1
|
Kaźmierczak M, Weselski M, Siczek M, Wolny JA, Schünemann V, Bronisz R. [2 + 2] Photocyclization converts thermally induced spin crossover effect into "hidden hysteresis" one. Chem Sci 2025; 16:7884-7893. [PMID: 40191125 PMCID: PMC11966535 DOI: 10.1039/d4sc05587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The light induced [2 + 2] cyclization of the flexible coumarin-based ligand (L) converts the spin crossover active HS1 ⇆ LS1 mononuclear system [Fe(L)6](BF4)2·4CH3CN (1) into the high spin 1D coordination polymer (2). The contribution of the resulting high spin form HS2 is directly related to the degree of photoconversion and, at the same time, practically does not affect the properties of the remaining thermally active spin crossover centers (HS1). The origin of such a fundamental change in properties is an appearance of strain caused by ligand dimerization, which acts directly on the metal chromophores and is transmitted to the crystal lattice. The spin state of 2 can be changed by applying pressure as well as by light irradiation revealing a "hidden hysteresis" phenomenon (Appl. Phys. Lett., 2008, 93, 21906), referring to the appearance of the low spin state not accessible through thermal activation but through reversed-LIESST. A unique feature of 2 is the feasibility to attain any steady state within the hidden hysteresis region by combination of perturbations triggered by changes in temperature and light (808 nm HS2 → LS2 and 532 nm LS2 → HS2). Such states are stable within a time scale of several hours.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Juliusz A Wolny
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Volker Schünemann
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| |
Collapse
|
2
|
Hoffman A, Zychowicz M, Wang J, Matsuura K, Kagawa F, Rzepiela J, Heczko M, Baś S, Tokoro H, Ohkoshi SI, Chorazy S. Photoluminescent, dielectric, and magnetic responsivity to the humidity variation in SHG-active pyroelectric manganese(ii)-based molecular material. Chem Sci 2025:d5sc00404g. [PMID: 40271042 PMCID: PMC12013632 DOI: 10.1039/d5sc00404g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Multifunctional response to external stimuli which engages various properties, including optical, dielectric, magnetic, or mechanical, can be the source of new generations of highly sensitive sensors and advanced switches. Such responsivity is expected for molecular materials based on metal complexes whose properties are often sensitive to even subtle changes in a particular stimulus. We present a novel hybrid organic-inorganic salt based on earth-abundant divalent manganese ions forming two types of complexes, octahedral [MnII(Me-dppmO2)3]2+ cations with methyl-functionalized bis(diphenylphosphino)methane dioxide ligands and tetrahedral [MnIICl4]2- anions. These ions crystallize with water molecules leading to the molecular material [MnII(Me-dppmO2)3][MnIICl4]·H2O (1). We show that, due to the simple methyl substituent on the diphosphine-type ligand, 1 reveals a polar crystal structure of the Cc space group as confirmed by the single-crystal X-ray diffraction, second-harmonic generation (SHG) effect, piezoelectric response, and pyroelectricity. Besides these non-centrosymmetricity-related non-linear optical and electrical features, this material combines three other physical properties, i.e., visible room-temperature (RT) photoluminescence (PL) originating from d-d electronic transitions of octahedral Mn(ii) complexes, dielectric relaxation in ca. 170-300 K range related to Bjerrum-type orientation defects of water molecules, and slow magnetic relaxation below 3 K related to spin-phonon interactions involving paramagnetic Mn(ii) centers. We demonstrate that these three physical effects detected in 1 are sensitive to humidity variation that governs the RT-PL intensity, leads to the ON/OFF switching of dielectric relaxation around RT, and non-trivially modulates the magnetic relaxation at cryogenic temperatures. Thus, we report a unique molecular material revealing broadened multifunctionality and triple physical responsivity to the humidity change exploring luminescent, dielectric, and magnetic properties.
Collapse
Affiliation(s)
- Aleksander Hoffman
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Keisuke Matsuura
- Department of Physics, Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro Tokyo 152-8551 Japan
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Fumitaka Kagawa
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Jan Rzepiela
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Michal Heczko
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
3
|
Li G, Stefanczyk O, Kumar K, Guérin L, Okuzono K, Tran K, Seydi Kilic M, Nakabayashi K, Imoto K, Namai A, Nakamura Y, Ranjan Maity S, Renz F, Chastanet G, Ohkoshi SI. Near-Infrared Light-Induced Spin-State Switching Based on Fe(II)-Hg(II) Spin-Crossover Network. Angew Chem Int Ed Engl 2025; 64:e202423095. [PMID: 39659214 DOI: 10.1002/anie.202423095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
The development of molecular switches with tunable properties has garnered considerable interest over several decades. A novel spin-crossover (SCO) material based on iron(II) complexes incorporating 4-acetylpyridine (4-acpy) and [Hg(SCN)4]2- anions was synthesized and formulated as [Fe(4-acpy)2][Hg(μ-SCN)4] (1). Compound 1 is crystallized in a three-dimensional network in the non-centrosymmetric orthorhombic space group Pna21 with two octahedral [Fe(4-acpy)2(NCS)4] entities featuring two distinct Fe centers (Fe1 and Fe2). Crystallographic, magnetic, and Mössbauer measurements reveal an incomplete SCO exclusively at Fe2, with transition temperature T1/2≈102 K. Photomagnetic studies conducted at 10 K with lasers ranging from 405 to 1310 nm evidence light-induced excited spin-state trapping (LIESST) and reverse-LIESST effects, with a unique near-infrared-responsive LIESST phenomenon at 1064 and 1310 nm. Advanced photocrystallographic studies at 40 K provide precise structural evidence for these metastable states. The optical and vibrational properties consistently corroborate with magnetic and photomagnetic studies. Additionally, temperature- and light-dependent terahertz (THz) absorptions are associated with phonon vibrations around Fe2 centers, through SCO behavior, as supported by ab initio calculation. The Fe(II)-Hg(II) systems can be promising benchmarks for exploring synergistic switching effects in structural, magnetic, and spectroscopic properties.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Laurent Guérin
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosei Okuzono
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
- Hannover School for Nanotechnology, Laboratorium für Nano-und Quantenengineering (LNQE), Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Maximilian Seydi Kilic
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, 679-5198, Japan
| | - Sumit Ranjan Maity
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, 679-5198, Japan
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
- Hannover School for Nanotechnology, Laboratorium für Nano-und Quantenengineering (LNQE), Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | | | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Charytanowicz T, Wang J, Tokoro H, Tran K, Renz F, Ohkoshi SI, Chorazy S, Sieklucka B. Thermal Bistability of Magnetic Susceptibility, Light Absorption, Second Harmonic Generation, and Dielectric Properties in a Polar Spin-Crossover Iron-Rhenium Chain Material. Angew Chem Int Ed Engl 2025; 64:e202419242. [PMID: 39588614 DOI: 10.1002/anie.202419242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The bistability of multiple physical properties driven by external stimuli in a solid is a desired prerequisite for its application in memory devices with convenient data readout. We present a pathway for thermal bistability detectable in four physical properties: magnetic, light absorption, second-harmonic generation (SHG), and dielectric. We report a novel heterometallic (TBA){[FeII(phIN)4][ReV(CN)8]} ⋅ (phIN) (1) (TBA=tetrabutylammonium cation, phIN=phenyl isonicotinate) cyanido-bridged chain material. Owing to an appropriate {N6} coordination sphere of Fe(II) centers, 1 reveals a thermal spin crossover (SCO) effect which is complete and cooperative providing a distinct thermal hysteresis loop in magnetic measurements. Moreover, it exhibits simultaneous thermal bistability in (a) visible-light absorption due to the presence of efficient d-d electronic transitions in the low-spin (LS) state, (b) SHG activity as it crystallizes in a polar Cc space group due to the bulky substituent on phIN ligands, and (c) dielectric parameters, including dielectric constant, which can be correlated with subtle changes in polarity between LS and HS (high spin) phases. Thus, we present a remarkable thermally controlled hysteretic behavior in four physical functionalities realized by properly functionalizing an SCO-active coordination compound.
