1
|
Hyun YE, Kweon J, Linh Phan TH, Kim D, Han S. α- N-phthalimido-oxy isobutyrate-mediated deoxygenative arylation: total synthesis of alanenses A and B. Chem Sci 2025:d5sc00341e. [PMID: 40336999 PMCID: PMC12053228 DOI: 10.1039/d5sc00341e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Inspired by a biosynthetic hypothesis of alanense A, we developed two distinct methods for the deoxygenative arylation of α-N-phthalimido-oxy isobutyrate (NPIB), derived from hydroxyl groups adjacent to or conjugated with a carbonyl moiety. One approach utilizes photoredox catalysis to achieve a radical-mediated arylation reaction. The other approach involves an acid-mediated arylation method that proceeds through a cationic intermediate. The acid-mediated approach was successfully applied to the total syntheses of alanenses A, B, and O7'-methyllacinilene E.
Collapse
Affiliation(s)
- Young Eum Hyun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Thi Hieu Linh Phan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Moon J, Shin E, Kwon Y. Enantioselective Desymmetrization of Biaryls via Cooperative Photoredox/Brønsted Acid Catalysis and Its Application to the Total Synthesis of Ancistrobrevolines. J Am Chem Soc 2025; 147:12800-12810. [PMID: 40186573 DOI: 10.1021/jacs.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Photoredox catalysis has emerged as a powerful tool for forming and breaking chemical bonds, further taking hold with its integration with asymmetric catalysis. While the dual-catalytic approach has led to successful examples of the control of stereogenic centers, the control of stereogenic axes has remained underexplored. In this study, an acylimine intermediate was generated through photoredox catalysis, and a symmetric substrate, 2-arylresorcinol, was desymmetrized with the aid of chiral phosphoric acid catalysis. Using this approach, a stereogenic center and stereogenic axis were successfully controlled to provide a natural-product-driven compound. The origins of enantioselectivity and diastereoselectivity were investigated through a density functional theory study of four possible enantiodetermining transition states. Consequently, the first total syntheses of the ring-contracted naphthylisoquinoline alkaloid ancistrobrevolines A and B were accomplished concisely. This approach provides not only a novel methodology and strategy to synthesize naphthylisoquinoline alkaloids but also a direction to advance catalytic research and total synthesis studies.
Collapse
Affiliation(s)
- Junsoo Moon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eunjoo Shin
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Lepori M, Pratley C, Dey I, Butera V, Roider V, Barham JP. Photocatalysis Enables Chemodivergent Radical Polar Crossover: Ritter-Type Amidation vs Heck-Type Olefin Carbofunctionalizations. Chemistry 2025:e202500666. [PMID: 40099814 DOI: 10.1002/chem.202500666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Three-component alkene difunctionalization reactions constitute an ideal platform to rapidly build molecular complexity, enabling the simultaneous introduction of two distinct, orthogonal functional groups into the C═C bond in a single step. Herein, a photoredox catalyzed Ritter-type carboamidation of electronically diverse styrenes harnessing non-stabilized, nucleophilic primary radicals generated from readily-accessible carboxylic acid-derived redox active esters is reported. Furthermore, it is found that Heck-type products are chemoselectively obtained by simply switching aryl olefin acceptors with 1,1-diarylolefins. In the context of photocatalytic chemodivergent radical polar crossover, the synthesis of various trisubstituted alkenes was achieved, simultaneously revealing a divergence in the activation of redox-active esters toward reduction. In-depth mechanistic studies demonstrated both transformation pathways, while DFT calculations indicated the origin of product switchability. Both Ritter-type and Heck-type olefin carbofunctionalizations are scalable up to 4 mmol scale in batch and continuous flow, proving the synthetic utility of the methodology.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, Regensburg, 93053, Germany
| | - Cassie Pratley
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, Regensburg, 93053, Germany
| | - Indrasish Dey
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, Regensburg, 93053, Germany
| | - Valeria Butera
