1
|
Chen L, Wang Z, Fang E, Fan Z, Song S. Probing the Catalytic Degradation of Unsaturated Polyolefin Materials via Fe-Based Lewis Acids-Initiated Carbonyl-Olefin Metathesis. Angew Chem Int Ed Engl 2025:e202503408. [PMID: 40258783 DOI: 10.1002/anie.202503408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/23/2025]
Abstract
Degradation and recyclability of polymeric materials, including extensively used polyolefins, are becoming increasingly necessary. Chemically stable saturated polyolefin backbones make their degradation frustratingly challenging. The current effective strategy is to create cleavable defects, e.g., C═C double bonds along the backbone, and subsequently depolymerize them via cross-metathesis reaction with olefins. High-value chemicals or reusable polymeric segments are obtained. This two-step protocol provides operable means for alleviating plastics problems. There are several approaches to introduce unsaturation into a polymer backbone, like dehydrogenation or copolymerization of olefins and conjugated dienes. However, for the second step, to conduct a cross-metathesis reaction, only noble metal catalysts can be used most of the time. Regardless of their limited availability, the fact that these organometallics are unfavorably sensitive to impurities would raise barriers in industrial practices. Herein we employed earth-abundant and inexpensive iron-based Lewis acids to initiate carbonyl-olefin metathesis reactions between ketone/aldehyde reagents and unsaturated polyolefins. After explorations in poly(diene)s and industrial thermoplastic elastomers, we extended this protocol to degrade low-density polyethylene (LDPE). Low-molecular weight PE wax-like products were obtained as useful chemicals. This catalytic degradation system is expected to enable the development of more efficient metathesis strategies to promote degradation of polyolefins and pave sustainable ways for reuse of polymeric materials.
Collapse
Affiliation(s)
- Liangyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhihao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - En Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Schneider CW, Devery JJ. Theoretical Investigations of Substrate Behavior in FeCl 3-Catalyzed Carbonyl-Olefin Metathesis. ACS OMEGA 2025; 10:10283-10293. [PMID: 40124011 PMCID: PMC11923843 DOI: 10.1021/acsomega.4c09880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
FeCl3-catalyzed ring-closing carbonyl-olefin metathesis is a powerful method for the formation of cyclic olefins. Multiple substrate classes are known to display this reactivity; however, two substrates have been reported to form an oxetane, and do not undergo retro-[2 + 2] fragmentation into the cyclic olefin and a byproduct carbonyl. Specifically, phenanthrene producing polycyclic aromatic hydrocarbons yield an oxetane when electrophilic fluorine is introduced α to the substrate carbonyl. Herein, we report the application of quantum chemical modeling of enthalpies and NBO charges to investigate this divergent reactivity. In particular, the replacement of C-H bonds with C-F bonds eliminates hyperconjugative stabilization of the retro-[2 + 2] transition state. Taken together, this model suggests that charge stabilization at the reactive carbonyl carbon dictates the ability of the oxetane to fragment into the metathesis product. However, we also observe that electron-deficient carbonyls have a significantly lower barrier to Fe(III)-mediated oxetane formation. Balancing the factors implicated by our model, we predict the structures of possible metathesis-active molecules as well as oxetane-forming molecules.
Collapse
Affiliation(s)
- Cory W. Schneider
- Department of Chemistry & Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - James J. Devery
- Department of Chemistry & Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
3
|
Xiao YQ, Fang KX, Zhang Z, Zhang C, Li YJ, Wang BC, Zhang BJ, Jiang YQ, Zhang M, Tan Y, Xiao WJ, Lu LQ. Hyperconjugation-Driven Isodesmic Reaction of Indoles and Anilines: Reaction Discovery, Mechanism Study, and Antitumor Application. Angew Chem Int Ed Engl 2024; 63:e202408426. [PMID: 39177728 DOI: 10.1002/anie.202408426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Isodesmic reactions, in which chemical bonds are redistributed between substrates and products, provide a general and powerful strategy for both biological and chemical synthesis. However, most isodesmic reactions involve either metathesis or functional-group transfer. Here, we serendipitously discovered a novel isodesmic reaction of indoles and anilines that proceeds intramolecularly under weakly acidic conditions. In this process, the five-membered ring of the indole motif is broken and a new indole motif is constructed on the aniline side, accompanied by the formation of a new aniline motif. Mechanistic studies revealed the pivotal role of σ→π* hyperconjugation on the nitrogen atom of the indole motif in driving this unusual isodesmic reaction. Furthermore, we successfully synthesized a diverse series of polycyclic indole derivatives; among quinolines, potential antitumor agents were identified using cellular and in vivo experiments, thereby demonstrating the synthetic utility of the developed methodology.
Collapse
Affiliation(s)
- Yu-Qing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Kai-Xin Fang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yu-Jie Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bao-Cheng Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bin-Jun Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Yu-Qing Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Miao Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, China
| |
Collapse
|
4
|
Zhang X. Cyclization Strategies in Carbonyl-Olefin Metathesis: An Up-to-Date Review. Molecules 2024; 29:4861. [PMID: 39459236 PMCID: PMC11510574 DOI: 10.3390/molecules29204861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The metathesis reaction between carbonyl compounds and olefins has emerged as a potent strategy for facilitating swift functional group interconversion and the construction of intricate organic structures through the creation of novel carbon-carbon double bonds. To date, significant progress has been made in carbonyl-olefin metathesis reactions, where oxetane, pyrazolidine, 1,3-diol, and metal alkylidene have been proved to be key intermediates. Recently, several reviews have been disclosed, focusing on distinct catalytic approaches for achieving carbonyl-olefin metathesis. However, the summarization of cyclization strategies for constructing aromatic heterocyclic frameworks through carbonyl-olefin metathesis reactions has rarely been reported. Consequently, we present an up-to-date review of the cyclization strategies in carbonyl-olefin metathesis, categorizing them into three main groups: the formation of monocyclic compounds, bicyclic compounds, and polycyclic compounds. This review delves into the underlying mechanism, scope, and applications, offering a comprehensive perspective on the current strength and the limitation of this field.