Collapse
Affiliation(s)
- Tomasz Charytanowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167, Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
5
|
Zhao YM, Hu JS, Ji XY, Liu ZK, Yue LT, Yu M, Tao J. Dual Photoswitching of a Diarylethene Ligand-Anchored Hofmann-Type Spin-Crossover Compound. Inorg Chem 2024; 63:22323-22327. [PMID: 39526956 DOI: 10.1021/acs.inorgchem.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A diarylethene ligand-anchored two-dimensional Hofmann-type compound [FeII(BTEPy){Pt(CN)4}](CH3OH) (BTEPy = 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]cyclopentene) is synthesized, which undergoes a two-step spin-state transition and dual photoinduced magnetic switching.
Collapse
Affiliation(s)
- Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Xue-Yang Ji
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Ling-Tai Yue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
6
|
Fan ZX, Lian KT, Liao PY, Ruan ZY, Ni ZP, Tong ML. Synergetic spin crossover and fluorescence in a mononuclear iron(III) complex. Chem Commun (Camb) 2024; 60:13227-13230. [PMID: 39445391 DOI: 10.1039/d4cc05036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two mononuclear iron(III) complexes (XEA)[Fe(azp)2]·H2O (H2azp = 2,2'-azodiphenol, XEA = 2-fluoroethylammonium and 2-chloroethylammonium) are synthesized, which exhibit the counterion dependence of magnetic and fluorescent properties. The synergetic effect between abrupt spin crossover and fluorescence is observed in an iron(III) complex for the first time.
Collapse
Affiliation(s)
- Zi-Xuan Fan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Kai-Ting Lian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Boukheddaden K, El Islam Belmouri N, di Scala N. Ising-Like Model Hasn't Yet Said Its Last Word: Exact and Mean-Field Investigations of 2, 3 and 4-Body Interactions in 1D Ising Chain of Binuclear Spin-Crossover Solids. Chemphyschem 2024; 25:e202400238. [PMID: 38837584 DOI: 10.1002/cphc.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
We investigate the static properties of a new class of 1D Ising-like Hamiltonian for binuclear spin-crossover materials accounting for two-, three-, and four-body short-range interactions between binuclear units of spins( s 1 A , s 1 B ) ${(s_1^A, s_1^B )}$ and( s 2 A , s 2 B ) ${(s_2^A, s_2^B )}$ . The following 2-, 3-, and 4-bodyJ 1 ( s 1 A + s 1 B ) ( s 2 A + s 2 B ) ${J_1 (s_1^A + s_1^B )(s_2^A + s_2^B )}$ ,K 1 s 1 A s 1 B ( s 2 A + s 2 B ) ${K_1 s_1^A s_1^B (s_2^A + s_2^B )}$ , andK 2 ( s 1 A s 1 B ) ( s 2 A s 2 B ) ${K_2 (s_1^A s_1^B )(s_2^A s_2^B )}$ terms are considered, in addition to intra-binuclear interactions, such as effective ligand-field energy and exchange-like coupling. An exact treatment is carried out within the frame of the transfer matrix method, leading to a 4×4 matrix from which, we obtained the thermal evolution of the thermodynamic quantities. Several situations of model parameter values were tested, among which that of competing intra- and inter-molecular interactions, leading to the occurrence of (i) one-step spin transition, (ii) two-, three-, and four-step transitions, obtained with a reasonable number of parameters. To reproduce first-order phase transitions, we accounted for inter-chains interactions, treated in the mean-field approach. Hysteretic multi-step transitions, recalling experimental observations, are then achieved. Overall, the present model not only suggests new landscapes of interaction configurations between SCO molecules but also opens new avenues to tackle the complex behaviors often observed in the properties of SCO materials.
Collapse
Affiliation(s)
- Kamel Boukheddaden
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| | - Nour El Islam Belmouri
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| | - Nicolas di Scala
- Université Paris-Saclay, CNRS-Université de Versailles Saint-Quentin-en-Yvelines Groupe d'Études de la Matière Condensée, UMR 8635, 45 Avenue des Etats Unis, 78035, Versailles, France
| |
Collapse
|
8
|
Imperato M, Nicolini A, Ribas-Ariño J, Antkowiak M, Roubeau O, Cornia A, Novikov V, Barrios LA, Aromí G. Guest selectivity of [Ni 2] supramolecular helicates. Dalton Trans 2024; 53:12301-12306. [PMID: 38984518 DOI: 10.1039/d4dt01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Two new paramagnetic supramolecular helicates with the formula (X@[Ni2L3])3+ (X = Cl, or Br; L = a bis-pyrazolylpyridine ligand) have been prepared and are described. Helicates of this metal are very rare with virtually no prior examples of them acting as hosts of anionic species. The persistence of the new assemblies in solution has been demonstrated unambiguously by mass spectrometry and paramagnetic 1H NMR. This has allowed us to establish the preference of the coordination [Ni2] host for Cl- over Br-, in agreement with DFT calculations. These results show the promise of the use of metallohelicates as suitable systems for the selective encapsulation of specific anions in solution.
Collapse
Affiliation(s)
- Manuel Imperato
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213/A, 41125 Modena, Italy
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Alessio Nicolini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Jordi Ribas-Ariño
- Departament de Química Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Michał Antkowiak
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Valentin Novikov
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| |
Collapse
|
9
|
Risa A, Barrios LA, Diego R, Roubeau O, Aleshin DY, Nelyubina Y, Novikov V, Teat SJ, Ribas-Ariño J, Aromí G. Engineered π⋯π interactions favour supramolecular dimers X@[FeL 3] 2 (X = Cl, Br, I): solid state and solution structure. Chem Sci 2024; 15:9047-9053. [PMID: 38903210 PMCID: PMC11186344 DOI: 10.1039/d4sc01365d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Ditopic bis-pyrazolylpyridine ligands usually react with divalent metal ions (M2+) to produce dinuclear triple-stranded helicates [M2L3]4+ or, via π⋯π interactions, dimers of monoatomic complexes ([ML3]2)4+. The introduction of an additional benzene ring at each end of ligand L increases the number of aromatic contacts within the supramolecular aggregate by 40%, driving the self-recognition process in an irreversible manner. Consequently, the mixing of new bis-pyrazolylquinoline L2 with FeX2 salts leads to crystallization of the tripartite high-spin assemblies (X@[Fe(L2)3]2)3+ (X = Cl, Br or I). The aggregates exhibit exceptional stability, as confirmed by a combination of paramagnetic 1H NMR techniques, demonstrating their persistence in solution. Our investigations further reveal that the guests Br- and I- are retained inside the associate in solution but Cl- is immediately released, resulting in the formation of the empty supramolecular dimer ([Fe(L2)3]2)4+.
Collapse
Affiliation(s)
- Arnau Risa
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Rosa Diego
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza Zaragoza Spain
| | - Dmitry Y Aleshin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences 119991 Moscow Russia
| | - Yulia Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 119991 Moscow Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences Acad. Semenov Str. 1 Chernogolovka 142432 Russia
| | - Valentin Novikov
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences Acad. Semenov Str. 1 Chernogolovka 142432 Russia
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory 1 Cyclotron Road Berkeley California 94720 USA
| | - Jordi Ribas-Ariño
- Departament de Química Física, IQTCUB, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| |
Collapse
|
10
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Wang JL, Zhou HY, Zhao L, Meng YS, Liu T. Reversible light-induced spin state switching in a dinuclear Fe(II) spin crossover complex. Dalton Trans 2024; 53:7669-7676. [PMID: 38646797 DOI: 10.1039/d3dt02691d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A dinuclear Fe(II) spin crossover (SCO) complex with the formula [Fe2L5(NCS)4]·2DMF·2H2O (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature T1/2 of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.