- Department of Science and Biological, Chemical and Pharmaceutical Technologies, University of Palermo, Palermo, 90128, Italy
| | - Veronika Roider
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, Regensburg, 93053, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, Regensburg, 93053, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
4
|
Mori S, Hashimoto R, Hisatomi T, Domen K, Saito S. Artificial photosynthesis directed toward organic synthesis. Nat Commun 2025; 16:1797. [PMID: 40016180 PMCID: PMC11868534 DOI: 10.1038/s41467-025-56374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
In nature, plants convert solar energy into chemical energy via water oxidation. Inspired by natural photosynthesis, artificial photosynthesis has been gaining increasing interest in the field of sustainability/green science and technology as a non-natural and thermodynamically endergonic (ΔG° > 0, uphill) solar-energy-driven reaction that uses water as an electron donor and a source material. Among the artificial-photosynthesis processes, inorganic-synthesis reactions via water oxidation, including water splitting and CO2-to-fuel conversion, have been attracting much attention. In contrast, the synthesis of high-value functionalized organic compounds via artificial photosynthesis, which we have termed artificial photosynthesis directed toward organic synthesis (APOS), remains a great challenge. Herein, we report a synthetically pioneering and meaningful strategy of APOS, where the carbohydroxylation of C = C double bonds is accomplished via a three-component coupling with H2 evolution using dual functions of semiconductor photocatalysts, i.e., silver-loaded titanium dioxide (Ag/TiO2) and rhodium-chromium-cobalt-loaded aluminum-doped strontium titanate (RhCrCo/SrTiO3:Al).
Collapse
Affiliation(s)
- Shogo Mori
- Integrated Research Consortium on Chemical Sciences, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Riku Hashimoto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Takashi Hisatomi
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8656, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
5
|
Liang L, Wang YH, Cui CX, Deng XS, Wang SL, Guo HM, Li Y, Niu HY, Mao R. NADH Analogues Enable Metal- and Light-Free Decarboxylative Functionalization. Angew Chem Int Ed Engl 2025; 64:e202415131. [PMID: 39584360 DOI: 10.1002/anie.202415131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Here we report a metal- and light-free decarboxylative functionalization approach enabled by reduced nicotinamide adenine dinucleotide (NADH) analogues. The efficient and operationally simple approach, conducted in 5 minutes from in situ preparation of aryliodine (III) dicarboxylates under open-air and ambient conditions, enables diverse bond formation and exhibits a broad substrate scope of over 70 examples. Late-stage functionalization of drug molecules and natural products further demonstrates the synthetic utility of this method. Combined experimental and computational studies elucidate the mechanistic pathway. These transformations streamline the synthesis of sp3 carbon-enriched compounds, adding a new dimension to classical decarboxylative reactions.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
- School of Chemistry and Chemical Engineering, Henan Normal University Jianshe Road, Xinxiang, Henan Province, 453003, China
| | - Yue-Hui Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Xiao-Shan Deng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Song-Lin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University Jianshe Road, Xinxiang, Henan Province, 453003, China
| | - Yingzi Li
- Institute of Chemical Research of Catalonia, Tarragona, 43007, Spain
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91225, United States
- Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Monirialamdari M, Podlaska A, Pomikło D, Albrecht A. Electrochemically Induced, Metal Free Synthesis of 2-substituted chroman-4-ones. ChemistryOpen 2024:e202400395. [PMID: 39548903 DOI: 10.1002/open.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Electrochemically induced, decarboxylative functionalization of chromone-3-carboxylic acids by N-hydroxyphthalimide esters as alkyl radical precursors was studied. Electrochemical protocol offers a sustainable and green approach, obviating the need for catalysts, relying on the direct reduction of NHPI esters using electric current. Developed protocol provides a straightforward route to the synthesis of diverse molecules with potential biological activity.
