1
|
Sato S, Saika A, Koshiyama T, Higashiyama Y, Fukuoka T, Morita T. Biosynthesis of ergothioneine: current state, achievements, and perspectives. Appl Microbiol Biotechnol 2025; 109:93. [PMID: 40220171 PMCID: PMC11993508 DOI: 10.1007/s00253-025-13476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Ergothioneine (EGT) is a derivative of the amino acid L-histidine that is well known for its strong antioxidant properties. Recent studies on the functional characterization of EGT in both in vivo and in vitro systems have demonstrated its potential applications in pharmaceuticals, food, and cosmetics. The growing demand for EGT in novel applications necessitates the development of safe and cost-effective mass production technologies. Consequently, microbial fermentation for EGT biosynthesis has attracted significant attention. This review focuses on the biosynthesis of EGT via microbial fermentation, explores its biosynthetic mechanisms, and summarizes the latest advancements for industrial EGT production using engineered microbial strains. KEY POINTS: • Ergothioneine (EGT) is an L-histidine derivative with strong antioxidant property. • Recent studies have revealed certain groups of microbes produce EGT naturally. • Superior EGT producers by genetic modification have been created.
Collapse
Affiliation(s)
- Shun Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tatsuyuki Koshiyama
- New Business Division, Kureha Corporation, 3-3-2 Nihonbashi-Hamacho, Chuo-ku, Tokyo, 103-8552, Japan
| | - Yukihiro Higashiyama
- New Business Division, Kureha Corporation, 3-3-2 Nihonbashi-Hamacho, Chuo-ku, Tokyo, 103-8552, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
2
|
Seminara AB, Hatzios SK. An affinity-based depletion strategy for evaluating the effects of ergothioneine on bacterial physiology. Cell Chem Biol 2025; 32:486-497.e7. [PMID: 40068683 DOI: 10.1016/j.chembiol.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Ergothioneine (EGT) is a thiol-based antioxidant synthesized by certain fungal and bacterial species that is prevalent in the human diet. Recently, an EGT-specific transporter, EgtUV, was discovered in bacteria that are incapable of EGT biosynthesis, including the gastric pathogen Helicobacter pylori. However, EGT is naturally abundant in the complex media required to culture H. pylori and many other host-associated microbes, complicating efforts to understand how this molecule influences microbial physiology. Using the solute-binding domain of H. pylori EgtUV, we generated an EGT-chelating resin that depletes EGT from nutrient-rich media. We determined that wild-type H. pylori requires EGT to outcompete a transporter-deficient strain in vitro. Furthermore, EGT induces transcription of genes encoding outer-membrane transporters that may regulate intracellular EGT content upstream of the inner-membrane-localized EgtUV transporter. Our work establishes a method for tuning exposure to an abundant antioxidant in vitro, enabling future studies of EGT in diverse microbial strains and communities.
Collapse
Affiliation(s)
- Anna B Seminara
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Stavroula K Hatzios
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Muramatsu H, Yamada M, Maguchi H, Kato SI. Gene cloning and characterization of N-carbamyl-l-glutamic acid amidohydrolase involved in ergothioneine utilization in Burkholderia sp. HME13. Biosci Biotechnol Biochem 2025; 89:255-262. [PMID: 39611338 DOI: 10.1093/bbb/zbae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Burkholderia sp. HME13 utilizes ergothioneine, a strong antioxidant, as the nitrogen source. We have previously shown that ergothionase, thiourocanate hydratase, 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase, and hydantoin-5-propionic acid amidohydrolase may be involved in ergothioneine utilization in this strain. In this study, we identified the ertE gene in Burkholderia sp. HME13, which encodes a bivalent metal-dependent N-carbamyl-l-glutamic acid amidohydrolase (ErtE). ErtE showed maximum activity at 60 °C and pH 7.0 and was stable at temperatures up to 55 °C and pH 6.5-8.0. The Km and Vmax values of ErtE for N-carbamyl-l-glutamic acid were 0.74 m m and 140 U/mg, respectively. Ethylenediaminetetraacetic acid-treated ErtE showed no enzymatic activity, which was restored upon the addition of Co2+, Mn2+, Ni2+, and Fe2+. Expression analyses and enzymatic assays suggested that ErtE is involved in ergothioneine utilization in this strain. Finally, we propose a mechanism for ergothioneine utilization in Burkholderia sp. HME13.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Kochi, Japan
| | - Masaaki Yamada
- Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Hiroki Maguchi
- Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Shin-Ichiro Kato
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
Liu Z, Xiao F, Zhang Y, Lu J, Li Y, Shi G. Heterologous and High Production of Ergothioneine in Bacillus licheniformis by Using Genes from Anaerobic Bacteria. Metabolites 2025; 15:45. [PMID: 39852388 PMCID: PMC11767532 DOI: 10.3390/metabo15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
PURPOSE This study aimed to utilize genetically engineered Bacillus licheniformis for the production of ergothioneine (EGT). Given the value of EGT and the application of Bacillus licheniformis in enzyme preparation production, we cloned the key enzymes (EanA and EanB) from Chlorbium limicola. Through gene alignment, new ergothioneine synthase genes (EanAN and EanBN) were identified and then expressed in Bacillus licheniformis to construct strains. Additionally, we investigated the factors influencing the yield of EGT and made a comparison with Escherichia coli. METHODS The relevant genes were cloned and transferred into Bacillus licheniformis. Fermentation experiments were conducted under different conditions for yield analysis, and the stability of this bacterium was also evaluated simultaneously. RESULTS The constructed strains were capable of producing EGT. Specifically, the yield of the EanANBN strain reached (643.8 ± 135) mg/L, and its stability was suitable for continuous production. CONCLUSIONS Genetically engineered Bacillus licheniformis demonstrates potential in the industrial-scale production of EGT. Compared with Escherichia coli, it has advantages, thus opening up new possibilities for the application and market supply of EGT.