Collapse
Affiliation(s)
- Jun-Li Wang
- School of Chemistry and Materials Engineering, Xinxiang University, 191 Jinsui Rd., 453003 Xinxiang, China.
| | - Hang-Yue Zhou
- School of Chemistry and Materials Engineering, Xinxiang University, 191 Jinsui Rd., 453003 Xinxiang, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| |
Collapse
|
12
|
Wu YY, Li ZY, Peng S, Zhang ZY, Cheng HM, Su H, Hou WQ, Yang FL, Wu SQ, Sato O, Dai JW, Li W, Bu XH. Two-Dimensional Spin-Crossover Molecular Solid Solutions with Tunable Transition Temperatures across 90 K. J Am Chem Soc 2024; 146:8206-8215. [PMID: 38412246 DOI: 10.1021/jacs.3c12905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.
Collapse
Affiliation(s)
- Ying-Ying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Shuang Peng
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Zi-Yi Zhang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Hao-Ming Cheng
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Hang Su
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Wen-Qi Hou
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Feng-Lei Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jing-Wei Dai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wei Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| |
Collapse
|
13
|
Huang YY, He Y, Liu Y, Fu JH, Liu XL, Wu XT, Sheng TL. Fine-tuning of thermally induced SCO behaviors of trinuclear cyanido-bridged complexes by regulating the electron donating ability of C CN-terminal fragments. Dalton Trans 2024; 53:3777-3784. [PMID: 38305017 DOI: 10.1039/d3dt04226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
To achieve fine regulation of FeII SCO behavior, a series of trinuclear cyanido-bridged complexes trans-[CpMen(dppe)MII(CN)]2[Fe1II(abpt)2](OTf)2 (1-4) (1, M = Fe2 and n = 1; 2, M = Fe2 and n = 4; 3, M = Fe2 and n = 5; 4, M = Ru and n = 5; CpMen = alkyl cyclopentadienyl with n = 1, 4, 5; dppe = 1,2-bis-(diphenylphosphino)ethane; abpt = 4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole and OTf = CF3SO3-) were synthesized and fully characterized by using elemental analysis, X-ray crystallography, magnetic measurements, variable-temperature IR spectroscopy and Mössbauer spectroscopy. It is worth mentioning that different from many mononuclear Fe(abpt)2X2 (X = NCS, NCSe, N(CN)2, C(CN)3, (NC)2CC(OCH3)C(CN)2, (NC)2CC(OC2H5)C(CN)2, C16SO3 and Cl) complexes with more than one polymorph, only one polycrystalline form was found in complexes 1-4. Moreover, the thermally induced SCO behaviors of these four complexes are independent of intermolecular π-π interactions. The electron-donating ability of the CCN-terminal fragment of CpMen(dppe)MIICN can be flexibly regulated by changing the methyl number (n) of the cyclopentadiene ligand or metal ion type (MII). These investigations indicate that the electron-donating ability of the CCN-terminal fragment has an influence on the SCO behavior of Fe1II. The spin transition temperature (T1/2) of the complexes decreases with the increase of the electron-donating ability of the fragment CpMen(dppe)MII. This study provides a new strategy to predict and precisely regulate the behaviors of SCO complexes.
Collapse
Affiliation(s)
- Ying-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
14
|
Mandarić M, Topić E, Agustin D, Pisk J, Vrdoljak V. Preparative and Catalytic Properties of Mo VI Mononuclear and Metallosupramolecular Coordination Assemblies Bearing Hydrazonato Ligands. Int J Mol Sci 2024; 25:1503. [PMID: 38338782 PMCID: PMC10855701 DOI: 10.3390/ijms25031503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
A series of polynuclear, dinuclear, and mononuclear Mo(VI) complexes were synthesized with the hydrazonato ligands derived from 5-methoxysalicylaldehyde and the corresponding hydrazides (isonicotinic hydrazide (H2L1), nicotinic hydrazide (H2L2), 2-aminobenzhydrazide (H2L3), or 4-aminobenzhydrazide (H2L4)). The metallosupramolecular compounds obtained from non-coordinating solvents, [MoO2(L1,2)]n (1 and 2) and [MoO2(L3,4)]2 (3 and 4), formed infinite structures and metallacycles, respectively. By blocking two coordination sites with cis-dioxo ligands, the molybdenum centers have three coordination sites occupied by the ONO donor atoms from the rigid hydrazone ligands and one by the N atom of pyridyl or amine-functionalized ligand subcomponents from the neighboring Mo building units. The reaction in methanol afforded the mononuclear analogs [MoO2(L1-4)(MeOH)] (1a-4a) with additional monodentate MeOH ligands. All isolated complexes were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP) as an oxidant in water. The impact of the structure and ligand lability on the catalytic efficiency in homogeneous cyclooctene epoxidation was elucidated based on theoretical considerations. Thus, dinuclear assemblies exhibited better catalytic activity than mononuclear or polynuclear complexes.
Collapse
Affiliation(s)
- Mirna Mandarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Edi Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Dominique Agustin
- IUT P. Sabatier, Department of Chemistry, University of Toulouse, Av. G. Pompidou, BP20258, 81104 Castres CEDEX, France;
- CNRS (Centre National de la Recherche Scientifique), LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, 31077 Toulouse CEDEX 4F, France
| | - Jana Pisk
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Višnja Vrdoljak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| |
Collapse
|
15
|
Cai LZ, Yu XQ, Wang MS, Guo GC. Photoinduced large magnetic change at room temperature and radical-quenched spin glass in a cyanide-bridged Mn II-Fe III compound. Dalton Trans 2023; 52:15677-15681. [PMID: 37888847 DOI: 10.1039/d3dt03080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
By the coordination assembly of a redox photoactive functional motif and a cyanide-bridged moiety, a cyanide-bridged MnII-FeIII compound with large photoinduced magnetic change at room-temperature due to photoinduced electron transfer was obtanied. This compound also shows unprecedented radical-quenched spin glass in molecule based magnets.
Collapse
Affiliation(s)
- Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiao-Qing Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
16
|
Wang J, Zakrzewski JJ, Zychowicz M, Xin Y, Tokoro H, Chorazy S, Ohkoshi SI. Desolvation-Induced Highly Symmetrical Terbium(III) Single-Molecule Magnet Exhibiting Luminescent Self-Monitoring of Temperature. Angew Chem Int Ed Engl 2023; 62:e202306372. [PMID: 37335298 DOI: 10.1002/anie.202306372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
A conjunction of Single-Molecule Magnet (SMM) behavior and luminescence thermometry is an emerging research line aiming at contactless read-out of temperature in future SMM-based devices. The shared working range between slow magnetic relaxation and the thermometric response is typically narrow or absent. We report TbIII -based emissive SMMs formed in a cyanido-bridged framework whose properties are governed by the reversible structural transformation from [TbIII (H2 O)2 ][CoIII (CN)6 ] ⋅ 2.7H2 O (1) to its dehydrated phase, TbIII [CoIII (CN)6 ] (2). The 8-coordinated complexes in 1 show the moderate SMM effect but it is enhanced for trigonal-prismatic TbIII complexes in 2, showing the SMM features up to 42 K. They are governed by the combination of QTM, Raman, and Orbach relaxation with the energy barrier of 594(18) cm-1 (854(26) K), one of the highest among the TbIII -based molecular nanomagnets. Both systems exhibit emission related to the f-f electronic transitions, with the temperature variations resulting in the optical thermometry below 100 K. The dehydration leads to a wide temperature overlap between the SMM behavior and thermometry, from 6 K to 42 K. These functionalities are further enriched after the magnetic dilution. The role of post-synthetic formation of high-symmetry TbIII complexes in achieving the SMM effect and hot-bands-based optical thermometry is discussed.