Collapse
Affiliation(s)
- Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Aleksandra Podlaska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Dominika Pomikło
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
7
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
8
|
Smyrnov V, Waser J. Photocatalytic Decarboxylative Functionalization of Cyclopropenes via Cyclopropenium Cation Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404265. [PMID: 38802318 DOI: 10.1002/anie.202404265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A photocatalytic decarboxylative functionalization of cyclopropenes is reported. Starting from a broad range of redox-active ester-substituted cyclopropenes, cyclopropenylphthalimides can be synthesized in the absence of a nucleophile. Alternatively, different carbon and heteroatom nucleophiles can be introduced. The transformation proceeds most probably through the formation of an aromatic cyclopropenium cation, followed by trapping with the nucleophiles.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Xu J, Liu B. Metal Free Functionalization of Saturated Heterocycles with Vinylarenes and Pyridine Enabled by Photocatalytic Hydrogen Atom Transfer. Chemistry 2024; 30:e202400612. [PMID: 38566284 DOI: 10.1002/chem.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
10
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
11
|
Li Q, Zhu ZQ, Zhang WY, Le ZG, Xie ZB. Visible-light-induced decarboxylative cascade cyclization of acryloylbenzamides with N-hydroxyphthalimide esters via EDA complexes. Org Biomol Chem 2024; 22:965-969. [PMID: 38205855 DOI: 10.1039/d3ob01970e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A visible-light-induced decarboxylative cascade reaction of acryloylbenzamides with alkyl N-hydroxyphthalimide (NHP) esters for the synthesis of various 4-alkyl isoquinolinediones mediated by triphenylphosphine (PPh3) and sodium iodide (NaI) was developed. This operationally simple protocol proceeded via the photoactivation of electron donor-acceptor (EDA) complexes between N-hydroxyphthalimide esters and NaI/PPh3, resulting in multiple carbon-carbon bond formations without the use of precious metal complexes or synthetically elaborate organic dyes, which provided an alternative practical approach to synthesize diverse isoquinoline-1,3(2H,4H)-dione derivatives.
Collapse
Affiliation(s)
- Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Wen-Yi Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
12
|
Mohar M, Ghosh S, Hajra A. Visible Light Induced Three-Component 1,2-Dicarbofunctionalization of Alkenes and Alkynes. CHEM REC 2023; 23:e202300121. [PMID: 37309268 DOI: 10.1002/tcr.202300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Harnessing visible-light in organic synthesis is one of the most effective methods that aligns with green and sustainable chemistry principles and hence skyrocketed in the last two decades. Similarly, three-component 1,2-dicarbofunctionalization of alkenes and alkynes has recently been a great choice to construct complex molecular systems in an easy and rapid manner. Therefore, light-induced reactions can be an excellent alternative to carry out 1,2-dicarbofunctionalization reactions, and very recently, organic chemists across the globe have fascinated us with their interesting articles. In this present review, we have summarized the recent advancements in the area of visible light induced three-component 1,2-dicarbofunctionalization of alkenes and alkynes till March 2023. We have categorized the discussion based on the catalysts used to carry out the transformations for better understanding and different important aspects of these transformations have also been covered.
Collapse
Affiliation(s)
- Mrittika Mohar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
13
|
Ota K, Nagao K, Hata D, Sugiyama H, Segawa Y, Tokunoh R, Seki T, Miyamoto N, Sasaki Y, Ohmiya H. Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions. Nat Commun 2023; 14:6856. [PMID: 37907473 PMCID: PMC10618202 DOI: 10.1038/s41467-023-42639-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2'-deoxynuclosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study.