Collapse
Affiliation(s)
- Zhe Liu
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Fengxu Xiao
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yupeng Zhang
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jiawei Lu
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; (Z.L.); (F.X.); (Y.Z.); (J.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Liang L, Shan-Shan X, Yan-Jun J. Ergothioneine biosynthesis: The present state and future prospect. Synth Syst Biotechnol 2024; 10:314-325. [PMID: 39717282 PMCID: PMC11664081 DOI: 10.1016/j.synbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 12/25/2024] Open
Abstract
Ergothioneine (ERG), a rare natural thio-histidine derivative with potent antioxidant properties and diverse biological functions, is widely utilized in food processing, cosmetics, pharmaceuticals, and nutritional supplements. Current bioproduction methods for ERG primarily depend on fermenting edible mushrooms. However, with the advancement in synthetic biology, an increasing number of genetically engineered microbial hosts have been developed for ERG production, including Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Given the involvement of multiple precursor substances in ERG synthesis, it is crucial to employ diverse strategies to regulate the metabolic flux of ERG synthesis. This review comprehensively evaluates the physiological effects and safety considerations associated with ERG, along with the recent advancements in catalytic metabolic pathway for ERG production using synthetic biology tools. Finally, the review discusses the challenges in achieving efficient ERG production and the strategies to address these challenges using synthetic biology tools. This review provides a literature analysis and strategies guidance for the further application of novel synthetic biology tools and strategies to improve ERG yield.
Collapse
Affiliation(s)
- Li Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xu Shan-Shan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Jiang Yan-Jun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
6
|
Yang B, Zhang C, Guan C, Feng X, Yan D, Zhang Z, Qin Y, Xiong S, Zhang W, Cai X, Hu L. Analysis of the composition and function of rhizosphere microbial communities in plants with tobacco bacterial wilt disease and healthy plants. Microbiol Spectr 2024; 12:e0055924. [PMID: 39472002 PMCID: PMC11622736 DOI: 10.1128/spectrum.00559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/29/2024] [Indexed: 12/08/2024] Open
Abstract
To explore the factors influencing the occurrence of bacterial wilt, the differences in the physicochemical properties, microbial community composition and function between rhizosphere soil of tobacco plants with bacterial wilt and healthy plants in the tobacco planting area of Fuzhou City, Jiangxi Province were analyzed and compared. The results showed that the rhizosphere soil of diseased tobacco exhibited significantly reduced levels of exchangeable potassium, water-soluble potassium, nitrate nitrogen, total nitrogen and pH, in comparison to the rhizosphere soil of healthy plants. Conversely, the available phosphorus content of the rhizosphere soil of diseased tobacco was significantly increased. The amount of Ralstonia solanacearum in soil was negatively correlated with pH, nitrate nitrogen and total nitrogen, and positively correlated with exchangeable potassium and water-soluble potassium. A total of 43 genera were significantly different between the two groups of rhizosphere soil, of which 24 genera were enriched in the rhizosphere of healthy plants, including Ideonella, Rhizophagus, Rhizobacter, Altererythrobacter and Ignavibacterium associated with plant disease resistance, Thermodesulfovibrio, Syntrophorhabdus, Syntrophus, Chlorobium, Hydrogenophaga and Limnohabitans associated with soil sulfur metabolism, as well as Ignavibacterium, Ideonella, Derxia and Azohydromonas associated with soil nitrogen cycling. Kyoto Encyclopedia of Genes and Genomes functional analysis of the unigenes obtained by metagenomic sequencing also showed that the differential unigenes were significantly enriched in the sulfur metabolism pathway. In addition, the rhizosphere soil of diseased tobacco plants exhibited a higher abundance of antibiotic-producing actinomycetes and an increased load of antibiotic resistance genes compared to that of healthy plants. In general, lower pH value, less content of nitrate nitrogen and total nitrogen, and more content of exchangeable potassium and water-soluble potassium could contribute to onset of bacterial wilt. Twenty-four genera, including Ideonella and Rhizophagus, may construct a healthy microecological network in the rhizosphere of tobacco plants. All these factors may interact with each other to control the development of bacterial wilt. This complicated interaction network needs to be explored further.IMPORTANCEPrevious studies have mainly focused on the differences in microbial species composition between healthy and diseased soils, but the differences in microbial community functions between two types of soil have not been well characterized. In this study, soil samples in diseased and healthy plant rhizospheres were collected for physicochemical property testing and metagenomic sequencing. We focused on analyzing the differences in physicochemical properties and microbial community functions between these soils, as well as the correlation between these factors and pathogen content. The results of this study provide a theoretical basis for further understanding the occurrence of tobacco bacterial wilt in the field.