Collapse
Affiliation(s)
- Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Yue Xin
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Nößler M, Neuman NI, Böser L, Jäger R, Singha Hazari A, Hunger D, Pan Y, Lücke C, Bens T, van Slageren J, Sarkar B. Spin Crossover and Fluorine-Specific Interactions in Metal Complexes of Terpyridines with Polyfluorocarbon Tails. Chemistry 2023; 29:e202301246. [PMID: 37191067 DOI: 10.1002/chem.202301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
In coordination chemistry and materials science, terpyridine ligands are of great interest, due to their ability to form stable complexes with a broad range of transition metal ions. We report three terpyridine ligands containing different perfluorocarbon (PFC) tails on the backbone and the corresponding FeII and CoII complexes. The CoII complexes display spin crossover close to ambient temperature, and the nature of this spin transition is influenced by the length of the PFC tail on the ligand backbone. The electrochemical properties of the metal complexes were investigated with cyclic voltammetry revealing one oxidation and several reduction processes. The fluorine-specific interactions were investigated by EPR measurements. Analysis of the EPR spectra of the complexes as microcrystalline powders and in solution reveals exchange-narrowed spectra without resolved hyperfine splittings arising from the 59 Co nucleus; this suggests complex aggregation in solution mediated by interactions of the PFC tails. Interestingly, addition of perfluoro-octanol in different ratios to the acetonitrile solution of the sample resulted in the disruption of the F ⋯ ${\cdots }$ F interactions of the tails. To the best of our knowledge, this is the first investigation of fluorine-specific interactions in metal complexes through EPR spectroscopy, as exemplified by exchange narrowing.
Collapse
Affiliation(s)
- Maite Nößler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Predio CCT Conicet "Dr. Alberto Cassano", Colectora RN 168, Km 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Lisa Böser
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - René Jäger
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Arijit Singha Hazari
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yixian Pan
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
18
|
Bagchi S, Kamilya S, Mehta S, Mandal S, Bandyopadhyay A, Narayan A, Ghosh S, Mondal A. Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(III) complexes. Dalton Trans 2023; 52:11335-11348. [PMID: 37530419 DOI: 10.1039/d3dt01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of mononuclear manganese(III) complexes [Mn(X-sal2-323)](ReO4) (X = 5 Cl, 1; X = 5 Br, 2; X = 3,5 Cl, 3; X = 3,5 Br, 4; and X = 5 NO2, 5), containing hexadentate ligands prepared using the condensation of N,N'-bis(3-aminopropyl)ethylenediamine and 5- or 3,5-substituted salicylaldehyde, has been synthesized. Variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical analyses, and theoretical calculations have been used to explore the role of various ligand substituents in the spin-state switching behavior of the prepared manganese(III) complexes. All five complexes consist of an analogous distorted octahedral monocationic MnN4O2 surrounding offered by the flexible hexadentate ligand and ReO4- as the counter anion. However, a disordered water molecule was detected in complex 4. Complexes 1 (X = 5 Cl) and 5 (X = 5 NO2) show gradual and complete spin-state switching between the high-spin (HS) (S = 2) and the low-spin (LS) (S = 1) state with T1/2 values of 146 and 115 K respectively, while an abrupt and complete transition at 95 K was observed for complex 2 (X = 5 Br). Alternatively, complex 3 (X = 3, 5 Cl) exhibits an incomplete and sharp transition between the HS and LS states at 104 K, while complex 4 (X = 3, 5 Br) (desolvated) remains almost LS up to 300 K and then displays gradual and incomplete SCO at a higher temperature. The nature of the spin-state switch and transition temperature suggest that the structural effect (cooperativity) plays a more significant role in comparison with the electronic effect coming from various substituents (Cl, Br, and NO2), which is further supported by the detailed structural, electrochemical, and theoretical studies.
Collapse
Affiliation(s)
- Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Arka Bandyopadhyay
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
19
|
Tretiakov S, Lutz M, Titus CJ, de Groot F, Nehrkorn J, Lohmiller T, Holldack K, Schnegg A, Tarrago MFX, Zhang P, Ye S, Aleshin D, Pavlov A, Novikov V, Moret ME. Homoleptic Fe(III) and Fe(IV) Complexes of a Dianionic C 3-Symmetric Scorpionate. Inorg Chem 2023. [PMID: 37369076 DOI: 10.1021/acs.inorgchem.3c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]-. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]- can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes.
Collapse
Affiliation(s)
- Serhii Tretiakov
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Charles James Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Frank de Groot
- Materials Chemistry & Catalysis, Debye Institute for Materials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joscha Nehrkorn
- Max-Planck-Institute for Chemical Energy Conversion, EPR Research Group, 45470 Mülheim/Ruhr, Germany
| | - Thomas Lohmiller
- Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, EPR4 Energy Joint Lab, 12489 Berlin, Germany
| | - Karsten Holldack
- Department of Optics and Beamlines, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Alexander Schnegg
- Max-Planck-Institute for Chemical Energy Conversion, EPR Research Group, 45470 Mülheim/Ruhr, Germany
| | | | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dmitry Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, Moscow 119991, Russia
| | - Alexander Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow 119991, Russia
| | - Valentin Novikov
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow 119991, Russia
| | - Marc-Etienne Moret
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Zhang T, Lou XY, Li X, Tu X, Han J, Zhao B, Yang YW. Tunable Photochromism of Spirooxazine in the Solid State: A New Design Strategy Based on the Hypochromic Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210551. [PMID: 36579725 DOI: 10.1002/adma.202210551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
As an important organic photofunctional material, spirooxazine (SO) usually does not exhibit photochromism in the solid state since the intermolecular π-π stacking impedes photoisomerization. Developing photochromic SO in the solid state is crucial for practical applications but is still full of challenges. Here, a series of spirooxazine derivatives (SO1-SO4) with bulky aromatic substituents at the 4- and 7-positions of the skeleton, which provide them with a large volume with which to undergo solid-state photochromism under mild conditions, is designed and synthesized. All the compounds SO1-SO4 exhibit tunable solid photochromism without ground colors, excellent fatigue resistance, and high thermal stability. Notably, it takes only 15 s for SO4 to reach the saturation of absorption intensity, thought to represent the fastest solid-state photoresponse of spirooxazines. X-ray crystal structures of the intermediate compound SO0 and the products SO1-SO2 as well as computational studies suggest that the bulky aromatic groups can lead to a hypochromic effect, allowing for the photochromism of SO in the solid state. The ideal photochromic properties of these spirooxazines open a new avenue for their applications in UV printing, quick response code, and related fields.