Collapse
Affiliation(s)
- Kenji Ota
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Kazunori Nagao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
| | - Dai Hata
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Haruki Sugiyama
- Institute for Molecular Science Myodaiji, Okazaki, Japan
- Comprehensive Research Organization for Science and Society Neutron Industrial Application Promotion Center, Tokai, Ibaraki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science Myodaiji, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, Japan
| | - Ryosuke Tokunoh
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomohiro Seki
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Naoya Miyamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yusuke Sasaki
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan.
| |
Collapse
|
14
|
Motz R, Sun AC, Lehnherr D, Ruccolo S. High-Throughput Determination of Stern-Volmer Quenching Constants for Common Photocatalysts and Quenchers. ACS ORGANIC & INORGANIC AU 2023; 3:266-273. [PMID: 37810410 PMCID: PMC10557125 DOI: 10.1021/acsorginorgau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023]
Abstract
Mechanistic information on reactions proceeding via photoredox catalysis has enabled rational optimizations of existing reactions and revealed new synthetic pathways. One essential step in any photoredox reaction is catalyst quenching via photoinduced electron transfer or energy transfer with either a substrate, additive, or cocatalyst. Identification of the correct quencher using Stern-Volmer studies is a necessary step for mechanistic understanding; however, such studies are often cumbersome, low throughput and require specialized luminescence instruments. This report describes a high-throughput method to rapidly acquire a series of Stern-Volmer constants, employing readily available fluorescence plate readers and 96-well plates. By leveraging multichannel pipettors or liquid dispensing robots in combination with fast plate readers, the sampling frequency for quenching studies can be improved by several orders of magnitude. This new high-throughput method enabled the rapid collection of 220 quenching constants for a library of 20 common photocatalysts with 11 common quenchers. The extensive Stern-Volmer constant table generated greatly facilitates the systematic comparison between quenchers and can provide guidance to the synthetic community interested in designing and understanding catalytic photoredox reactions.
Collapse
Affiliation(s)
- Rachel
N. Motz
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Alexandra C. Sun
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Gillespie JE, Lam NYS, Phipps RJ. Ortho-Selective amination of arene carboxylic acids via rearrangement of acyl O-hydroxylamines. Chem Sci 2023; 14:10103-10111. [PMID: 37772106 PMCID: PMC10530477 DOI: 10.1039/d3sc03293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Direct amination of arene C-H bonds is an attractive disconnection to form aniline-derived building blocks. This transformation presents significant practical challenges; classical methods for ortho-selective amination require strongly acidic or forcing conditions, while contemporary catalytic processes often require bespoke directing groups and/or precious metal catalysis. We report a mild and procedurally straightforward ortho-selective amination of arene carboxylic acids, arising from a facile rearrangement of acyl O-hydroxylamines without requiring precious metal catalysts. A broad scope of benzoic acid substrates are compatible and the reaction can be applied to longer chain arene carboxylic acids. Mechanistic studies probe the specific requirement for trifluoroacetic acid in generating the active aminating agent, and suggest that two separate mechanisms may be operating in parallel in the presence of an iron catalyst: (i) an iron-nitrenoid intermediate and (ii) a radical chain pathway. Regardless of which mechanism is followed, high ortho selectivity is obtained, proposed to arise from the directivity (first) or attractive interactions (second) arising with the carboxylic acid motif.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
16
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
17
|
Pagire S, Shu C, Reich D, Noble A, Aggarwal VK. Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP". J Am Chem Soc 2023; 145:18649-18657. [PMID: 37552886 PMCID: PMC10450818 DOI: 10.1021/jacs.3c06524] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/10/2023]
Abstract
Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).
Collapse
Affiliation(s)
- Santosh
K. Pagire
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Chao Shu
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- National
Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dominik Reich
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
18
|
Wang Y, Lin C, Zhang Z, Shen L, Zou B. Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air. Org Lett 2023; 25:2172-2177. [PMID: 36946921 DOI: 10.1021/acs.orglett.3c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An expeditious and novel nickel-catalyzed selective arylhydroxylation of unactivated alkenes with arylboronic acids was developed. This protocol is compatible with β,γ- and γ,δ-alkene amides, including traditionally challenging internal alkenes, to provide important β-arylethylalcohol scaffolds. The free hydroxyl group in the final product could be smoothly further transformed into other functional groups. Control experiments indicated that the oxygen atom of the hydroxyl group in the product is derived from the oxygen in the air.