Collapse
Affiliation(s)
- Bingye Yang
- Zhengzhou Tobacco
Research Institute of CNTC,
Zhengzhou, China
| | | | | | - Xiaohu Feng
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Ding Yan
- Procurement Center,
Shanghai Tobacco Group Co., Ltd.,
Shanghai, China
| | - Zhigao Zhang
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Yanmin Qin
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Shubin Xiong
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Wenmei Zhang
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Xianjie Cai
- Procurement Center,
Shanghai Tobacco Group Co., Ltd.,
Shanghai, China
| | - Liwei Hu
- Zhengzhou Tobacco
Research Institute of CNTC,
Zhengzhou, China
| |
Collapse
|
7
|
Kayrouz CM, Seyedsayamdost MR. Enzymatic strategies for selenium incorporation into biological molecules. Curr Opin Chem Biol 2024; 81:102495. [PMID: 38954947 DOI: 10.1016/j.cbpa.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
8
|
Xiong K, Xue S, Guo H, Dai Y, Ji C, Dong L, Zhang S. Ergothioneine: new functional factor in fermented foods. Crit Rev Food Sci Nutr 2024; 64:7505-7516. [PMID: 36891762 DOI: 10.1080/10408398.2023.2185766] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Ergothioneine (EGT) is a high-value natural sulfur-containing amino acid and has been shown to possess extremely potent antioxidant and cytoprotective activities. At present, EGT has been widely used in food, functional food, cosmetics, medicine, and other industries, but its low yield is still an urgent problem to overcome. This review briefly introduced the biological activities and functions of EGT, and expounded its specific applications in food, functional food, cosmetic, and medical industries, introduced and compared the main production methods of EGT and respective biosynthetic pathways in different microorganisms. Furthermore, the use of genetic and metabolic engineering methods to improve EGT production was discussed. In addition, the incorporation of some food-derived EGT-producing strains into fermentation process will allow the EGT to act as a new functional factor in the fermented foods.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Liang Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Nalivaiko EY, Seebeck FP. A Rhodanese-Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid. Chembiochem 2024; 25:e202400131. [PMID: 38597743 DOI: 10.1002/cbic.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Many actinobacterial species contain structural genes for iron-dependent enzymes that consume ergothioneine by way of O2-dependent dioxygenation. The resulting product ergothioneine sulfinic acid is stable under physiological conditions unless cleavage to sulfur dioxide and trimethyl histidine is catalyzed by a dedicated desulfinase. This report documents that two types of ergothioneine sulfinic desulfinases have evolved by convergent evolution. One type is related to metal-dependent decarboxylases while the other belongs to the superfamily of rhodanese-like enzymes. Pairs of ergothioneine dioxygenases (ETDO) and ergothioneine sulfinic acid desulfinase (ETSD) occur in thousands of sequenced actinobacteria, suggesting that oxidative ergothioneine degradation is a common activity in this phylum.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| |
Collapse
|
10
|
Xiong K, Guo H, Xue S, Liu M, Dai Y, Lin X, Zhang S. Production optimization of food functional factor ergothioneine in wild-type red yeast Rhodotorula mucilaginosa DL-X01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4050-4057. [PMID: 38353320 DOI: 10.1002/jsfa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mengyang Liu
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
13
|
Muramatsu H, Inouchi D, Yamada M, Koujitani A, Maguchi H, Kato SI. Purification and characterization of 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase involved in ergothioneine utilization in Burkholderia sp. HME13. Biosci Biotechnol Biochem 2023; 88:74-78. [PMID: 37766390 DOI: 10.1093/bbb/zbad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Recombinant 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase (ErtC) derived from Burkholderia sp. HME13 was purified to homogeneity. Here, ErtC's kinetic parameters, optimum reaction temperature and pH, and stability at varying temperatures and pH and the effects of various additives on ErtC activity were determined. Real-time polymerase chain reaction and enzyme assays suggested that ergothioneine induced the expression of ertC.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| | - Daisuke Inouchi
- Faculty of Agriculture and Marine Science, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| | - Masaaki Yamada
- Graduate School of Integrated Arts and Sciences, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| | - Akihito Koujitani
- Graduate School of Integrated Arts and Sciences, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| | - Hiroki Maguchi
- Graduate School of Integrated Arts and Sciences, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| | - Shin-Ichiro Kato
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi, Japan
| |
Collapse
|
14
|
Wang X, Hu S, Wang J, Zhang T, Ye K, Wen A, Zhu G, Vegas A, Zhang L, Yan W, Liu X, Liu P. Biochemical and Structural Characterization of OvoA Th2: A Mononuclear Nonheme Iron Enzyme from Hydrogenimonas thermophila for Ovothiol Biosynthesis. ACS Catal 2023; 13:15417-15426. [PMID: 38058600 PMCID: PMC10696552 DOI: 10.1021/acscatal.3c04026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Ovothiol A and ergothioneine are thiol-histidine derivatives with sulfur substitutions at the δ-carbon or ε-carbon of the l-histidine imidazole ring, respectively. Both ovothiol A and ergothioneine have protective effects on many aging-related diseases, and the sulfur substitution plays a key role in determining their chemical and biological properties, while factors governing sulfur incorporation regioselectivities in ovothiol and ergothioneine biosynthesis in the corresponding enzymes (OvoA, Egt1, or EgtB) are not yet known. In this study, we have successfully obtained the first OvoA crystal structure, which provides critical information to explain their C-S bond formation regioselectivity. Furthermore, OvoATh2 exhibits several additional activities: (1) ergothioneine sulfoxide synthase activity akin to Egt1 in ergothioneine biosynthesis; (2) cysteine dioxygenase activity using l-cysteine and l-histidine analogues as substrates; (3) cysteine dioxygenase activity upon mutation of an active site tyrosine residue (Y406). The structural insights and diverse chemistries demonstrated by OvoATh2 pave the way for future comprehensive structure-function correlation studies.
