peptidomimetics was constructed around a trimethyllysine-containing parent peptide, and parallel selections against the chromodomains from CBX8 and CBX7 were conducted over three protein concentrations. Relative potencies of off-DNA hit molecules were determined through a fluorescence polarization assay and were consistent with enrichments observed by DNA sequencing of the affinity selection assays. In addition, novel peptide-based ligands were discovered with increased potency and selectivity to the chromodomain of CBX8. The results indicate low DNA tag bias and show that affinity-based in vitro selection assays are sufficiently robust for both ligand discovery and determination of quantitative structure-activity relationships.
Collapse
Affiliation(s)
- Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
21
|
Kim D, Jetson RR, Krusemark CJ. A DNA-assisted immunoassay for enzyme activity via a DNA-linked, activity-based probe. Chem Commun (Camb) 2018; 53:9474-9477. [PMID: 28795701 DOI: 10.1039/c7cc05236g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we describe an immunoassay approach for the detection of enzyme activity by quantitative PCR (qPCR) or parallel DNA sequencing which relies on activity-based probes linked to barcoding DNAs. We demonstrate this technique in the detection of serine hydrolase activities using a fluorophosphonate-oligonucleotide conjugate.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
22
|
Amigo J, Rama-Garda R, Bello X, Sobrino B, de Blas J, Martín-Ortega M, Jessop TC, Carracedo Á, Loza MIG, Domínguez E. tagFinder: A Novel Tag Analysis Methodology That Enables Detection of Molecules from DNA-Encoded Chemical Libraries. SLAS DISCOVERY 2018; 23:397-404. [PMID: 29361864 DOI: 10.1177/2472555217753840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Available tools to analyze sequencing data coming from DNA-encoded chemical libraries (DELs) are often limited to in-house methods, which usually rely on strictly looking for the particular DEL structure used. Current methods do not take into account technological errors, such as library codification and sequencing errors, when detecting the sequences. The vast amount of data produced by next-generation sequencing of DEL screens is usually enough to extract the minimum information needed for compound identification. Here, we report a methodology to deconvolute encoding oligonucleotides, thus optimizing the sequencing power regardless of the library size, design complexity, or sequencing technology chosen. tagFinder is a highly flexible tool for fast tag detection and thorough DEL results characterization, which requires minimal hardware resources, scales linearly, and does not introduce any analytical error. The methodology can even deal with sequencing errors and PCR duplicates on single- or double-stranded DNA, enhancing the analytical detection and quantification of molecules and the informativeness of the entire process. Source code is available at https://github.com/jamigo/tagFinder .
Collapse
Affiliation(s)
- Jorge Amigo
- 1 Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña, Spain
| | | | - Xabier Bello
- 1 Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña, Spain
| | - Beatriz Sobrino
- 1 Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña, Spain
| | | | | | | | - Ángel Carracedo
- 1 Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña, Spain
| | - María Isabel García Loza
- 2 BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña, Spain
| | - Eduardo Domínguez
- 2 BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña, Spain
| |
Collapse
|
23
|
Shi B, Deng Y, Zhao P, Li X. Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a “Ligate–Cross-Link–Purify” Strategy. Bioconjug Chem 2017; 28:2293-2301. [PMID: 28742329 DOI: 10.1021/acs.bioconjchem.7b00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bingbing Shi
- Key
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuqing Deng
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Peng Zhao
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Institute
of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, China
| | - Xiaoyu Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
24
|
Li Y, Zimmermann G, Scheuermann J, Neri D. Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections. Chembiochem 2017; 18:848-852. [PMID: 28220596 PMCID: PMC5606288 DOI: 10.1002/cbic.201600626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 01/25/2023]
Abstract
Phage-display libraries and DNA-encoded chemical libraries (DECLs) represent useful tools for the isolation of specific binding molecules from large combinatorial sets of compounds. With both methods, specific binders are recovered at the end of affinity capture procedures by using target proteins of interest immobilized on a solid support. However, although the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DECL selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency by using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provided rapid information about the performance of selections, thus facilitating the optimization of experimental conditions.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Gunther Zimmermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| |
Collapse
|
25
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|