Collapse
Affiliation(s)
- Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zongxu Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Boya Zou
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
19
|
Ramkumar N, Baumane L, Zacs D, Veliks J. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202219027. [PMID: 36692216 DOI: 10.1002/anie.202219027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2 F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.
Collapse
Affiliation(s)
- Nagarajan Ramkumar
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Larisa Baumane
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| |
Collapse
|
20
|
Azpilcueta-Nicolas CR, Meng D, Edelmann S, Lumb JP. Dearomatization of Biaryls through Polarity Mismatched Radical Spirocyclization. Angew Chem Int Ed Engl 2023; 62:e202215422. [PMID: 36454656 DOI: 10.1002/anie.202215422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Dearomatization reactions involving radical cyclizations can facilitate the synthesis of complex polycyclic systems that find applications in medicinal chemistry and natural product synthesis. Here we employ redox-neutral photocatalysis to affect a radical spirocyclization that transforms biaryls into spirocyclic cyclohexadienones under mild reaction conditions. In a departure from previously reported methods, our work demonstrates the polarity mismatched addition of a nucleophilic radical to an electron rich arene, and allows the regioselective synthesis of 2,4- or 2,5-cyclohexadienones with broad functional group tolerance. By transforming biaryls into spirocycles, our methodology accesses underexplored three-dimensional chemical space, and provides an efficient means of creating quaternary spirocenters that we apply to the first synthesis of the cytotoxic plant metabolite denobilone A.
Collapse
Affiliation(s)
| | - Derek Meng
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Simon Edelmann
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
21
|
Murray PD, Leibler INM, Hell SM, Villalona E, Doyle AG, Knowles RR. Radical Redox Annulations: A General Light-Driven Method for the Synthesis of Saturated Heterocycles. ACS Catal 2022; 12:13732-13740. [PMID: 36366762 PMCID: PMC9638994 DOI: 10.1021/acscatal.2c04316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Indexed: 11/29/2022]
Abstract
We introduce here a two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Sandrine M. Hell
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Eris Villalona
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Abigail G. Doyle
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California90095, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
22
|
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
23
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
24
|
Guan Z, Zhong X, Ye Y, Li X, Cong H, Yi H, Zhang H, Huang Z, Lei A. Selective radical cascade (4+2) annulation with olefins towards the synthesis of chroman derivatives via organo-photoredox catalysis. Chem Sci 2022; 13:6316-6321. [PMID: 35733882 PMCID: PMC9159083 DOI: 10.1039/d2sc00903j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the importance of chroman frameworks in medicinal chemistry, the development of novel synthetic methods for these structures is gaining increasing interest of chemists. Reported here is a new (4 + 2) radical annulation approach for the construction of these functional six-membered frameworks via photocatalysis. Featuring mild reaction conditions, the protocol allows readily available N-hydroxyphthalimide esters and electron-deficient olefins to be converted into a wide range of valuable chromans in a highly selective manner. Moreover, the present strategy can be used in the late-stage functionalization of natural product derivatives and biologically active compounds, which demonstrated the potential application. This method is complementary to the traditional Diels–Alder [4 + 2] cycloaddition reaction of ortho-quinone methides and electron-rich dienophiles, since electron-deficient dienophiles were smoothly transformed into the desired chromans. We have developed a (4 + 2) radical annulation approach for the synthesis of diverse chromans. This method is complementary to the traditional Diels–Alder [4 + 2] annulation of ortho-quinone methides and electron-rich dienophiles.![]()
Collapse
Affiliation(s)
- Zhipeng Guan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xingxing Zhong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yayu Ye
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xiangwei Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