Collapse
Affiliation(s)
- Tianze Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoyan Li
- Key Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Xi Tu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Jie Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
- Key Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Key Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
22
|
Li G, Stefanczyk O, Kumar K, Mineo Y, Nakabayashi K, Ohkoshi SI. Low-Frequency Sub-Terahertz Absorption in Hg II -XCN-Fe II (X=S, Se) Coordination Polymers. Angew Chem Int Ed Engl 2023; 62:e202214673. [PMID: 36522797 DOI: 10.1002/anie.202214673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Self-assembly FeII complexes of phenazine (Phen), quinoxaline (Qxn), and 4,4'-trimethylenedipyridine (Tmp) with tetrahedral building blocks of [HgII (XCN)4 ]2- (X=S or Se) formed six new high-dimensional frameworks with the general formula of [Fe(L)m ][Hg(XCN)4 ]⋅solvents (L=Phen, m/X=2/S, 1; L=Qxn, m/X=2/S, 2; L=Qxn, m/X=1/S, 3; L=Qxn, m/X=1/Se, 3-Se; L=Tmp, m/X=1/S, 4; and L=Tmp, m/X=1/Se, 4-Se). 1, 3, and 3-Se show an intense sub-terahertz (sub-THz) absorbance of around 0.60 THz due to vibrations of the solvent molecules coordinated to the FeII ions and crystallization organic molecules. In addition, crystals of 1, 4, and 4-Se display low-frequency Raman scattering with exceptionally low values of 0.44, 0.51, and 0.53 THz, respectively. These results indicate that heavy metal FeII -HgII systems are promising platforms to construct sub-THz absorbers.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuuki Mineo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
23
|
Ghosh S, Ghosh S, Kamilya S, Mandal S, Mehta S, Mondal A. Impact of Counteranion on Reversible Spin-State Switching in a Series of Cobalt(II) Complexes Containing a Redox-Active Ethylenedioxythiophene-Based Terpyridine Ligand. Inorg Chem 2022; 61:17080-17088. [PMID: 36264687 DOI: 10.1021/acs.inorgchem.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-assembly of a redox-active ethylenedioxythiophene (EDOT)-terpyridine-based tridentate ligand and cobalt(II) unit with different counteranions has led to a series of new cobalt(II) complexes [Co(L)2](X)2 (X = BF4 (1), ClO4 (2), and BPh4 (3)) (L = 4'-(3,4-ethylenedioxythiophene)-2,2':6',2″-terpyridine). The impact of various counteranions on stabilization and spin-state switching of the cobalt(II) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical studies. All three complexes 1-3 consisted of an isostructural dicationic distorted octahedral CoN6 coordination environment offered by the two L ligands in a bis-meridional fashion and BF4-, ClO4-, and BPh4- as a counteranion, respectively. Complex 2 with ClO4- counteranion showed a reversible, gradual, and nearly complete spin-state switching between low-spin (LS) (S = 1/2) and high-spin (HS) (S = 3/2) states, while an incomplete spin-state switching behavior was observed for complexes 1 (BF4-) and 3 (BPh4-) in the measured temperature range of 350-2 K. The non-covalent cation-anion interactions played a significant role in stabilizing the spin-state in 1-3. Additionally, complexes 1-3 also exhibited interesting redox-stimuli-based reversible paramagnetic HS cobalt(II) (S = 3/2) to diamagnetic LS cobalt(III) (S = 0) conversion, offering an alternate way to switch the magnetic properties.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| |
Collapse
|
24
|
Capó N, Barrios LA, Cardona J, Ribas-Ariño J, Teat SJ, Roubeau O, Aromí G. The template effect of a SiF 62- guest drives the formation of a heteroleptic Fe(II) coordination helicate. Chem Commun (Camb) 2022; 58:10969-10972. [PMID: 36089837 DOI: 10.1039/d2cc04559a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anion SiF62- exerts a strong template effect, driving the exclusive assembly of two different bispyridylpyrazolyl ligands into a triple stranded Fe(II) dinuclear heteroleptic helicate, engendering a new class within the large family of coordination helicates.
Collapse
Affiliation(s)
- Nuria Capó
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Joan Cardona
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Ribas-Ariño
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
25
|
Jabri AY, Mohajeri A. Photo-induced reversible nitric oxide capture by Fe-M(CO 2H) 4 (M = Co, Ni, Cu) as a building block of mixed-metal BTC-based MOFs. Phys Chem Chem Phys 2022; 24:22859-22870. [PMID: 36124552 DOI: 10.1039/d2cp02337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks incorporating mixed-metal sites (MM-MOFs) have emerged as promising candidates in the development of sensing platforms for the detection of paramagnetic species. In this context, the present study explores the photo-induced switching behavior of mixed-metal Fe-M (M = Co, Ni, Cu) formate (Fe-M(CO2H)4), as an experimentally feasible strategy for the reversible capture of nitric oxide (NO). Using Fe-M(CO2H)4 as a building block of synthesized MOFs based on BTC (benzene-1,3,5-tricarboxylic acid), molecular simulations of NO adsorption on Fe-M(CO2H)4 were conducted to provide a template for evaluating the behavior of BTC-based MOFs towards NO. Accordingly, the relationship between the magnetic properties and adsorption behaviors of Fe-M(CO2H)4 towards NO gas molecules was evaluated before and after photoexcitation. We show that the photo-induced effect on the magnetic properties of Fe-M(CO2H)4 changes the interaction strength between NO and the Fe-M(CO2H)4 systems. NO chemisorption over Fe-Ni(CO2H)4 indicates that nickel-doped Fe-BTC MOFs can be efficiently applied for capturing purposes. Moreover, our calculations show a switching behavior between physisorption and chemisorption of the NO molecules over Fe-Co(CO2H)4, occurring through magnetic modulation under UV-Vis irradiation. As far as we know, this is the first study that proposes light-controlled reversible NO capture using MOFs. The present study provides a promising platform for reversible NO capture using MM-MOF-incorporated BTC building blocks.
Collapse
Affiliation(s)
- Azadeh Yeganeh Jabri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| |
Collapse
|
26
|
Javed MK, Sulaiman A, Yamashita M, Li ZY. Shedding light on bifunctional luminescent spin crossover materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Fluorescence emission modulation in cyanido-bridged Fe(II) spin crossover coordination polymers. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
29
|
Wu WW, Xie KP, Huang GZ, Ruan ZY, Chen YC, Wu SG, Ni ZP, Tong ML. Single-Crystal to Single-Crystal Transformation of a Spin-Crossover Hybrid Perovskite via Thermal-Induced Cyanide Linkage Isomerization. Inorg Chem 2022; 61:9047-9054. [PMID: 35678748 DOI: 10.1021/acs.inorgchem.2c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linkage isomers involving changes in the bonding mode of ambidentate ligands have potential applications in data storage, molecular machines, and motors. However, the observation of the cyanide-linkage-isomerism-induced spin change (CLIISC) effect characterized by single-crystal X-ray diffraction remains a considerable challenge. Meanwhile, the high-spin and low-spin states can be reversibly switched in spin-crossover (SCO) compounds, which provide the potential for applications to data storage, switches, and sensors. Here, a new perovskite-type SCO framework (PPN)[Fe{Ag(CN)2}3] (PPN+ = bis(trisphenylphosphine)iminium cation) is synthesized, which displays the unprecedented aging and temperature dependences of hysteretic multistep SCO behaviors near room temperature. Moreover, the thermal-induced cyanide linkage isomerization from FeII-N≡C-AgI to FeII-C≡N-AgI is revealed by single-crystal X-ray diffraction, Raman, and Mössbauer spectra, which is associated with a transition from the mixed spin state to the low-spin state and a dramatic volume shrinkage. Considering the wide use of cyanogen in magnetic systems, the association of CLIISC and SCO opens a new dimension to modulate the spin state and realize a colossal negative thermal expansion.
Collapse
Affiliation(s)
- Wei-Wei Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
30
|
Ndiaye M, Boukheddaden K. Pressure-induced multi-step and self-organized spin states in an electro-elastic model for spin-crossover solids. Phys Chem Chem Phys 2022; 24:12870-12889. [PMID: 35583047 DOI: 10.1039/d2cp01285e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spin transition materials are known to exhibit a rich variety of behaviors under several stimuli, among which pressure leads to major changes in their electronic and elastic properties. From an experimental point of view, thermal spin transitions under isotropic pressure showed transformations from (i) hysteretic to continuous transformations where the hysteresis width vanishes beyond some threshold pressure value; this is the conventional case. In several other cases very pathological and unexpected behaviours emerged, like (ii) persistent hysteresis under pressure; (iii) non-uniform behavior of the thermal hysteresis width which first increases with pressure and then decreases and vanishes at higher pressures; (iv) furthermore, double step transitions induced by pressure are also often obtained, where the pressure triggers the appearance of a plateau during the thermal transition, leading to two-step transitions, and finally (v) other non-conventional re-entrant transitions, where the thermal hysteresis vanishes at some pressure and then reappears at higher pressure values are also observed. In the present theoretical study, we investigate this problem with an electro-elastic description of the spin-crossover phenomenon by solving the Hamiltonian using a Monte Carlo technique. The pressure effect is here introduced directly in the lattice parameters, the elastic constants and ligand field energy. By considering spin state-dependent compressibility, we demonstrate that a large panel of experimental observations can be qualitatively described with this model. Among them, we quote (i) the conventional pressure effect decreasing the hysteresis width, (ii) the unconventional cases with pressure causing a non-monotonous behavior of the hysteresis width, (iii) re-entrant, as well as (iv) double step transitions accompanied with various types of spin state self-organization in the plateau regions.