Collapse
Affiliation(s)
- Xiaoke Zhang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China;
- Institute of Life Sciences, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
5
|
Li R, Zhan R, Lang Y, Li CJ, Zeng H. Intermolecular C-C/C-N σ-bond metathesis enabled by visible light. Chem Sci 2024; 15:12900-12905. [PMID: 39148768 PMCID: PMC11323325 DOI: 10.1039/d4sc02412e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Transition-metal-catalyzed double/triple bond metathesis reactions have been well-established due to the ability of transition-metal catalysts to readily interact with π bonds, facilitating the progression of the entire reaction. However, activating σ-bonds to induce σ-bond metathesis is more challenging due to the absence of π bonds and the high bond energy of σ bonds. In this study, we present a novel photo-induced approach that does not rely on transition metals or photosensitizers to drive C-C and C-N σ-bond metathesis reactions. This method enables the cross-coupling of tertiary amines with α-diketones via C-C and C-N single bonds cleavage and recombination. Notably, our protocol exhibits good compatibility with various functional groups in the absence of transition metals and external photosensitizers, resulting in the formation of aryl alkyl ketones and aromatic amides in good to high yields. To gain insights into the mechanism of this pathway, we conducted controlled experiments, intermediate trapping experiments, and DFT (Density Functional Theory) calculations. This comprehensive approach allowed us to elucidate the detailed mechanism underlying this transformative reaction.
Collapse
Affiliation(s)
- Rujuan Li
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Renqin Zhan
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| |
Collapse
|
6
|
Zhu Y, Jia J, Song X, Gong C, Xia Y. Double strain-release enables formal C-O/C-F and C-N/C-F ring-opening metathesis. Chem Sci 2024:d4sc03624g. [PMID: 39129767 PMCID: PMC11310891 DOI: 10.1039/d4sc03624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Metathesis reactions have been established as a powerful tool in organic synthesis. While great advances were achieved in double-bond metathesis, like olefin metathesis and carbonyl metathesis, single-bond metathesis has received less attention in the past decade. Herein, we describe the first C(sp3)-O/C(sp3)-F bond formal cross metathesis reaction between gem-difluorinated cyclopropanes (gem-DFCPs) and epoxides under rhodium catalysis. The reaction involves the formation of a highly electrophilic fluoroallyl rhodium intermediate, which is capable of reacting with the oxygen atom in epoxides as weak nucleophiles followed by C-F bond reconstruction. The use of two strained ring substrates is the key to the success of the formal cross metathesis, in which the double strain release accounts for the driving force of the transformation. Additionally, azetidine also proves to be a suitable substrate for this transformation. The reaction offers a novel approach for the metathesis of C(sp3)-O and C(sp3)-N bonds, presenting new opportunities for single-bond metathesis.
Collapse
Affiliation(s)
- Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Chunyu Gong
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Zou S, Zhao Z, Huang H. Enantioselective Ring-Closing Aminomethylamination of Allylic Aminodienes with Aminals Triggered by C-N Bond Metathesis. Org Lett 2024. [PMID: 38502801 DOI: 10.1021/acs.orglett.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A conceptually novel strategy utilizing a cyclopalladated complex as an electrophile to activate the C-N bond for the C-N bond metathesis between allylamines and aminals is developed, which enables an efficient ring-closing aminomethylamination of allylic aminodienes and aminals. The reaction proceeds under mild reaction conditions and displays a remarkable scope. Utilizing a modified Trost-type diphosphine as the ligand, this method enables the efficient synthesis of 5-10-membered aminoallylated chiral N-heterocycles in good yields with high enantiomeric excess values.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| |
Collapse
|
8
|
To TA, Nguyen TV. Olefination of Aromatic Carbonyls via Site-Specific Activation of Cycloalkanone Ketals. Angew Chem Int Ed Engl 2024; 63:e202317003. [PMID: 37997004 DOI: 10.1002/anie.202317003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Skeletal editing is an important strategy in organic synthesis as it modifies the carbon backbone to tailor molecular structures with precision, enabling access to compounds with specific desired properties. Skeletal editing empowers chemists to transform synthetic approaches of target compounds across diverse applications from drug discovery to materials science. Herein, we introduce a new skeletal editing method to convert readily available aromatic carbonyl compounds into valuable unsaturated carboxylic acids with extended carbon chains. Our reaction setup enables a cascade reaction of enolization-[2+2]cycloaddition-[2+2]cycloreversion between aromatic carbonyl compounds and ketals of cyclic ketones to generate unsaturated carboxylic acids as ring-opening products. Through a simple design, our substrates are specifically activated to react at predetermined positions to enhance selectivity and efficiency. This practical method offers convenient access to versatile organic building blocks as well as provides fresh insights into manipulating traditional reaction pathways for new synthetic applications.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| |
Collapse
|
9
|
Pizzio MG, Cenizo ZB, Méndez L, Sarotti AM, Mata EG. InCl 3-catalyzed intramolecular carbonyl-olefin metathesis. Org Biomol Chem 2023; 21:8141-8151. [PMID: 37779456 DOI: 10.1039/d3ob01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
An efficient and novel synthetic strategy for the generation of different carbocyclic moieties by ring closing carbonyl-olefin metathesis is reported. Herein, we describe a sustainably attractive protocol for one of the most powerful carbon-carbon bond-forming reactions, based on solvent-reduction, use of InCl3 catalyst, and microwave irradiation, affording target compounds with yields up to 96%.