25
|
Hu HW, Zhang C, Yang YM, Deng HQ, Tang ZY. Photocatalytic decarboxylative alkylation of electron-rich heteroarenes with alkyl N-hydroxyphthalimide esters. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
González S, Salvado O, Fernández E. 1,2‐Dialkylation of 1,1‐Arylboryl Alkenes Via Borata‐Alkene Intermediate. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara González
- Dept. Química Física i Inorgànica. Universitat Rovira i Virgili 43005 Tarragona Spain
| | - Oriol Salvado
- Dept. Química Física i Inorgànica. Universitat Rovira i Virgili 43005 Tarragona Spain
| | - Elena Fernández
- Dept. Química Física i Inorgànica. Universitat Rovira i Virgili 43005 Tarragona Spain
| |
Collapse
|
27
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Duan S, Zi Y, Wang L, Cong J, Chen W, Li M, Zhang H, Yang X, Walsh PJ. α-Branched amines through radical coupling with 2-azaallyl anions, redox active esters and alkenes. Chem Sci 2022; 13:3740-3747. [PMID: 35432903 PMCID: PMC8966660 DOI: 10.1039/d2sc00500j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
α-Branched amines are fundamental building blocks in a variety of natural products and pharmaceuticals. Herein is reported a unique cascade reaction that enables the preparation of α-branched amines bearing aryl or alkyl groups at the β- or γ-positions. The cascade is initiated by reduction of redox active esters to alkyl radicals. The resulting alkyl radicals are trapped by styrene derivatives, leading to benzylic radicals. The persistent 2-azaallyl radicals and benzylic radicals are proposed to undergo a radical-radical coupling leading to functionalized amine products. Evidence is provided that the role of the nickel catalyst is to promote formation of the alkyl radical from the redox active ester and not promote the C-C bond formation. The synthetic method introduced herein tolerates a variety of imines and redox active esters, allowing for efficient construction of amine building blocks.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Lingling Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
30
|
Cai X, Liu Y, Ding S, Fu J, Li J, Cheng D, Xu X. Visible Light-Induced Radical Cascade Reaction of Acryloylbenzamides with N-Hydroxyphthalimide Esters. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Wang M, Chen C, Ma M, Zhao B, Shi Z. Photoinduced Etherification of Less-Strained Cycloketoxime Esters Enabled by C–C Bond Cleavage. J Org Chem 2022; 87:3577-3585. [DOI: 10.1021/acs.joc.1c03131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mengning Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Dai PF, Wang YP, Qu JP, Kang YB. tert-Butyl Nitrite as a Twofold Hydrogen Abstractor for Dehydrogenative Coupling of Aldehydes with N-Hydroxyimides. Org Lett 2021; 23:9360-9364. [PMID: 34816715 DOI: 10.1021/acs.orglett.1c03434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetically practical transition metal/catalyst/halogen-free dehydrogenative coupling of aldehydes with N-hydroxyimides promoted solely by tert-butyl nitrite under mild conditions was developed. tert-Butyl nitrite generates two radicals (tBuO and NO) and thus works as a twofold hydrogen abstractor. A diverse array of N-hydroxyimide esters were prepared from either aliphatic or aromatic aldehydes. Benzoyl-substituted aldehydes such as 2-oxo-2-phenylacetaldehyde are also suitable.
Collapse
Affiliation(s)
- Peng-Fei Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Ping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Bai L, Ma Y, Jiang X. Total Synthesis of (-)-Calycanthine via Iron-Catalyzed Stereoselective Oxidative Dimerization. J Am Chem Soc 2021; 143:20609-20615. [PMID: 34871491 DOI: 10.1021/jacs.1c10498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimeric cyclotryptamine alkaloids typically feature vicinal all-carbon quaternary stereocenters and four nitrogen atoms. In comparison with the actual biosynthetic tryptophan derivatives, we designed the 2N-featured monomer 7, aiming to construct vicinal all-carbon quaternary stereocenters via a one-step dimerization process to access the 4N-featured isomeric members of this family. In this work, we disclose the first synthetic route to access the skeleton of (-)-isocalycanthine, featuring an iron-catalyzed oxidative dimerization reaction in a catalytic single-step operation with an overwhelming control of the absolute and relative stereochemistry. This strategy has been successfully applied to the total synthesis of (-)-calycanthine and 16 isocalycanthine derivatives, which demonstrates a new synthetic pathway for dimeric cyclotryptamine alkaloids.