Collapse
Affiliation(s)
- Mamadou Ndiaye
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France. .,Département de Physique, Université Cheikh Anta Diop de Dakar, FST, BP 5005, Fann, Dakar, Senegal
| | - Kamel Boukheddaden
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France.
| |
Collapse
|
31
|
Kumar K, Stefanczyk O, Nakabayashi K, Mineo Y, Ohkoshi SI. Development of Nd (III)-Based Terahertz Absorbers Revealing Temperature Dependent Near-Infrared Luminescence. Int J Mol Sci 2022; 23:ijms23116051. [PMID: 35682730 PMCID: PMC9181137 DOI: 10.3390/ijms23116051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular vibrations in the solid-state, detectable in the terahertz (THz) region, are the subject of research to further develop THz technologies. To observe such vibrations in terahertz time-domain spectroscopy (THz-TDS) and low-frequency (LF) Raman spectroscopy, two supramolecular assemblies with the formula [NdIII (phen)3 (NCX)3] 0.3EtOH (X = S, 1-S; Se, 1-Se) were designed and prepared. Both compounds show several THz-TDS and LF-Raman peaks in the sub-THz range, with the lowest frequencies of 0.65 and 0.59 THz for 1-S and 1-Se, and 0.75 and 0.61 THz for 1-S and 1-Se, respectively. The peak redshift was observed due to the substitution of SCN− by SeCN−. Additionally, temperature-dependent TDS-THz studies showed a thermal blueshift phenomenon, as the peak position shifted to 0.68 THz for 1-S and 0.62 THz for 1-Se at 10 K. Based on ab initio calculations, sub-THz vibrations were ascribed to the swaying of the three thiocyanate/selenocyanate. Moreover, both samples exhibited near-infrared (NIR) emission from Nd (III), and very good thermometric properties in the 300–150 K range, comparable to neodymium (III) oxide-based thermometers and higher than previously reported complexes. Moreover, the temperature dependence of fluorescence and THz spectroscopy analysis showed that the reduction in anharmonic thermal vibrations leads to a significant increase in the intensity and a reduction in the width of the emission and LF absorption peaks. These studies provide the basis for developing new routes to adjust the LF vibrational absorption.
Collapse
|
32
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
33
|
Barrios LA, Diego R, Darawsheh M, Martínez JI, Roubeau O, Aromí G. A ferric guest inside a spin crossover ferrous helicate. Chem Commun (Camb) 2022; 58:5375-5378. [PMID: 35411892 DOI: 10.1039/d2cc00928e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A designed dimetallic Fe(II) helicate made with biphenylene-bridged bispyrazolylpyridine ligands and exhibiting a process of spin crossover at temperatures above ambient is shown to encapsulate an S = 5/2 tris-oxalato Fe(III) ion. The spin relaxation dynamics of this guest are strongly reduced upon encapsulation.
Collapse
Affiliation(s)
- Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Rosa Diego
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Mohanad Darawsheh
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain.
| | - Jesús I Martínez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain. .,Departamento de Física de la Material Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - Oliver Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain. .,Departamento de Física de la Material Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| |
Collapse
|
34
|
Qiu JZ, You Y, Yu Y, Chen ZF, Guo CJ, Zhong YL, Lin WQ, Shu XG. A Mononuclear Iron(II) Spin-Crossover Molecule Decorated by Photochromic Azobenzene Group. Molecules 2022; 27:molecules27051571. [PMID: 35268672 PMCID: PMC8912052 DOI: 10.3390/molecules27051571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Aiming at constructing photoresponsive spin crossover (SCO) behavior, herein we designed a new ligand Abtz (Abtz = (E)-N-(4-((E)-phenyldiazenyl)phenyl)-1-(thiazol-4-yl)methanimine) which was decorated by a photochromic azobenzene group. Based on this photochromic ligand, a mononuclear Fe(II) SCO molecule [Fe(Abtz)3](BF4)2·(EAC)2 (1, EAC = ethyl acetate) was successfully synthesized and showed a complete one-step SCO behavior. Under continuous UV light and blue-light exposure, the cis–trans photoisomerization of both ligand Abtz and compound 1 in the liquid phase was confirmed through UV–Vis spectra. Moreover, the 1H-NMR spectra of Abtz reveal a trans–cis conversion ratio of 37%. Although the UV–Vis spectra reveal the photochromic behavior for 1 in the solution phase, the SCO behavior in the liquid state is absent according to the variable-temperature Evans method, suggesting the possible decomposition. Moreover, in the solid state, the cis–trans photoisomerization of both Abtz and 1 was not observed, due to the steric hindrance.
Collapse
Affiliation(s)
- Jiang-Zhen Qiu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| | - Yong You
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Ye Yu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Zhuo-Fan Chen
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Cheng-Jie Guo
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Yi-Ling Zhong
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Wei-Quan Lin
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| | - Xu-Gang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| |
Collapse
|
35
|
Xie KP, Ruan ZY, Chen XX, Yang J, Wu SG, Ni ZP, Tong ML. Light-induced hidden multistability in a spin crossover metal-organic framework. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pursuit of spin crossover (SCO) materials with photo-switchable multistability is driven by the fascinating perspectives toward light-response switches and opto-magnetic memory devices. Herein, we report a 3D Hofmann-type metal...
Collapse
|
36
|
Manipulating Selective Metal‐to‐Metal Electron Transfer to Achieve Multi‐Phase Transitions in an Asymmetric [Fe2Co]‐Assembled Mixed‐Valence Chain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Meng YS, Yao NT, Zhao L, Yi C, Liu Q, Li YM, Oshio H, Liu T. Manipulating Selective Metal-to-Metal Electron Transfer to Achieve Multi-Phase Transitions in an Asymmetric [Fe2Co]-Assembled Mixed-Valence Chain. Angew Chem Int Ed Engl 2021; 61:e202115367. [PMID: 34971479 DOI: 10.1002/anie.202115367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/08/2022]
Abstract
Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although is currently difficult. Herein, we assembled the asymmetric {Fe2Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3]2Co(BIT)}·2CH3OH (1) (Tp = hydrotris(pyrazolyl)borate and BIT = 3,4-bis-(1H-imidazol-1-yl)thiophen), which showed reversible multi-phase transitions accompanied by the photo-switchable single-chain magnet property and dielectric anomalies. Variable temperature X-ray structural studies revealed thermo-and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off of the single-chain magnet behavior by alternating 946-nm and 532-nm light irradiations. A substantial anomaly in dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.