Collapse
Affiliation(s)
- Xinye Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sha Hu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jun Wang
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ke Ye
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiwen Wen
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Guoliang Zhu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Arturo Vegas
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wupeng Yan
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pinghua Liu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
15
|
Paris JC, Hu S, Wen A, Weitz AC, Cheng R, Gee LB, Tang Y, Kim H, Vegas A, Chang WC, Elliott SJ, Liu P, Guo Y. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202309362. [PMID: 37640689 PMCID: PMC10592081 DOI: 10.1002/anie.202309362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Sha Hu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Aiwen Wen
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Hyomin Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Arturo Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Chen X, Li B. How nature incorporates sulfur and selenium into bioactive natural products. Curr Opin Chem Biol 2023; 76:102377. [PMID: 37598530 PMCID: PMC10538389 DOI: 10.1016/j.cbpa.2023.102377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Living organisms have evolved various strategies to incorporate sulfur and selenium into bioactive natural products. These chalcogen-containing compounds serve important and diverse biological functions for their producers and many of them are essential medicines against infectious diseases and cancer. We review recent advances in the biosynthesis of some sulfur/selenium-containing natural products with a focus on the formation or cleavage of C-S/C-Se bonds. We highlight unusual enzymes that catalyze these transformations, describe their proposed mechanisms, and discuss how understanding these enzymes may facilitate the discovery and synthesis of novel natural products containing sulfur or selenium.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Chemistry, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
18
|
Wu W, Qin Y, Fang Y, Zhang Y, Shao S, Meng F, Zhang M. Based on multi-omics technology study the antibacterial mechanisms of pH-dependent N-GQDs beyond ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129954. [PMID: 36116315 DOI: 10.1016/j.jhazmat.2022.129954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Currently, graphene quantum dots (GQDs) are widely used as antibacterial agents, and their effects are dependent on the reactive oxygen species (ROS) generated by photodynamic and peroxidase activities. Nevertheless, the supply of substrates or light greatly limits GQDs application. Besides, due to compensatory mechanisms in bacteria, comprehensive analysis of the molecular mechanism underlying the effects of GQDs based on cellular-level experiments is insufficient. Therefore, N-GQDs with inherent excellent, broad-spectrum antibacterial efficacy under acidic conditions were successfully synthesized. Then, via multi-omics analyses, the antibacterial mechanisms of the N-GQDs were found to not only involve generation ROS but also be associated with changes in osmotic pressure, interference with nucleic acid synthesis and inhibition of energy metabolism. More surprisingly, the N-GQDs could destroy intracellular acid-base homeostasis, causing bacterial cell death. In conclusion, this study provides important insights into the antibacterial mechanism of GQDs, offering a basis for the engineering design of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yukun Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China.
| |
Collapse
|
19
|
A Single Aspergillus fumigatus Gene Enables Ergothioneine Biosynthesis and Secretion by Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms231810832. [PMID: 36142753 PMCID: PMC9502471 DOI: 10.3390/ijms231810832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The naturally occurring sulphur-containing histidine derivative, ergothioneine (EGT), exhibits potent antioxidant properties and has been proposed to confer human health benefits. Although it is only produced by select fungi and prokaryotes, likely to protect against environmental stress, the GRAS organism Saccharomyces cerevisiae does not produce EGT naturally. Herein, it is demonstrated that the recombinant expression of a single gene, Aspergillus fumigatus egtA, in S. cerevisiae results in EgtA protein presence which unexpectedly confers complete EGT biosynthetic capacity. Both High Performance Liquid Chromatography (HPLC) and LC−mass spectrometry (MS) analysis were deployed to detect and confirm EGT production in S. cerevisiae. The localisation and quantification of the resultant EGT revealed a significantly (p < 0.0001) larger quantity of EGT was extracellularly present in culture supernatants than intracellularly accumulated in 96 h yeast cultures. Methionine addition to cultures improved EGT production. The additional expression of two candidate cysteine desulfurases from A. fumigatus was thought to be required to complete EGT biosynthesis, namely AFUA_2G13295 and AFUA_3G14240, termed egt2a and egt2b in this study. However, the co-expression of egtA and egt2a in S. cerevisiae resulted in a significant decrease in the observed EGT levels (p < 0.05). The AlphaFold prediction of A. fumigatus EgtA 3-Dimensional structure illuminates the bidomain structure of the enzyme and the opposing locations of both active sites. Overall, we clearly show that recombinant S. cerevisiae can biosynthesise and secrete EGT in an EgtA-dependent manner which presents a facile means of producing EGT for biotechnological and biomedical use.