Collapse
Affiliation(s)
- Marianela G Pizzio
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Zoe B Cenizo
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Luciana Méndez
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ernesto G Mata
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
10
|
Todtz SR, Schneider CW, Malakar T, Anderson C, Koska H, Zimmerman PM, Devery JJ. Controlling Catalyst Behavior in Lewis Acid-Catalyzed Carbonyl-Olefin Metathesis. J Am Chem Soc 2023; 145:13069-13080. [PMID: 37279356 PMCID: PMC10517625 DOI: 10.1021/jacs.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lewis acid-catalyzed carbonyl-olefin metathesis has introduced a new means for revealing the behavior of Lewis acids. In particular, this reaction has led to the observation of new solution behaviors for FeCl3 that may qualitatively change how we think of Lewis acid activation. For example, catalytic metathesis reactions operate in the presence of superstoichiometric amounts of carbonyl, resulting in the formation of highly ligated (octahedral) iron geometries. These structures display reduced activity, decreasing catalyst turnover. As a result, it is necessary to steer the Fe-center away from inhibiting pathways to improve the reaction efficiency and augment yields for recalcitrant substrates. Herein, we examine the impact of the addition of TMSCl to FeCl3-catalyzed carbonyl-olefin metathesis, specifically for substrates that are prone to byproduct inhibition. Through kinetic, spectroscopic, and colligative experiments, significant deviations from the baseline metathesis reactivity are observed, including mitigation of byproduct inhibition as well as an increase in the reaction rate. Quantum chemical simulations are used to explain how TMSCl induces a change in catalyst structure that leads to these kinetic differences. Collectively, these data are consistent with the formation of a silylium catalyst, which induces the reaction through carbonyl binding. The FeCl3 activation of Si-Cl bonds to give the silylium active species is expected to have significant utility in enacting carbonyl-based transformations.
Collapse
Affiliation(s)
- Sophi R Todtz
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Cory W Schneider
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Tanmay Malakar
- Department of Chemistry, Barasat College, 10 K.N.C. Road, Barasat, Kolkata 700124, West Bengal, India
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Clare Anderson
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Heather Koska
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - James J Devery
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
11
|
Fan S, Wu W, Fang L, Zhu J. Catalytic Olefin-Imine Metathesis: Cobalt-Enabled Amidine Olefination with Enaminones. Org Lett 2023; 25:3335-3339. [PMID: 37125698 DOI: 10.1021/acs.orglett.3c01249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Organic metathesis reactions allow for expedient assembly of diverse molecular skeletons and appendages through the exchange of molecular fragments. The olefin-imine variant of this process, in particular, can expand the synthetic toolbox for manipulating carbon-carbon and carbon-nitrogen bonds but has thus far been achieved only on a stoichiometric metal-mediated basis. Herein, we report the development of a catalytic olefin-imine metathesis reaction, featuring cobalt-catalyzed amidine olefination with enaminones and a versatile product synthon enabling further structural diversification.
Collapse
Affiliation(s)
- Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
12
|
Liu H, Huang Q, Liao RZ, Li M, Xie Y. Ring-closing C-O/C-O metathesis of ethers with primary aliphatic alcohols. Nat Commun 2023; 14:1883. [PMID: 37019932 PMCID: PMC10076310 DOI: 10.1038/s41467-023-37538-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
In canonical organic chemistry textbooks, the widely adopted mechanism for the classic transetherifications between ethers and alcohols starts with the activation of the ether in order to weaken the C-O bond, followed by the nucleophilic attack by the alcohol hydroxy group, resulting in a net C-O/O-H σ-bond metathesis. In this manuscript, our experimental and computational investigation of a Re2O7 mediated ring-closing transetherification challenges the fundamental tenets of the traditional transetherification mechanism. Instead of ether activation, the alternative activation of the hydroxy group followed by nucleophilic attack of ether is realized by commercially available Re2O7 through the formation of perrhenate ester intermediate in hexafluoroisopropanol (HFIP), which results in an unusual C-O/C-O σ-bond metathesis. Due to the preference for the activation of alcohol rather than ether, this intramolecular transetherification reaction is therefore suitable for substrates bearing multiple ether moieties, unparalleled by any previous methods.
Collapse
Affiliation(s)
- Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Rong-Zhen Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
McAtee CC, Nasrallah DJ, Ryu H, Gatazka MR, McAtee RC, Baik MH, Schindler CS. Catalytic, Interrupted Carbonyl-Olefin Metathesis for the Formation of Functionalized Cyclopentadienes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Christopher C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel J. Nasrallah
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ho Ryu
- Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejon 34141, Republic of Korea
| | - Michael R. Gatazka
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Rory C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mu-Hyun Baik
- Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejon 34141, Republic of Korea
| | - Corinna S. Schindler
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
To TA, Mai BK, Nguyen TV. Toward Homogeneous Brønsted-Acid-Catalyzed Intramolecular Carbonyl-Olefin Metathesis Reactions. Org Lett 2022; 24:7237-7241. [PMID: 36166378 DOI: 10.1021/acs.orglett.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carbonyl-olefin metathesis (COM) reaction is an attractive approach for the formation of a new carbon-carbon double bond from a carbonyl precursor. In principle, this reaction can be promoted by the activation of the carbonyl group with a Brønsted acid catalyst; however, it is often complicated as a result of unwanted side reactions under acidic conditions. Thus, there have been only a very few examples of Brønsted-acid-catalyzed COM reactions, all of which required specially designed setups. Herein, we report a new practical homogeneous Brønsted-acid-catalyzed protocol using nitromethane, a readily available solvent, to promote intramolecular ring-closing COM reactions.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
15
|
Hu Z, Ma P, Ma N, Wang J. FeCl 3-Catalyzed Synthesis of Tanshinlactone Analogues from 1 H-Indene-1,2,3-triones and Alkynes. J Org Chem 2022; 87:10982-10989. [PMID: 35914246 DOI: 10.1021/acs.joc.2c01254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tanshinlactone has been found in several natural products and biologically active compounds. Herein, a new FeCl3-catalyzed strategy using 1H-indene-1,2,3-triones and alkynes as starting materials is reported to obtain various tanshinlactone derivatives. This protocol has the advantages of involving low cost, environmentally benign catalysts, simple reaction conditions, and a broad range of substrates.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department of Chemistry, College of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Peng Ma
- Department of Chemistry, College of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Ning Ma
- Department of Chemistry, College of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Jianhui Wang
- Department of Chemistry, College of Science, Tianjin University, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, P. R. China
| |
Collapse
|
16
|
Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Metal-Free Ring-Opening Metathesis Polymerization with Hydrazonium Initiators. Angew Chem Int Ed Engl 2022; 61:e202203344. [PMID: 35302707 DOI: 10.1002/anie.202203344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 12/13/2022]
Abstract
The ring-opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3-diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn ≤9.4 kg mol-1 ) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs' 2nd generation catalyst for the polymerization of 3-methyl-3-phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.