Collapse
Affiliation(s)
- Yin-Shan Meng
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Linggong Rd., Dalian, 116024, China., 116024, Dalian, CHINA
| | - Nian-Tao Yao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Liang Zhao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Cheng Yi
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Qiang Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Ya-Ming Li
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Hiroki Oshio
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Tao Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| |
Collapse
|
38
|
Książek M, Weselski M, Kusz J, Bronisz R. Single crystal-to-single crystal transformation - from two distinct to three distinct spin crossover centers in 2D coordination polymer [Fe(bbtr) 3](CF 3SO 3) 2. Dalton Trans 2021; 51:958-968. [PMID: 34931210 DOI: 10.1039/d1dt03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Di(1,2,3-triazol-1-yl)butane (bbtr) forms a two-dimensional (2D) coordination polymer (1) in a reaction with iron(II) triflate. In the crystal lattice there are two crystallographically unique iron(II) ions surrounded octahedrally by a 1,2,3-triazole ring coordinated through nitrogen atoms N3. Single crystal X-ray diffraction studies revealed that spin crossover for each crystallographically independent iron(II) ion proceeds at a different temperature (T1/2(Fe1) = 201 K; T1/2(Fe2) = 216 K), while the magnetic measurements showed that there is one step, complete thermally induced spin crossover (T1/2 = 205 K). Complex 1 undergoes, with time, single crystal-to-single crystal transformation (SCSC) to the converted system (1c) from the R3̄ to the P63 space group, accompanied by significant changes in the lattice parameter c (a shortening of approximately one-third) and consequently unit cell volume. Structural transformation is associated with rebuilding of the polymeric layer as well as the anion network, which is reflected in the results of Mössbauer studies. In the polymorphic system (1c) there are three crystallographically independent iron(II) ions. The temperature dependence results for magnetic susceptibility indicated complete, one-step spin crossover very similar to that of 1; however, single-crystal X-ray diffraction studies of 1c revealed that spin crossover for each crystallographically independent iron(II) ion occurs in a different manner, revealing three elementary stages (T1/2(Fe1) = 200 K; T1/2(Fe2) = 212 K, T1/2(Fe3) = 214 K).
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
39
|
Xie K, Ruan Z, Lyu B, Chen X, Zhang X, Huang G, Chen Y, Ni Z, Tong M. Guest‐Driven Light‐Induced Spin Change in an Azobenzene Loaded Metal–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bang‐Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiao‐Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue‐Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao‐Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
40
|
Üngör Ö, Choi ES, Shatruk M. Solvent‐Dependent Spin‐Crossover Behavior in Semiconducting Co–Crystals of [Fe(1‐bpp)
2
]
2+
Cations and TCNQ
δ−
Anions (0<δ<1). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ökten Üngör
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
- Department of Chemistry Colorado State University 301 W. Pitkin St Fort Collins CO 80523 USA
| | - Eun Sang Choi
- National High Magnetic Field Laboratory 1800 E Paul Dirac Dr Tallahassee FL 32310 USA
| | - Michael Shatruk
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory 1800 E Paul Dirac Dr Tallahassee FL 32310 USA
| |
Collapse
|
41
|
Spitsyna NG, Blagov MA, Lazarenko VA, Svetogorov RD, Zubavichus YV, Zorina LV, Maximova O, Yaroslavtsev SA, Rusakov VS, Raganyan GV, Yagubskii EB, Vasiliev AN. Peculiar Spin-Crossover Behavior in the 2D Polymer K[Fe III(5Cl-thsa) 2]. Inorg Chem 2021; 60:17462-17479. [PMID: 34757728 DOI: 10.1021/acs.inorgchem.1c01821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A potassium salt of the N2S2O2-coordination Fe(III) anion K[Fe(5Cl-thsa)2] (1) (5Cl-thsa - 5-chlorosalicylaldehyde thiosemicarbazone) is synthesized and characterized structurally and magnetically over a wide temperature range. Two polymorphs of salt 1 characterized by the common 2D polymer nature and assigned to the same orthorhombic Pbcn space group have been identified. The molecular structure of the minor polymorph of 1 was solved and refined at 100, 250, and 300 K is shown to correspond to the LS configuration. The dominant polymorph of 1 features K+ cations disordered over a few crystallographic sites, while the minor polymorph includes fully ordered K+ cations. The major polymorph exhibits a complete three-step cooperative spin-crossover transition both in the heating and cooling modes: The first step occurs in a temperature range from 2 to 50 K; the second abrupt hysteretic step occurs from 200 to 250 K with T1/2 = 230 K and a 6 K hysteresis loop. The third gradual step occurs from 250 to 440 K. According to 57Fe Mössbauer, XRPD, and EXAFS data, the spin-crossover transition for the dominant polymorph is quite peculiar. Indeed, the increase in the HS concentration by 57% at the second step does not result in the expected significant increase in the iron(III)-ligand bond lengths. In addition, the final step of the spin conversion (ΔγHS = 26%) is associated with a structural phase transition with a symmetry lowering from the orthorhombic (Pbcn) to the monoclinic (P21/n) space group. This nontrivial phenomenon was investigated in detail by applying magnetization measurements, electron spin resonance, 57Fe Mössbauer spectroscopy, and DFT calculations. These results provide a new platform for understanding the multistep spin-crossover character in the Fe(III) thsa-complexes and related compounds.
Collapse
Affiliation(s)
- Nataliya G Spitsyna
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, 142432, Russia
| | - Maxim A Blagov
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, 142432, Russia
| | | | | | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis, SB RAS, Koltsovo 630559, Russia
| | | | - Olga Maximova
- Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | | | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics, RAS, Chernogolovka, 142432, Russia
| | | |
Collapse
|
42
|
Wang LF, Lv BH, Wu FT, Huang GZ, Ruan ZY, Chen YC, Liu M, Ni ZP, Tong ML. Reversible on-off switching of spin-crossover behavior via photochemical [2+2] cycloaddition reaction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1093-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Xie KP, Ruan ZY, Lyu BH, Chen XX, Zhang XW, Huang GZ, Chen YC, Ni ZP, Tong ML. Guest-Driven Light-Induced Spin Change in an Azobenzene Loaded Metal-Organic Framework. Angew Chem Int Ed Engl 2021; 60:27144-27150. [PMID: 34676638 DOI: 10.1002/anie.202113294] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive materials that can be reversibly switched by light are of immense interest. Among them, photo-responsive spin crossover (SCO) complexes have great promises to combine the photoactive inputs with multifaceted outputs into switchable materials and devices. However, the reversible control the spin-state change by photochromic guests is still challenging. Herein, we report an unprecedented guest-driven light-induced spin change (GD-LISC) in a Hofmann-type metal-organic framework (MOF), [Fe(bpn){Ag(CN)2 }2 ]⋅azobenzene. (1, bpn=1,4-bis(4-pyridyl)naphthalene). The reversible trans-cis photoisomerization of azobenzene guest upon UV/Vis irradiation in the solid-state results in the remarkable magnetic changes in a wide temperature range of 10-180 K. This finding not only establishes a new switching mechanism for SCO complexes, but also paves the way toward the development of new generation of photo-responsive magnetic materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xue-Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
44
|
Luminescent and Magnetic Tb-MOF Flakes Deposited on Silicon. Molecules 2021; 26:molecules26185503. [PMID: 34576973 PMCID: PMC8469199 DOI: 10.3390/molecules26185503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis of a terbium-based 2D metal–organic framework (MOF), of formula [Tb(MeCOO)(PhCOO)2] (1), a crystalline material formed by neutral nanosheets held together by Van der Waals interactions, is presented. The material can be easily exfoliated by sonication and deposited onto different substrates. Uniform distributions of Tb-2D MOF flakes onto silicon were obtained by spin-coating. We report the luminescent and magnetic properties of the deposited flakes compared with those of the bulk. Complex 1 is luminescent in the visible and has a sizeable quantum yield of QY = 61% upon excitation at 280 nm. Photoluminescence measurements performed using a micro-Raman set up allowed us to characterize the luminescent spectra of individual flakes on silicon. Magnetization measurements of flakes-on-silicon with the applied magnetic field in-plane and out-of-plane display anisotropy. Ac susceptibility measurements show that 1 in bulk exhibits field-induced slow relaxation of the magnetization through two relaxation paths and the slowest one, with a relaxation time of τlf ≈ 0.5 s, is assigned to a direct process mechanism. The reported exfoliation of lanthanide 2D-MOFs onto substrates is an attractive approach for the development of multifunctional materials and devices for different applications.