Collapse
|
20
|
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, Centre for Life Sciences, National University of Singapore, Singapore
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, Centre for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
21
|
Abstract
Significance: Ergothioneine (ET) is an unusual sulfur-containing amino acid derived from histidine, acquired predominantly from food. Its depletion is associated with deleterious consequences in response to stress stimuli in cell culture models, prompting us to classify it as a vitamin in 2010, which was later supported by in vivo studies. ET is obtained from a variety of foods and is taken up by a selective transporter. ET possesses antioxidant and anti-inflammatory properties that confer cytoprotection. ET crosses the blood-brain barrier and has been reported to have beneficial effects in the brain. In this study, we discuss the cytoprotective and neuroprotective properties of ET, which may be harnessed for combating neurodegeneration and decline during aging. Recent Advances: The designation of ET as a stress vitamin is gaining momentum, opening a new field of investigation involving small molecules that are essential for optimal physiological functioning and maintenance of health span. Critical Issues: Although ET was discovered more than a century ago, its physiological functions are still being elucidated, especially in the brain. As ET is present in most foods, toxicity associated with its deprivation has been difficult to assess. Future Directions: Using genetically engineered cells and mice, it may now be possible to elucidate roles of ET. This coupled with advances in genomics and metabolomics may lead to identification of ET function. As ET is a stable antioxidant with anti-inflammatory properties, whose levels decline during aging, supplementing ET in the diet or consuming an ET-rich diet may prove beneficial. Antioxid. Redox Signal. 36, 1306-1317.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of The Solomon H. Snyder Department of Neuroscience, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Chen Z, He Y, Wu X, Wang L, Dong Z, Chen X. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Microb Cell Fact 2022; 21:76. [PMID: 35525939 PMCID: PMC9077841 DOI: 10.1186/s12934-022-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. Results Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. Conclusions Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01807-3.
Collapse
Affiliation(s)
- Zhihui Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyu Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Cheah IK, Lee JZ, Tang RMY, Koh PW, Halliwell B. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett 2022; 596:1241-1251. [PMID: 35486429 DOI: 10.1002/1873-3468.14364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The dietary thione-thiol, ergothioneine (ET), accumulates in human and animal tissues and may play important roles in disease prevention. ET biosynthesis has only been described in fungi and certain bacteria, and humans and animals are widely assumed to accumulate ET solely from diet. However, a recent study suggested that Lactobacillus/Limosilactobacillus reuteri, a commensal gut bacterium, may produce ET, thereby protecting the host against social defeat stress and sleep disturbances. Upon our further investigation, no evidence of ET biosynthesis was observed in L. reuteri when a heavy-labelled histidine precursor was administered. Instead, we discovered that L. reuteri avidly accumulates ET. This observation may indicate a possible mechanism by which the gut microbiota could influence tissue levels of ET in the host.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Jovan Z Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596
| | - Richard M Y Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Pei Wen Koh
- Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
24
|
Cordell GA, Lamahewage SNS. Ergothioneine, Ovothiol A, and Selenoneine-Histidine-Derived, Biologically Significant, Trace Global Alkaloids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092673. [PMID: 35566030 PMCID: PMC9103826 DOI: 10.3390/molecules27092673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
Abstract
The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Sujeewa N. S. Lamahewage
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Department of Chemistry, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
25
|
Yan Q, Huang H, Zhang X. In Vitro Reconstitution of a Bacterial Ergothioneine Sulfonate Catabolic Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
26
|
Cheng R, Weitz AC, Paris J, Tang Y, Zhang J, Song H, Naowarojna N, Li K, Qiao L, Lopez J, Grinstaff MW, Zhang L, Guo Y, Elliott S, Liu P. OvoA Mtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chem Sci 2022; 13:3589-3598. [PMID: 35432880 PMCID: PMC8943887 DOI: 10.1039/d1sc05479a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023] Open
Abstract
Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities. Modulation of OvoAMtht's dual activities: sulfoxide synthase and thiol oxygenase.![]()
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Jared Paris
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Heng Song
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Kelin Li
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Lu Qiao
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Juan Lopez
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Sean Elliott
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Pinghua Liu
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| |
Collapse
|
27
|
Yadan JC. Matching chemical properties to molecular biological activities opens a new perspective on L-ergothioneine. FEBS Lett 2021; 596:1299-1312. [PMID: 34928499 DOI: 10.1002/1873-3468.14264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Abstract
L-ergothioneine is a low-molecular weight natural product, the chemical structure of which comprises oxygen-, nitrogen- and sulfur-containing functional groups. This gives L-ergothioneine specific physicochemical properties and allows to better understanding its chemical reactivity, which is primarily due to the 2-thio-imidazole group. Here, I review how different modes of chemical reactivity account for the reported molecular biological activities of L-ergothioneine. By matching the physicochemical properties to the biological properties of L-ergothioneine, a new perspective of the function and the mode of action of this enigmatic molecule emerges into the limelight.
Collapse
|
28
|
Self-Associating Polymers Chitosan and Hyaluronan for Constructing Composite Membranes as Skin-Wound Dressings Carrying Therapeutics. Molecules 2021; 26:molecules26092535. [PMID: 33926140 PMCID: PMC8123578 DOI: 10.3390/molecules26092535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Chitosan, industrially acquired by the alkaline N-deacetylation of chitin, belongs to β-N-acetyl-glucosamine polymers. Another β-polymer is hyaluronan. Chitosan, a biodegradable, non-toxic, bacteriostatic, and fungistatic biopolymer, has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes that these two biopolymers have a mutual impact on skin wound healing as skin wound dressings and carriers of remedies.