Collapse
Affiliation(s)
- Phong K Quach
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Chen X, Zhong C, Duan X, Guan Z, Gu L, Luo Z, Chen Y, Zhang Y. A Removable Acyl Group Promoted the Intramolecular Dehydro-Diels-Alder Reaction of Styrene-Ynes: Highly Chemoselective Synthesis of Aryldihydronaphthalene Derivatives. J Org Chem 2022; 87:6601-6611. [PMID: 35500289 DOI: 10.1021/acs.joc.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A removable acyl group promoted the intramolecular didehydro-Diels-Alder reaction of styrene-ynes under mild reaction conditions is proposed. The reaction is free of metals and catalysts, is easy to perform, and exhibits good functional group tolerance, providing a highly chemoselective approach for obtaining the valuable aryldihydronaphthalene derivatives.
Collapse
Affiliation(s)
- Xia Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianxian Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
19
|
Anh To T, Pei C, Koenigs RM, Vinh Nguyen T. Hydrogen Bonding Networks Enable Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis. Angew Chem Int Ed Engl 2022; 61:e202117366. [PMID: 34985790 PMCID: PMC9303705 DOI: 10.1002/anie.202117366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Synthetic chemists have learned to mimic nature in using hydrogen bonds and other weak interactions to dictate the spatial arrangement of reaction substrates and to stabilize transition states to enable highly efficient and selective reactions. The activation of a catalyst molecule itself by hydrogen-bonding networks, in order to enhance its catalytic activity to achieve a desired reaction outcome, is less explored in organic synthesis, despite being a commonly found phenomenon in nature. Herein, we show our investigation into this underexplored area by studying the promotion of carbonyl-olefin metathesis reactions by hydrogen-bonding-assisted Brønsted acid catalysis, using hexafluoroisopropanol (HFIP) solvent in combination with para-toluenesulfonic acid (pTSA). Our experimental and computational mechanistic studies reveal not only an interesting role of HFIP solvent in assisting pTSA Brønsted acid catalyst, but also insightful knowledge about the current limitations of the carbonyl-olefin metathesis reaction.
Collapse
Affiliation(s)
- Tuong Anh To
- School of ChemistryUniversity of New South Wales, Sydney Anzac ParadeKensingtonNSW2052Australia
| | - Chao Pei
- Institute of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Thanh Vinh Nguyen
- School of ChemistryUniversity of New South Wales, Sydney Anzac ParadeKensingtonNSW2052Australia
| |
Collapse
|
20
|
Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Metal–Free Ring–Opening Metathesis Polymerization with Hydrazonium Initiators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phong K Quach
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Jesse H Hsu
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Ivan Keresztes
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Brett P Fors
- Cornell University Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Tristan Hayes Lambert
- Cornell University Department of Chemistry & Chemical Biology Baker Laboratory 14853 Ithaca UNITED STATES
| |
Collapse
|
21
|
Anh To T, Pei C, Koenigs RM, Vinh Nguyen T. Hydrogen Bonding Networks Enable Brønsted Acid‐Catalyzed Carbonyl‐Olefin Metathesis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tuong Anh To
- School of Chemistry University of New South Wales, Sydney Anzac Parade Kensington NSW 2052 Australia
| | - Chao Pei
- Institute of Organic Chemistry RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Rene M. Koenigs
- Institute of Organic Chemistry RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Thanh Vinh Nguyen
- School of Chemistry University of New South Wales, Sydney Anzac Parade Kensington NSW 2052 Australia
| |
Collapse
|
22
|
Li Y, Sun Y, Meng L, Li Q, Zeng Y. Halogen Bond Catalysis on Carbonyl–Olefin
Ring‐Closing
Metathesis Reaction: Comparison with Lewis Acid Catalysis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Yuanyuan Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, College of Chemistry& Chemical Engineering Yantai University Yantai China 264005
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| |
Collapse
|
23
|
Yu B, Huang H. Recent Advances in C—X Bond Metathesis Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Huck F, Catti L, Reber GL, Tiefenbacher K. Expanding the Protecting Group Scope for the Carbonyl Olefin Metathesis Approach to 2,5-Dihydropyrroles. J Org Chem 2021; 87:419-428. [PMID: 34928613 DOI: 10.1021/acs.joc.1c02447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral pyrrolidine derivatives are important building blocks for natural product synthesis. Carbonyl olefin metathesis has recently emerged as a powerful tool for the construction of such building blocks from chiral amino acid derivatives. Here, we demonstrate that the supramolecular resorcinarene catalyst enables access to chiral 2,5-dihydropyrroles under Brønsted acid catalysis. Moreover, this catalytic system even tolerated Lewis-basic-protecting groups like mesylates that are not compatible with alternative catalysts. As expected for conversion inside a closed cavity, the product yield and selectivity depended on the size of the substrates.
Collapse
Affiliation(s)
- Fabian Huck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Lorenzo Catti
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-28, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Gian Lino Reber
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
25
|
Chen Y, Liu D, Wang R, Xu L, Tan J, Shu M, Tian L, Jin Y, Zhang X, Lin Z. Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis: Synthesis of Phenanthrenes via Phosphomolybdic Acid as a Catalyst. J Org Chem 2021; 87:351-362. [PMID: 34928599 DOI: 10.1021/acs.joc.1c02385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared with the impressive achievements of catalytic carbonyl-olefin metathesis (CCOM) mediated by Lewis acid catalysts, exploration of the CCOM through Brønsted acid-catalyzed approaches remains quite challenging. Herein, we disclose a synthetic protocol for the construction of a valuable polycycle scaffold through the CCOM with the inexpensive, nontoxic phosphomolybdic acid as a catalyst. The current annulations could realize carbonyl-olefin, carbonyl-alcohol, and acetal-alcohol in situ CCOM reactions and feature mild reaction conditions, simple manipulation, and scalability, making this strategy a promising alternative to the Lewis acid-catalyzed COM reaction.