Collapse
Affiliation(s)
- Leiyang Bai
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Yinhao Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
35
|
Deeprose MJ, Lowe M, Noble A, Booker-Milburn KI, Aggarwal VK. Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Org Lett 2021; 24:137-141. [PMID: 34882426 DOI: 10.1021/acs.orglett.1c03746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of densely functionalized cyclobutanes containing all-carbon quaternary stereocenters in high regio- and diastereoselectivity remains synthetically challenging. Herein, we show that this can be achieved by using a sequential photocatalysis strategy, wherein 3-chloromaleimides undergo triplet sensitized [2 + 2] photocycloadditions with alkynes or alkenes followed by photoredox-catalyzed dechlorinative C-C bond forming reactions to install quaternary stereocenters. This allows the rapid assembly of structurally complex and sterically congested 3-azabicyclo[3.2.0]heptane scaffolds from readily available starting materials.
Collapse
Affiliation(s)
- Mark J Deeprose
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Martin Lowe
- Medicinal Chemistry Department, UCB, 216 Bath Road, Slough, SL1 3WE, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | | | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
36
|
Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. An organophotoredox-catalyzed redox-neutral cascade involving N-(acyloxy)phthalimides and allenamides: synthesis of indoles. Chem Commun (Camb) 2021; 57:13130-13133. [PMID: 34806725 DOI: 10.1039/d1cc05397c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organophotoredox-catalyzed radical cascade of allenamides and alkyl N-(acyloxy)phthalimides for the synthesis of indoles is documented. The method features mild and robust reaction conditions, and exhibits broad scope. The tandem process enriches the limited repertoire of alkyl NHPI ester addition on electron-rich π-bonds as well as radical chemistry involving allenamides.
Collapse
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
37
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
38
|
Nagao K, Ohmiya H. Carbocation Generation by Organophotoredox Catalysis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | |
Collapse
|
39
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal-to-Ligand Ratio-Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021; 60:22892-22899. [PMID: 34405932 DOI: 10.1002/anie.202108617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Indexed: 11/05/2022]
Abstract
Chemodivergent asymmetric synthesis was achieved by tuning the metal-to-ligand ratio in an organometallic catalytic system. Using N-(aroyloxy)phthalimide as the precursor of either an oxygen-centered aroyloxy radical or a nitrogen-centered phthalimidyl radical, enantioselective oxocyanation or aminocyanation of alkenes was achieved separately through a dual photoredox and copper catalysis. The metal-to-ligand ratio can exert chemoselective control while retaining the high enantiopurity of divergent products. Both reactions proceed efficiently with catalyst loading as low as 0.2 mol % and can be performed on a gram scale without loss of chemoselectivity or enantioselectivity. Chemodivergent asymmetric 1,5-aminocyanation or 1,5-oxocyanation of vinylcyclopropane can also be realized by this protocol. Mechanistic investigations involving electron paramagnetic resonance (EPR) experiments were performed to shed light on the stereochemical and chemodivergent results.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
40
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal‐to‐Ligand Ratio‐Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409-1061 USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
41
|
Cheng HL, Xie XH, Chen JZ, Wang Z, Chen JP. An in situ masking strategy enables radical monodecarboxylative C-C bond coupling of malonic acid derivatives. Chem Sci 2021; 12:11786-11792. [PMID: 34659716 PMCID: PMC8442682 DOI: 10.1039/d1sc02642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
The utilization of malonic acids in radical decarboxylative functionalization is still underexploited, and the few existing examples are primarily limited to bisdecarboxylative functionalization. While radical monodecarboxylative functionalization is highly desirable, it is challenging because of the difficulty in suppressing the second radical decarboxylation step. Herein, we report the successful radical monodecarboxylative C–C bond coupling of malonic acids with ethynylbenziodoxolone (EBX) reagents enabled by an in situ masking strategy, affording synthetically useful 2(3H)-furanones in satisfactory yields. The keys to the success of this transformation include (1) the dual role of a silver catalyst as a single-electron transfer catalyst to drive the radical decarboxylative alkynylation and as a Lewis acid catalyst to promote the 5-endo-dig cyclization and (2) the dual function of the alkynyl reagent as a radical trapper and as an in situ masking group. Notably, the latent carboxylate group in the furanones could be readily released, which could serve as a versatile synthetic handle for further elaborations. Thus, both carboxylic acid groups in malonic acid derivatives have been well utilized for the rapid construction of molecular complexity. An in situ masking strategy has been developed based upon the unique properties of silver catalysts to successfully achieve a radical monodecarboxylative C–C bond coupling of malonic acids with ethynylbenziodoxolone reagents.![]()