Collapse
|
45
|
Kawabata S, Nakabayashi K, Imoto K, Klimke S, Renz F, Ohkoshi SI. Second harmonic generation on chiral cyanido-bridged Fe II-Nb IV spin-crossover complexes. Dalton Trans 2021; 50:8524-8532. [PMID: 34075991 DOI: 10.1039/d1dt01324f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating chiral organic ligands into cyanido-bridged FeII-NbIV assemblies synthesized chiral spin-crossover complexes, FeII2[NbIV(CN)8](L)8·6H2O (L = R-, S-, or rac-1-(3-pyridyl)ethanol: R-FeNb, S-FeNb, or rac-FeNb). Rietveld analyses based on a racemic complex of rac-FeNb indicate that the chiral complexes have a cubic crystal structure in the I213 space group with a three-dimensional cyanido-bridged FeII-NbIV coordination network. All the complexes exhibit spin crossover between the high-spin (HS) and the low-spin (LS) FeII states without thermal hysteresis. Chiral complexes of R-FeNb and S-FeNb show second harmonic generation (SHG) due to their non-centrosymmetric structure. The I213 space group provides second-order susceptibility tensor elements of χxyz, χyzx, and χzxy, which contribute to SHG. The temperature-dependent second harmonic light intensity change is due to spin crossover between FeIIHS and FeIILS.
Collapse
Affiliation(s)
- Shintaro Kawabata
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Stephen Klimke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
46
|
Ghosh S, Kamilya S, Pramanik T, Mohanty A, Rouzières M, Herchel R, Mehta S, Mondal A. Thermo- and photoinduced spin state switching in an iron(II) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality via ligand modulation. Dalton Trans 2021; 50:7725-7735. [PMID: 33988205 DOI: 10.1039/d1dt00212k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three iron(ii) complexes, [Fe(L1)2(NCS)2(MeOH)2] (1), [Fe(L1)2(NCSe)2(MeOH)2] (2), and [Fe(L2)2(NCS)2]n (3) (L1 = 2,5-dipyridyl-3,4-ethylenedioxythiophene and L2 = 2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), have been synthesized using redox-active luminescent ethylenedioxythiophene (EDOT)-based ligands, and characterized by variable temperature single-crystal X-ray diffraction, (photo)magnetic, optical reflectivity, and spectroscopy studies. Magneto-structural investigations revealed that 1 and 2 are mononuclear with a FeN4O2 octahedral coordination geometry and remain in a high-spin (HS) (S = 2) state in a temperature range of 2-280 K. Interestingly, a 2D coordination network structure with FeN6 surrounding each iron center was observed for 3, which exhibits reversible thermo-induced spin-state switching between the paramagnetic high-spin (HS) (S = 2) and diamagnetic low-spin (LS) (S = 0) states at around 105 K (T1/2). Furthermore, optical reflectivity and photomagnetic measurements at low temperature confirmed that 3 shows reversible ON/OFF switching between the photoinduced excited paramagnetic HS metastable state and diamagnetic LS state under light irradiation (ON mode using red light and OFF mode using green light). Finally, the photoinduced excited HS state can be reversibly relaxed back to the diamagnetic ground LS state by heating the system at ca. 88 K (TLIESST = 88 K) (light-induced excited spin state trapping (LIESST) effect). Furthermore, 3 also showed an exciting and unique 18 K wide light-induced thermal hysteresis (LITH) effect above liquid nitrogen temperature (100 K). DFT and CASSCF level theoretical calculations were utilized to better understand the magneto-structural correlations of these complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Ashutosh Mohanty
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
47
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar-Ligand-Substituent Motion. Angew Chem Int Ed Engl 2021; 60:12717-12722. [PMID: 33713041 DOI: 10.1002/anie.202015322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Ferroelectric spin crossover (SCO) behavior is demonstrated to occur in the cobalt(II) complex, [Co(FPh-terpy)2 ](BPh4 )2 ⋅3ac (1⋅3 ac; FPh-terpy=4'-((3-fluorophenyl)ethynyl)-2,2':6',2''-terpyridine) and is dependent on the degree of 180° flip-flop motion of the ligand's polar fluorophenyl ring. Single crystal X-ray structures at several temperatures confirmed the flip-flop motion of fluorobenzene ring and also gave evidence for the SCO behavior with the latter behavior also confirmed by magnetic susceptibility measurements. The molecular motion of the fluorobenzene ring was also revealed using solid-state 19 F NMR spectroscopy. Thus the SCO behavior is accompanied by the flip-flop motion of the fluorobenzene ring, leading to destabilization of the low spin cobalt(II) state; with the magnitude of rotation able to be controlled by an electric field. This first example of spin-state conversion being dependent on the molecular motion of a ligand-appended fluorobenzene ring in a SCO cobalt(II) compound provides new insight for the design of a new category of molecule-based magnetoelectric materials.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yuki Komatsumaru
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaki Donoshita
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shun Dekura
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
48
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar‐Ligand‐Substituent Motion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yuki Komatsumaru
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaki Donoshita
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shun Dekura
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Leonard F. Lindoy
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials (IINa) Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
49
|
González J, Sevilla P, Gabarró‐Riera G, Jover J, Echeverría J, Fuertes S, Arauzo A, Bartolomé E, Sañudo EC. A Multifunctional Dysprosium‐Carboxylato 2D Metall–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonay González
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
| | - Pablo Sevilla
- Department of Mechanical Engineering Escola Universitària Salesiana de Sarrià (EUSS) Passeig de Sant Joan Bosco, 74 08017 Barcelona Spain
| | - Guillem Gabarró‐Riera
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Nanociència i Tecnologia Universitat de Barcelona IN2UB C/Martí i Franquès, 1–11 08028 Barcelona Spain
| | - Jesús Jover
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona 08028 Barcelona Spain
| | - Jorge Echeverría
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona 08028 Barcelona Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica Facultad de Ciencias, Instituto de Síntesis Química y Catálisis, Homogénea (ISQCH) CSIC-Universidad de Zaragoza Zaragoza Spain
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| | - Elena Bartolomé
- Department of Mechanical Engineering Escola Universitària Salesiana de Sarrià (EUSS) Passeig de Sant Joan Bosco, 74 08017 Barcelona Spain
| | - E. Carolina Sañudo
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Nanociència i Tecnologia Universitat de Barcelona IN2UB C/Martí i Franquès, 1–11 08028 Barcelona Spain
| |
Collapse
|
50
|
González J, Sevilla P, Gabarró-Riera G, Jover J, Echeverría J, Fuertes S, Arauzo A, Bartolomé E, Sañudo EC. A Multifunctional Dysprosium-Carboxylato 2D Metall-Organic Framework. Angew Chem Int Ed Engl 2021; 60:12001-12006. [PMID: 33587310 DOI: 10.1002/anie.202100507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Indexed: 01/05/2023]
Abstract
We report the microwave assisted synthesis of a bidimensional (2D) MOF of formula [Dy(MeCOO)(PhCOO)2 ]n (1) and its magnetically diluted analogue [La0.9 Dy0.1 (MeCOO)(PhCOO)2 ] (1 d). 1 is a 2D material with single-ion-magnet (SIM) behaviour and 1 d is a multifunctional, magnetic and luminescent 2D material. 1 can be exfoliated into stable nanosheets by sonication.
Collapse
Affiliation(s)
- Jonay González
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Pablo Sevilla
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017, Barcelona, Spain
| | - Guillem Gabarró-Riera
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Tecnologia, Universitat de Barcelona IN2UB, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Jorge Echeverría
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis, Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Elena Bartolomé
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017, Barcelona, Spain
| | - E Carolina Sañudo
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Tecnologia, Universitat de Barcelona IN2UB, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|