Collapse
Affiliation(s)
- Yi Chen
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Di Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rui Wang
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Li Xu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jingyao Tan
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Mao Shu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lingfeng Tian
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuan Jin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoke Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563006, China
| | - Zhihua Lin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
26
|
Albright H, Davis AJ, Gomez-Lopez JL, Vonesh HL, Quach PK, Lambert TH, Schindler CS. Carbonyl-Olefin Metathesis. Chem Rev 2021; 121:9359-9406. [PMID: 34133136 DOI: 10.1021/acs.chemrev.0c01096] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Review describes the development of strategies for carbonyl-olefin metathesis reactions relying on stepwise, stoichiometric, or catalytic approaches. A comprehensive overview of currently available methods is provided starting with Paternò-Büchi cycloadditions between carbonyls and alkenes, followed by fragmentation of the resulting oxetanes, metal alkylidene-mediated strategies, [3 + 2]-cycloaddition approaches with strained hydrazines as organocatalysts, Lewis acid-mediated and Lewis acid-catalyzed strategies relying on the formation of intermediate oxetanes, and protocols based on initial carbon-carbon bond formation between carbonyls and alkenes and subsequent Grob-fragmentations. The Review concludes with an overview of applications of these currently available methods for carbonyl-olefin metathesis in complex molecule synthesis. Over the past eight years, the field of carbonyl-olefin metathesis has grown significantly and expanded from stoichiometric reaction protocols to efficient catalytic strategies for ring-closing, ring-opening, and cross carbonyl-olefin metathesis. The aim of this Review is to capture the status quo of the field and is expected to contribute to further advancements in carbonyl-olefin metathesis in the coming years.
Collapse
Affiliation(s)
- Haley Albright
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ashlee J Davis
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jessica L Gomez-Lopez
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hannah L Vonesh
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Phong K Quach
- Cornell University, Department of Chemistry and Chemical Biology, 253 East Avenue, Ithaca, New York 14850, United States
| | - Tristan H Lambert
- Cornell University, Department of Chemistry and Chemical Biology, 253 East Avenue, Ithaca, New York 14850, United States
| | - Corinna S Schindler
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Malakar T, Hanson CS, Devery JJ, Zimmerman PM. Combined Theoretical and Experimental Investigation of Lewis Acid-Carbonyl Interactions for Metathesis. ACS Catal 2021; 11:4381-4394. [PMID: 34017648 DOI: 10.1021/acscatal.0c05277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The coordination of a carbonyl to a Lewis acid represents the first step in a wide range of catalytic transformations. In many reactions it is necessary for the Lewis acid to discriminate between starting material and product, and as a result, how these structures behave in solution must be characterized. Herein, we report the application of computational modeling to calculate properties of the solution interactions of acetone and benzaldehyde with FeCl3. Using these chemical models, we can predict spectral features in the carbonyl region of infrared (IR) spectroscopy. These simulated spectra are then directly compared to experimental spectra generated via titration-IR. We observe good agreement between theory and experiment, in that, between 0 and 1 equiv carbonyl with respect to FeCl3, a pairwise interaction dominates the spectra. When >1 equiv carbonyl is present, our theoretical model predicts two possible structures composed of 4:1 carbonyl to FeCl3, for acetone as well as benzaldehyde. When these predicted spectra are compared with titration-IR data, both structures contribute to the observed solution interactions. These findings suggest that the resting state of FeCl3-catalyzed carbonyl-based reactions employing simple substrates starts as a Lewis pair, but this structure is gradually consumed and becomes a highly ligated, catalytically less active Fe-centered complex as the reaction proceeds. An analytical model is proposed to quantify catalyst inhibition due to equilibrium between 1:1 and 4:1 carbonyl:Fe complexes.
Collapse
Affiliation(s)
- Tanmay Malakar
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carly S. Hanson
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - James J. Devery
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Hwu JR, Panja A, Gupta NK, Huang W, Hu Y, Lin C, Hwang K, Chan W, Tsay S. Asymmetric Synthesis of 3‐Pyrrolines through an Aryne‐Induced Domino Process. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Avijit Panja
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Nitesh K. Gupta
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wen‐Chieh Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yu‐Chen Hu
- Department of Chemical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Kuo‐Chu Hwang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Jen Chan
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Shwu‐Chen Tsay
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
29
|
Malakar T, Zimmerman PM. Brønsted-Acid-Catalyzed Intramolecular Carbonyl-Olefin Reactions: Interrupted Metathesis vs Carbonyl-Ene Reaction. J Org Chem 2021; 86:3008-3016. [PMID: 33475347 DOI: 10.1021/acs.joc.0c03021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lewis acid catalysts have been shown to promote carbonyl-olefin metathesis through a critical four-membered-ring oxetane intermediate. Recently, Brønsted-acid catalysis of related substrates was similarly proposed to result in a transient oxetane, which fragments within a single elementary step via a postulated oxygen-atom transfer mechanism. Herein, careful quantum chemical investigations show that Brønsted acid (triflic acid, TfOH) instead invokes a mechanistic switch to a carbonyl-ene reaction, and oxygen-atom transfer is uncompetitive. TfOH's conjugate base is also found to rearrange H atoms and allow isomerization of the carbocations that appear after the carbonyl-ene reaction. The mechanism explains available experimental information, including the skipped diene species that appear transiently before product formation. The present study clarifies the mechanism for activation of intramolecular carbonyl-olefin substrates by Brønsted acids and provides important insights that will help develop this exciting class of catalysts.