Collapse
|
29
|
Cheng R, Lai R, Peng C, Lopez J, Li Z, Naowarojna N, Li K, Wong C, Lee N, Whelan SA, Qiao L, Grinstaff MW, Wang J, Cui Q, Liu P. Implications for an imidazol-2-yl carbene intermediate in the rhodanase-catalyzed C-S bond formation reaction of anaerobic ergothioneine biosynthesis. ACS Catal 2021; 11:3319-3334. [PMID: 34745712 DOI: 10.1021/acscatal.0c04886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the anaerobic ergothioneine biosynthetic pathway, a rhodanese domain containing enzyme (EanB) activates tne hercynine's sp2 ε-C-H Dona ana replaces it with a C-S bond to produce ergothioneine. The key intermediate for this trans-sulfuration reaction is the Cys412 persulfide. Substitution of the EanB-Cys412 persulfide with a Cys412 perselenide does not yield the selenium analog of ergothioneine, selenoneine. However, in deuterated buffer, the perselenide-modified EanB catalyzes the deuterium exchange between hercynine's sp2 ε-C-H bond and D2O. Results from QM/MM calculations suggest that the reaction involves a carbene intermediate and that Tyr353 plays a key role. We hypothesize that modulating the pKa of Tyr353 will affect the deuterium-exchange rate. Indeed, the 3,5-difluoro tyrosine containing EanB catalyzes the deuterium exchange reaction with k ex of ~10-fold greater than the wild-type EanB (EanBWT). With regards to potential mechanisms, these results support the involvement of a carbene intermediate in EanB-catalysis, rendering EanB as one of the few carbene-intermediate involving enzymatic systems.
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Rui Lai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Stephen A. Whelan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
30
|
Beliaeva MA, Leisinger F, Seebeck FP. In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chem Biol 2021; 16:397-403. [PMID: 33544568 DOI: 10.1021/acschembio.0c00968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ergothioneine is a histidine-derived sulfur metabolite that is biosynthesized by bacteria and fungi. Plants and animals absorb ergothioneine as a micronutrient from their environment or nutrition. Several different mechanisms of microbial ergothioneine production have been described in the past ten years. Much less is known about the genetic and structural basis for ergothioneine catabolism. In this report, we describe the in vitro reconstitution of a five-step pathway that degrades ergothioneine to l-glutamate, trimethylamine, hydrogen sulfide, carbon dioxide, and ammonia. The first two steps are catalyzed by the two enzymes ergothionase and thiourocanate hydratase. These enzymes are closely related to the first two enzymes in histidine catabolism. However, the crystal structure of thiourocanate hydratase from the firmicute Paenibacillus sp. reveals specific structural features that strictly differentiate the activity of this enzyme from that of urocanate hydratases. The final two steps are catalyzed by metal-dependent hydrolases that share most homology with the last two enzymes in uracil catabolism. The early and late part of this pathway are connected by an entirely new enzyme type that catalyzes desulfurization of a thiohydantoin intermediate. Homologous enzymes are encoded in many soil-dwelling firmicutes and proteobacteria, suggesting that bacterial activity may have a significant impact on the environmental availability of ergothioneine.
Collapse
Affiliation(s)
- Mariia A. Beliaeva
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| | - Florian Leisinger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| | - Florian P. Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| |
Collapse
|
31
|
Han Y, Tang X, Zhang Y, Hu X, Ren LJ. The current status of biotechnological production and the application of a novel antioxidant ergothioneine. Crit Rev Biotechnol 2021; 41:580-593. [PMID: 33550854 DOI: 10.1080/07388551.2020.1869692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ergothioneine is a sulfur-containing histidine derivative, that possessesexcellent antioxidant activity and has been used in the food and cosmetics industries. It plays a significant role in anti-aging and the prevention of various diseases. This review will briefly introduce the functions and applications of ergothioneine, elaborate the biosynthetic pathways of ergothioneine and describe several strategies to increase the production of ergothioneine. Then the efficient extraction and detection methods of ergothioneine will be presented. Finally, several proposals are put forward to increase the yield of ergothioneine, and the development prospects of ergothioneine will be discussed.
Collapse
Affiliation(s)
- Yiwen Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiuyang Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China.,Jiangsu TianKai Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
32
|
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42:101868. [PMID: 33558182 PMCID: PMC8113028 DOI: 10.1016/j.redox.2021.101868] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore.
| |
Collapse
|
33
|
|
34
|
Beliaeva MA, Burn R, Lim D, Seebeck FP. In Vitro Production of Ergothioneine Isotopologues. Angew Chem Int Ed Engl 2021; 60:5209-5212. [PMID: 32996678 DOI: 10.1002/anie.202011096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Ergothioneine is an emerging component of the redox homeostasis system in human cells and in microbial pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei. The synthesis of stable isotope-labeled ergothioneine derivatives may provide important tools for deciphering the distribution, function, and metabolism of this compound in vivo. We describe a general protocol for the production of ergothioneine isotopologues with programmable 2 H, 15 N, 13 C, 34 S, and 33 S isotope labeling patterns. This enzyme-based approach makes efficient use of commercial isotope reagents and is also directly applicable to the synthesis of radio-isotopologues.
Collapse
Affiliation(s)
- Mariia A Beliaeva
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Reto Burn
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - David Lim
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
35
|
Muramatsu H, Maguchi H, Harada T, Kashiwagi T, Kim CS, Kato SI, Nagata S. Identification of the gene encoding 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase in Burkholderia sp. HME13. Biosci Biotechnol Biochem 2020; 85:626-629. [DOI: 10.1093/bbb/zbaa066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/27/2020] [Indexed: 11/12/2022]
Abstract
ABSTRACT
Here, we report the identification of the gene encoding a novel enzyme, 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase, in Burkholderia sp. HME13. The enzyme converts 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid and H2O to 3-(2,5-dioxoimidazolidin-4-yl) propionic acid and H2S. Amino acid sequence analysis of the enzyme indicates that it belongs to the DUF917 protein family, which consists of proteins of unknown function.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Hiroki Maguchi
- Department of Agriculture, Kochi University, Kochi, Japan
| | - Taisuke Harada
- Department of Agriculture, Kochi University, Kochi, Japan
| | - Takehiro Kashiwagi
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Chul-Sa Kim
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Shin-ichiro Kato
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Shinji Nagata
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| |
Collapse
|
36
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
37
|
Structural basis of ergothioneine biosynthesis. Curr Opin Struct Biol 2020; 65:1-8. [DOI: 10.1016/j.sbi.2020.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/05/2020] [Indexed: 02/04/2023]
|
38
|
Maurer A, Seebeck FP. Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate. Chembiochem 2020; 21:2908-2911. [PMID: 32614492 DOI: 10.1002/cbic.202000232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.