Collapse
Affiliation(s)
- He-Li Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xian-Hui Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jia-Zheng Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhen Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jian-Ping Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
42
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
43
|
Planas F, Costantini M, Montesinos-Magraner M, Himo F, Mendoza A. Combined Experimental and Computational Study of Ruthenium N-Hydroxyphthalimidoyl Carbenes in Alkene Cyclopropanation Reactions. ACS Catal 2021; 11:10950-10963. [PMID: 34504736 PMCID: PMC8419840 DOI: 10.1021/acscatal.1c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Indexed: 01/14/2023]
Abstract
A combined experimental-computational approach has been used to study the cyclopropanation reaction of N-hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.
Collapse
Affiliation(s)
| | | | - Marc Montesinos-Magraner
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
44
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
45
|
Bioinspired dearomatization of DBCOD lignans. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Yu JM, Zhu LW, Hong XY, Gao H, Chen TT. Visible light-induced alkylpyridylation of styrenes via a reductive radical three-component coupling. Org Biomol Chem 2021; 19:5642-5648. [PMID: 34105570 DOI: 10.1039/d1ob00498k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible light-induced and metal-free strategy for the intermolecular three-compoment alkylpyridylation of styrenes is reported. Hantzsch ester was found to be key to initiate the overall reductive radical coupling reaction. This radical process realized difunctionalization of styrenes, selectively yielding alkylated pyridines in good to excellent yields with a wide tolerance of functional groups, mild reaction conditions and simple operation. This new reaction complements existing visible light-induced variants of styrenes with NHP esters and expands the capabilities of radical-based cross-coupling reactions of pyridines.
Collapse
Affiliation(s)
- Jing-Miao Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Li-Wen Zhu
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Xiao-Yuan Hong
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Huan Gao
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Ting-Ting Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| |
Collapse
|
47
|
Nie Y, Wang Z, Feng Z, Dong B, Bai Y, Leng Y, Wu J. Na
2
Eosin Y Catalyzed Alkylation of Enol Acetates by Radical Decarboxylation of N‐Hydroxyphthalimide Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Nie
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Zengqiang Feng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Bingbing Dong
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yuyang Bai
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yuting Leng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| |
Collapse
|
48
|
Buchanan TL, Gockel SN, Veatch AM, Wang YN, Hull KL. Copper-Catalyzed Three-Component Alkene Carbofunctionalization: C-N, C-O, and C-C Bond Formation from a Single Reaction Platform. Org Lett 2021; 23:4538-4542. [PMID: 34096733 PMCID: PMC9807022 DOI: 10.1021/acs.orglett.1c01180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A general system achieving three-component intermolecular carbofunctionalization of alkenes is presented, including carboetherification, carboesterification, carboarylation, and carboamination. The scope of the reaction is presented with respect to the carbon electrophile, the olefin, and the nucleophile. Furthermore, the synthesis of γ-lactams via a carboamination reaction is demonstrated in a telescoped three-step protocol.
Collapse
|
49
|
Jiang Y, Pan J, Yang T, Zhao Y, Koh MJ. Nickel-catalyzed site- and stereoselective reductive alkylalkynylation of alkynes. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Shi J, Yuan T, Zheng M, Wang X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiale Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Tao Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| |
Collapse
|