Collapse
Affiliation(s)
- Tanmay Malakar
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Yu B, Zou S, Liu H, Huang H. Palladium-Catalyzed Ring-Closing Reaction via C–N Bond Metathesis for Rapid Construction of Saturated N-Heterocycles. J Am Chem Soc 2020; 142:18341-18345. [DOI: 10.1021/jacs.0c10615] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Suchen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongchi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, 230026, P. R. China
| |
Collapse
|
31
|
Davis AJ, Watson RB, Nasrallah DJ, Gomez-Lopez JL, Schindler CS. Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis. Nat Catal 2020. [DOI: 10.1038/s41929-020-00499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Abstract
Construction of carbon–carbon bonds is one of the most important tools for the synthesis of complex organic molecules. Among multiple possibilities are the carbonyl–alkyne and carbonyl–olefin metathesis reactions, which are used to form new carbon–carbon bonds between carbonyl derivatives and unsaturated organic compounds. As many different approaches have already been established and offer reliable access to C=C bond formation via carbonyl–alkyne and carbonyl–olefin metathesis, focus is now shifting towards cost efficiency, sustainability and environmentally friendly metal catalysts. Iron, which is earth-abundant and considered as an eco-friendly and inexpensive option in comparison to traditional metal catalysts, fulfils these requirements. Hence, the focus of this review is on recent advances in the iron-catalyzed carbonyl–alkyne, carbonyl–olefin and related C–O/C–O metathesis reactions. The still large research potential for ecologically and economically attractive and sustainable iron-based catalysts is demonstrated.
Collapse
|
33
|
Tian J, Chen Y, Vayer M, Djurovic A, Guillot R, Guermazi R, Dagorne S, Bour C, Gandon V. Exploring the Limits of π‐Acid Catalysis Using Strongly Electrophilic Main Group Metal Complexes: The Case of Zinc and Aluminium. Chemistry 2020; 26:12831-12838. [DOI: 10.1002/chem.202001376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Jiaxin Tian
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Yan Chen
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Marie Vayer
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Alexandre Djurovic
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Refka Guermazi
- Institut de Chimie de Strasbourg CNRS-Université de Strasbourg 1 rue Blaise Pascal 67000 Strasbourg France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg CNRS-Université de Strasbourg 1 rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| |
Collapse
|
34
|
Zhang Y, Sim JH, MacMillan SN, Lambert TH. Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Org Lett 2020; 22:6026-6030. [PMID: 32667809 PMCID: PMC7880559 DOI: 10.1021/acs.orglett.0c02116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of 1,2-dihydroquinolines by the hydrazine-catalyzed ring-closing carbonyl-olefin metathesis (RCCOM) of N-prenylated 2-aminobenzaldehydes is reported. Substrates with a variety of substitution patterns are shown. With an acid-labile protecting group on the nitrogen atom, in situ deprotection and autoxidation furnish quinoline. In comparison with related oxygen-containing substrates, the cycloaddition step of the catalytic cycle is shown to be slower, but the cycloreversion is found to be more facile.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jae Hun Sim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
35
|
Jermaks J, Quach PK, Seibel ZM, Pomarole J, Lambert TH. Ring-opening carbonyl-olefin metathesis of norbornenes. Chem Sci 2020; 11:7884-7895. [PMID: 34094159 PMCID: PMC8163149 DOI: 10.1039/d0sc02243h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
A computational and experimental study of the hydrazine-catalyzed ring-opening carbonyl-olefin metathesis of norbornenes is described. Detailed theoretical investigation of the energetic landscape for the full reaction pathway with six different hydrazines revealed several crucial aspects for the design of next-generation hydrazine catalysts. This study indicated that a [2.2.2]-bicyclic hydrazine should offer substantially increased reactivity versus the previously reported [2.2.1]-hydrazine due to a lowered activation barrier for the rate-determining cycloreversion step, a prediction which was verified experimentally. Optimized conditions for both cycloaddition and cycloreversion steps were identified, and a brief substrate scope study for each was conducted. A complication for catalysis was found to be the slow hydrolysis of the ring-opened hydrazonium intermediates, which were shown to suffer from a competitive and irreversible cycloaddition with a second equivalent of norbornene. This problem was overcome by the strategic incorporation of a bridgehead methyl group on the norbornene ring, leading to the first demonstrated catalytic carbonyl-olefin metathesis of norbornene rings.