Collapse
Affiliation(s)
- Alice Maurer
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
39
|
Xu D, Kleineberg C, Vidaković-Koch T, Wegner SV. Multistimuli Sensing Adhesion Unit for the Self-Positioning of Minimal Synthetic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002440. [PMID: 32776424 DOI: 10.1002/smll.202002440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Cells have the ability to sense different environmental signals and position themselves accordingly in order to support their survival. Introducing analogous capabilities to the bottom-up assembled minimal synthetic cells is an important step for their autonomy. Here, a minimal synthetic cell which combines a multistimuli sensitive adhesion unit with an energy conversion module is reported, such that it can adhere to places that have the right environmental parameters for ATP production. The multistimuli sensitive adhesion unit senses light, pH, oxidative stress, and the presence of metal ions and can regulate the adhesion of synthetic cells to substrates in response to these stimuli following a chemically coded logic. The adhesion unit is composed of the light and redox responsive protein interaction of iLID and Nano and the pH sensitive and metal ion mediated binding of protein His-tags to Ni2+ -NTA complexes. Integration of the adhesion unit with a light to ATP conversion module into one synthetic cell allows it to adhere to places under blue light illumination, non-oxidative conditions, at neutral pH and in the presence of metal ions, which are the right conditions to synthesize ATP. Thus, the multistimuli responsive adhesion unit allows synthetic cells to self-position and execute their functions.
Collapse
Affiliation(s)
- Dongdong Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
| | - Seraphine V Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| |
Collapse
|
40
|
Cheng R, Wu L, Lai R, Peng C, Naowarojna N, Hu W, Li X, Whelan SA, Lee N, Lopez J, Zhao C, Yong Y, Xue J, Jiang X, Grinstaff MW, Deng Z, Chen J, Cui Q, Zhou J, Liu P. Single-step Replacement of an Unreactive C-H Bond by a C-S Bond Using Polysulfide as the Direct Sulfur Source in Anaerobic Ergothioneine Biosynthesis. ACS Catal 2020; 10:8981-8994. [PMID: 34306804 DOI: 10.1021/acscatal.0c01809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ergothioneine, a natural longevity vitamin and antioxidant, is a thiol-histidine derivative. Recently, two types of biosynthetic pathways were reported. In the aerobic ergothioneine biosynthesis, a non-heme iron enzyme incorporates a sulfoxide to an sp2 C-H bond in trimethyl-histidine (hercynine) through oxidation reactions. In contrast, in the anaerobic ergothioneine biosynthetic pathway in a green sulfur bacterium, Chlorobium limicola, a rhodanese domain containing protein (EanB) directly replaces this unreactive hercynine C-H bond with a C-S bond. Herein, we demonstrate that polysulfide (HSSnSR) is the direct sulfur-source in EanB-catalysis. After identifying EanB's substrates, X-ray crystallography of several intermediate states along with mass spectrometry results provide additional mechanistic details for this reaction. Further, quantum mechanics/molecular mechanics (QM/MM) calculations reveal that protonation of Nπ of hercynine by Tyr353 with the assistance of Thr414 is a key activation step for the hercynine sp2 C-H bond in this trans-sulfuration reaction.