Collapse
Affiliation(s)
- Janis Jermaks
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Phong K Quach
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Zara M Seibel
- Department of Chemistry, Columbia University New York New York 10025 USA
| | - Julien Pomarole
- Department of Chemistry, Columbia University New York New York 10025 USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
- Department of Chemistry, Columbia University New York New York 10025 USA
| |
Collapse
|
36
|
Das A, Sarkar S, Chakraborty B, Kar A, Jana U. Catalytic Alkyne/Alkene-Carbonyl Metathesis: Towards the Development of Green Organic Synthesis. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346106666191105144019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The construction of carbon-carbon bond through the metathesis reactions between carbonyls
and olefins or alkynes has attracted significant interest in organic chemistry due to its high atomeconomy
and efficiency. In this regard, carbonyl–alkyne metathesis is well developed and widely used
in organic synthesis for the atom-efficient construction of various carbocycles and heterocycles in the
presence of catalytic Lewis acids or Brønsted acids. On the other hand, alkene-carbonyl metathesis is
recently developed and has been a topic of great importance in the field of organic chemistry because
they possess attractive qualities involving metal-mediated, metal-free intramolecular, photochemical,
Lewis acid-mediated ring-closing metathesis, ring-opening metathesis and cross-metathesis. This review
covers most of the strategies of carbonyl–alkyne and carbonyl–olefin metathesis reactions in the
synthesis of complex molecules, natural products and pharmaceuticals as well as provides an overview
of exploration of the metathesis reactions with high atom-economy as well as environmentally and
ecologically benign reaction conditions.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata–700032, India
| | - Soumen Sarkar
- Department of Chemistry, Balurghat College, Balurghat, West Bengal 733103, India
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata–700032, India
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata–700032, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata–700032, India
| |
Collapse
|
37
|
Albright H, Vonesh HL, Schindler CS. Superelectrophilic Fe(III)–Ion Pairs as Stronger Lewis Acid Catalysts for (E)-Selective Intermolecular Carbonyl–Olefin Metathesis. Org Lett 2020; 22:3155-3160. [DOI: 10.1021/acs.orglett.0c00917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Haley Albright
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hannah L. Vonesh
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Rykaczewski KA, Groso EJ, Vonesh HL, Gaviria MA, Richardson AD, Zehnder TE, Schindler CS. Tetrahydropyridines via FeCl3-Catalyzed Carbonyl–Olefin Metathesis. Org Lett 2020; 22:2844-2848. [DOI: 10.1021/acs.orglett.0c00918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Katie A. Rykaczewski
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Emilia J. Groso
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hannah L. Vonesh
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mario A. Gaviria
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alistair D. Richardson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Troy E. Zehnder
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Becker MR, Reid JP, Rykaczewski KA, Schindler CS. Models for Understanding Divergent Reactivity in Lewis Acid-Catalyzed Transformations of Carbonyls and Olefins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marc R. Becker
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jolene P. Reid
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Katie A. Rykaczewski
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Xu T, Chen K, Zhu HY, Hao WJ, Tu SJ, Jiang B. Yb(OTf)3-Catalyzed Alkyne–Carbonyl Metathesis–Oxa-Michael Addition Relay for Diastereoselective Synthesis of Functionalized Naphtho[2,1-b]furans. Org Lett 2020; 22:2414-2418. [DOI: 10.1021/acs.orglett.0c00613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Ke Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Hong-Yu Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
41
|
Rivero-Crespo MÁ, Tejeda-Serrano M, Pérez-Sánchez H, Cerón-Carrasco JP, Leyva-Pérez A. Intermolecular Carbonyl-olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angew Chem Int Ed Engl 2020; 59:3846-3849. [PMID: 31538394 DOI: 10.1002/anie.201909597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/14/2022]
Abstract
The carbonyl-olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl-olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation-induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl-olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene-alkene cross-metathesis.
Collapse
Affiliation(s)
- Miguel Ángel Rivero-Crespo
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - María Tejeda-Serrano
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), Spain
| | - José Pedro Cerón-Carrasco
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
42
|
Hanson CS, Devery JJ. Characterizing Lewis Pairs Using Titration Coupled with In Situ Infrared Spectroscopy. J Vis Exp 2020. [PMID: 32150174 DOI: 10.3791/60745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lewis acid-activation of carbonyl-containing substrates is a fundamental basis for facilitating transformations in organic chemistry. Historically, characterization of these interactions has been limited to models equivalent to stoichiometric reactions. Here, we report a method utilizing in situ infrared spectroscopy to probe the solution interactions between Lewis acids and carbonyls under synthetically relevant conditions. Using this method, we were able to identify 1:1 complexation between GaCl3 and acetone and a highly ligated complex for FeCl3 and acetone. The impact of this technique on mechanistic understanding is illustrated by application to the mechanism of Lewis acid-mediated carbonyl-olefin metathesis in which we were able to observe competitive binding interactions between substrate carbonyl and product carbonyl with the catalyst.
Collapse
Affiliation(s)
- Carly S Hanson
- Department of Chemistry & Biochemistry, Loyola University Chicago
| | - James J Devery
- Department of Chemistry & Biochemistry, Loyola University Chicago;
| |
Collapse
|
43
|
Wang R, Chen Y, Shu M, Zhao W, Tao M, Du C, Fu X, Li A, Lin Z. AuCl 3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Chemistry 2020; 26:1941-1946. [PMID: 31867760 DOI: 10.1002/chem.201905199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Indexed: 11/05/2022]
Abstract
Compared with the ripeness of olefin metathesis, exploration of the construction of carbon-carbon double bonds through the catalytic carbonyl-olefin metathesis reaction remains stagnant and has received scant attention. Herein, a highly efficient AuCl3 -catalyzed intramolecular ring-closing carbonyl-olefin metathesis reaction is described. This method features easily accessible starting materials, simple operation, good functional-group tolerance and short reaction times, and provides the target cyclopentenes, polycycles, benzocarbocycles, and N-heterocycle derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Yi Chen
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Mao Shu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Wenwen Zhao
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Maoling Tao
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Chao Du
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Xiaoya Fu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Ao Li
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| | - Zhihua Lin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, 69 Red Avenue, Chongqing, 400054, China
| |
Collapse
|
44
|
McFarlin AT, Watson RB, Zehnder TE, Schindler CS. Interrupted Carbonyl‐Alkyne Metathesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Austin T. McFarlin
- Willard Henry Dow Laboratory, Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109 United States
| | - Rebecca B. Watson
- Willard Henry Dow Laboratory, Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109 United States
| | - Troy E. Zehnder
- Willard Henry Dow Laboratory, Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109 United States
| | - Corinna S. Schindler
- Willard Henry Dow Laboratory, Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109 United States
| |
Collapse
|
45
|
Hanson CS, Psaltakis MC, Cortes JJ, Siddiqi SS, Devery JJ. Investigation of Lewis Acid-Carbonyl Solution Interactions via Infrared-Monitored Titration. J Org Chem 2020; 85:820-832. [PMID: 31830419 DOI: 10.1021/acs.joc.9b02822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lewis acid-activation of carbonyl-containing substrates is broadly utilized in organic synthesis. In order to facilitate the development of novel reaction pathways and understand existing methods, it is necessary to determine the solution interactions between Lewis acids and Lewis bases. Herein, we report the application of in situ infrared spectroscopy and solution conductivity toward the identification of the solution structures formed when a range of carbonyl compounds are combined with catalytically active metal halide Lewis acids under synthetically relevant conditions. These data are consistent with formation of Lewis acid-dependent complexes, where metals of low relative Lewis acidity display no ground state interaction with carbonyls. Conversely, we observed the formation of polyligated complexes when stronger Lewis acids (SnCl4, TiCl4, ZrCl4, FeCl3, and AlCl3) were treated with ketones, aldehydes, and esters. This collection of observations is intended to assist the synthetic chemist in the design of new catalysts and the development of novel methods.
Collapse
Affiliation(s)
- Carly S Hanson
- Department of Chemistry & Biochemistry , Loyola University Chicago , Flanner Hall, 1068 W Sheridan Road , Chicago , Illinois 60660 , United States
| | - Mary C Psaltakis
- Department of Chemistry & Biochemistry , Loyola University Chicago , Flanner Hall, 1068 W Sheridan Road , Chicago , Illinois 60660 , United States
| | - Janiel J Cortes
- Department of Chemistry & Biochemistry , Loyola University Chicago , Flanner Hall, 1068 W Sheridan Road , Chicago , Illinois 60660 , United States
| | - Sameera S Siddiqi
- Department of Chemistry & Biochemistry , Loyola University Chicago , Flanner Hall, 1068 W Sheridan Road , Chicago , Illinois 60660 , United States
| | - James J Devery
- Department of Chemistry & Biochemistry , Loyola University Chicago , Flanner Hall, 1068 W Sheridan Road , Chicago , Illinois 60660 , United States
| |
Collapse
|
46
|
Ao C, Yang X, Jia S, Xu X, Yuan Y, Zhang D, Hu W. Zinc-Catalyzed Alkyne-Carbonyl Metathesis of Ynamides with Isatins: Stereoselective Access to Fully Substituted Alkenes. J Org Chem 2019; 84:15331-15342. [PMID: 31702914 DOI: 10.1021/acs.joc.9b02350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A zinc-catalyzed intermolecular alkyne-carbonyl metathesis reaction of ynamides with isatins followed by an amide to ester conversion has been developed, which produces the indolone derivatives with a fully substituted alkene species in good to high yields. The salient features of this reaction include the following: mild reaction conditions, an inexpensive zinc catalyst, a broad substrate scope, the excellent regiocontrol and stereoselectivity, and amenable to the gram scale.
Collapse
Affiliation(s)
- Chaoqun Ao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Xiaohan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Shikun Jia
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yanqiu Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
47
|
Rivero‐Crespo MÁ, Tejeda‐Serrano M, Pérez‐Sánchez H, Cerón‐Carrasco JP, Leyva‐Pérez A. Intermolecular Carbonyl–olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Ángel Rivero‐Crespo
- Instituto de Tecnología Química (UPV-CSIC) Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - María Tejeda‐Serrano
- Instituto de Tecnología Química (UPV-CSIC) Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Horacio Pérez‐Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC) Universidad Católica de Murcia (UCAM) Spain
| | - José Pedro Cerón‐Carrasco
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC) Universidad Católica de Murcia (UCAM) Spain
| | - Antonio Leyva‐Pérez
- Instituto de Tecnología Química (UPV-CSIC) Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
48
|
Zhang Y, Jermaks J, MacMillan SN, Lambert TH. Synthesis of 2 H-Chromenes via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. ACS Catal 2019; 9:9259-9264. [PMID: 34084650 DOI: 10.1021/acscatal.9b03656] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic ring-closing carbonyl-olefin metathesis (RCCOM) of O-allyl salicylaldehydes to form 2H-chromenes is described. The method utilizes a [2.2.1]-bicyclic hydrazine catalyst and operates via a [3+2]/retro-[3+2] metathesis manifold. The nature of the allyl substitution pattern was found to be crucial, with sterically demanding groups such as adamantylidene or diethylidene offering optimal outcomes. A survey of substrate scope is shown along with a discussion of mechanism supported by DFT calculations. Steric pressure arising from syn-pentane minimization of the diethylidene moiety is proposed to facilitate cycloreversion.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
49
|
Riehl PS, Nasrallah DJ, Schindler CS. Catalytic, transannular carbonyl-olefin metathesis reactions. Chem Sci 2019; 10:10267-10274. [PMID: 32110312 PMCID: PMC6979496 DOI: 10.1039/c9sc03716k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Transannular carbonyl-olefin metathesis reactions complement existing procedures for related ring-closing, ring-opening, and intermolecular carbonyl-olefin metathesis. We herein report the development and mechanistic investigation of FeCl3-catalyzed transannular carbonyl-olefin metathesis reactions that proceed via a distinct reaction path compared to previously reported ring-closing and ring-opening protocols. Specifically, carbonyl-ene and carbonyl-olefin metathesis reaction pathways are competing under FeCl3-catalysis to ultimately favor metathesis as the thermodynamic product. Importantly, we show that distinct Lewis acid catalysts are able to distinguish between these pathways to enable the selective formation of either transannular carbonyl-ene or carbonyl-olefin metathesis products. These insights are expected to enable further advances in catalyst design to efficiently differentiate between these two competing reaction paths of carbonyl and olefin functionalities to further expand the synthetic generality of carbonyl-olefin metathesis.
Collapse
Affiliation(s)
- Paul S Riehl
- Willard Henry Dow Laboratory , Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Daniel J Nasrallah
- Willard Henry Dow Laboratory , Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Corinna S Schindler
- Willard Henry Dow Laboratory , Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , USA .
| |
Collapse
|
50
|
Djurovic A, Vayer M, Li Z, Guillot R, Baltaze JP, Gandon V, Bour C. Synthesis of Medium-Sized Carbocycles by Gallium-Catalyzed Tandem Carbonyl–Olefin Metathesis/Transfer Hydrogenation. Org Lett 2019; 21:8132-8137. [DOI: 10.1021/acs.orglett.9b03240] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alexandre Djurovic
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Marie Vayer
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Zhilong Li
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Regis Guillot
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Jean-Pierre Baltaze
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91128 Cedex, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| |
Collapse
|