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Lai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Weiyao Hu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinhao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stephen A. Whelan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Changming Zhao
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, China
| | - Youhua Yong
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, China
| | - Jiesheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
41
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
42
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
43
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
44
|
Muramatsu H, Miyaoku H, Kurita S, Matsuo H, Kashiwagi T, Kim CS, Hayashi M, Yamamoto H, Kato SI, Nagata S. Gene cloning and characterization of thiourocanate hydratase from Burkholderia sp. HME13. J Biochem 2019; 167:333-341. [DOI: 10.1093/jb/mvz098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
AbstractA novel enzyme, thiourocanate hydratase, which catalyses the conversion of thiourocanic acid to 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid, was isolated from the ergothioneine-utilizing strain, Burkholderia sp. HME13. When the HME13 cells were cultured in medium containing ergothioneine as the sole nitrogen source, thiourocanate-metabolizing activity was detected in the crude extract from the cells. However, activity was not detected in the crude extract from HME13 cells that were cultured in Luria-Bertani medium. The gene encoding thiourocanate hydratase was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. The enzyme showed maximum activity at pH 7.5 and 55°C and was stable between pH 5.0 and 10.5, and at temperatures up to 45°C. The Km and Vmax values of thiourocanate hydratase towards thiourocanic acid were 30 μM and 7.1 μmol/min/mg, respectively. The enzyme was strongly inhibited by CuCl2 and HgCl2. The amino acid sequence of the enzyme showed 46% identity to urocanase from Pseudomonas putida, but thiourocanate hydratase had no urocanase activity.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Haruna Miyaoku
- Department of Agriculture, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Syuya Kurita
- Department of Agriculture, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Hidenori Matsuo
- Graduate School of Integrated Arts and Sciences, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takehiro Kashiwagi
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Chul-Sa Kim
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Motoko Hayashi
- Corporate Research Center, R&D Headquaters Management, Daicel Corporation 1-1 Shinko-cho, Myoko, shi, Niigata 944-8550, Japan
| | - Hiroaki Yamamoto
- Corporate Research Center, R&D Headquaters Management, Daicel Corporation 1-1 Shinko-cho, Myoko, shi, Niigata 944-8550, Japan
| | - Shin-Ichiro Kato
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | - Shinji Nagata
- Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
45
|
van der Hoek SA, Darbani B, Zugaj KE, Prabhala BK, Biron MB, Randelovic M, Medina JB, Kell DB, Borodina I. Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 2019; 7:262. [PMID: 31681742 PMCID: PMC6797849 DOI: 10.3389/fbioe.2019.00262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
L-(+)-Ergothioneine (ERG) is an unusual, naturally occurring antioxidant nutraceutical that has been shown to help reduce cellular oxidative damage. Humans do not biosynthesise ERG, but acquire it from their diet; it exploits a specific transporter (SLC22A4) for its uptake. ERG is considered to be a nutraceutical and possible vitamin that is involved in the maintenance of health, and seems to be at too low a concentration in several diseases in vivo. Ergothioneine is thus a potentially useful dietary supplement. Present methods of commercial production rely on extraction from natural sources or on chemical synthesis. Here we describe the engineering of the baker's yeast Saccharomyces cerevisiae to produce ergothioneine by fermentation in defined media. After integrating combinations of ERG biosynthetic pathways from different organisms, we screened yeast strains for their production of ERG. The highest-producing strain was also engineered with known ergothioneine transporters. The effect of amino acid supplementation of the medium was investigated and the nitrogen metabolism of S. cerevisiae was altered by knock-out of TOR1 or YIH1. We also optimized the media composition using fractional factorial methods. Our optimal strategy led to a titer of 598 ± 18 mg/L ergothioneine in fed-batch culture in 1 L bioreactors. Because S. cerevisiae is a GRAS ("generally recognized as safe") organism that is widely used for nutraceutical production, this work provides a promising process for the biosynthetic production of ERG.
Collapse
Affiliation(s)
- Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karolina E. Zugaj
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bala Krishna Prabhala
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Bernfried Biron
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacqueline B. Medina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
47
|
Castellano I, Seebeck FP. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Nat Prod Rep 2019; 35:1241-1250. [PMID: 30052250 DOI: 10.1039/c8np00045j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to 2018 Ovothiols are sulfur-containing natural products biosynthesized by marine invertebrates, microalgae, and bacteria. These compounds are characterized by unique chemical properties suggestive of numerous cellular functions. For example, ovothiols may be cytoprotectants against oxidative stress, serve as building blocks of more complex structures and may act as molecular messengers for inter- and intracellular signaling. Detailed understanding of ovothiol physiological role in marine organisms may unearth novel concepts in cellular redox biochemistry and highlight the therapeutic potential of this antioxidant. The recent discovery of ovothiol biosynthetic genes has paved the way for a systematic investigation of ovothiol-modulated cellular processes. In this highlight we review the early research on ovothiol and we discuss key questions that may now be addressed using genome-based approaches. This highlight article provides an overview of recent progress towards elucidating the biosynthesis, function and potential application of ovothiols.
Collapse
Affiliation(s)
- Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy.
| | | |
Collapse
|
48
|
Maurer A, Leisinger F, Lim D, Seebeck FP. Structure and Mechanism of Ergothionase fromTreponema denticola. Chemistry 2019; 25:10298-10303. [DOI: 10.1002/chem.201901866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alice Maurer
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian Leisinger
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - David Lim
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian P. Seebeck
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| |
Collapse
|
49
|
Liao C, Seebeck FP. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0300-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 2019; 9:7716. [PMID: 31118434 PMCID: PMC6531537 DOI: 10.1038/s41598-019-44040-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Conceptus elongation coincides with one of the periods of greatest pregnancy loss in cattle and is characterized by rapid trophectoderm expansion, commencing ~ Day 13 of pregnancy, i.e. before maternal pregnancy recognition. The process has yet to be recapitulated in vitro and does not occur in the absence of uterine gland secretions in vivo. Moreover, conceptus elongation rates are positively correlated to systemic progesterone in maternal circulation. It is, therefore, a maternally-driven and progesterone-correlated developmental phenomenon. This study aimed to comprehensively characterize the biochemical composition of the uterine luminal fluid on Days 12-14 - the elongation-initiation window - in heifers with normal vs. high progesterone, to identify molecules potentially involved in conceptus elongation initiation. Specifically, nucleotide, vitamin, cofactor, xenobiotic, peptide, and energy metabolite profiles of uterine luminal fluid were examined. A total of 59 metabolites were identified, of which 6 and 3 displayed a respective progesterone and day effect, whereas 16 exhibited a day by progesterone interaction, of which 8 were nucleotide metabolites. Corresponding pathway enrichment analysis revealed that pyridoxal, ascorbate, tricarboxylic acid, purine, and pyrimidine metabolism are of likely importance to to conceptus elongation initiation. Moreover, progesterone reduced total metabolite abundance on Day 12 and may alter the uterine microbiome.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|