1
|
Chaturvedi V, Kumari R, Sharma P, Pati AK. Diverse Fluorescent Probe Concepts for Detection and Monitoring of Reactive Oxygen Species. Chem Asian J 2025; 20:e202401524. [PMID: 39924450 PMCID: PMC11980770 DOI: 10.1002/asia.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
World-wide research on reactive oxygen species (ROS) continues to reveal new information about the role and impact of ROS on human health and disease. ROS are generated in live cells as a byproduct of aerobic metabolism. Physiological concentrations of cellular ROS are important for signaling and homeostasis, but excessive generation of ROS causes apoptotic and necrotic cell death and various health disorders. Fluorescence technology is a powerful tool to detect, monitor, and image cellular ROS. The present review provides an overview of diverse organic dye-based fluorescent probe concepts that involve modifications of traditional fluorescent dyes utilizing basic principles of dye chemistry and photophysics. Fluorescence responses of the probes and their specificity towards ROS are discussed through analyses of their photophysical and photochemical parameters. We also provide an outlook on future directions of ROS-responsive fluorescent dyes, which could enable the design and development of advanced probes for gaining deeper insights into redox biology.
Collapse
Affiliation(s)
- Vineeta Chaturvedi
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Ritu Kumari
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Prakriti Sharma
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Avik K. Pati
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| |
Collapse
|
2
|
Li H, Luo X, Jian Y, Lv J, Li X, Gao J, Shi W, Li X, Yuan Z, Ma H. An endoplasmic reticulum-targeting hydroxyl radical fluorescent probe for imaging of ferroptosis and screening of natural protectants. Chem Sci 2025; 16:4136-4143. [PMID: 39906375 PMCID: PMC11788824 DOI: 10.1039/d4sc07953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
The real-time and in situ detection of hydroxyl radicals (˙OH) in the endoplasmic reticulum (ER) is helpful to understand ferroptosis at its very early stage due to the crucial role of ˙OH in the ER in ferroptosis initiation. Herein, an ER-targeting ˙OH fluorescent probe (ER-OH) has been developed, which showed a large fluorescence increase at 645 nm in response to ˙OH. ER-OH was applied to monitor ferroptosis by fluorescence imaging, revealing a significant increase of the ˙OH level in the ER during this process. With the imaging of ER-OH, a high-throughput screening method was developed to evaluate the anti-ferroptosis activity of a series of natural protectants. Through this screening, the natural flavonoid derivative icariside I was found for the first time to be highly effective in inhibiting ferroptosis by direct scavenging of the excess cytotoxic oxides (e.g. ˙OH and lipid peroxides) and restoring the level of GPX4. ER-OH could also be used for in vivo imaging of ˙OH in a mouse tumor model. This work provides not only a new tool for ferroptosis monitoring but also a direct insight into the regulation mechanism of ferroptosis and development of new drugs for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Hongyu Li
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Xue Luo
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Yue Jian
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Jiajia Lv
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Xinmin Li
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Jie Gao
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Wen Shi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zeli Yuan
- College of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi Guizhou 563003 China
- Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research Zunyi Guizhou 563003 China
| | - Huimin Ma
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Yan S, Xing G, Yuan X, Cui E, Ji K, Yang X, Su J, Mara D, Tang J, Zhao Y, Hu J, Liu J. Upconversion nanoparticles-CuMnO 2 nanoassemblies for NIR-excited imaging of reactive oxygen species in vivo. J Colloid Interface Sci 2025; 677:666-674. [PMID: 39159521 DOI: 10.1016/j.jcis.2024.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticles-CuMnO2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible-light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 can promote the redox reaction of CuMnO2, leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) were monitored to detect ROS levels. The H2O2 nanoprobe exhibited a linear response in the range of 0.314-10 μM with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.
Collapse
Affiliation(s)
- Shanshu Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Gaoyuan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Endian Cui
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Kaixin Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xing Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jiahao Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Dimitrije Mara
- Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade 11158, P. O. Box 45, Serbia
| | - Jianfeng Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Jie Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Orthopedic Hospital of Guangdong Province, Guangzhou 510515, China.
| |
Collapse
|
4
|
Wang Q, Ji H, Hao Y, Jia D, Ma H, Song C, Qi H, Li Z, Zhang C. Illumination of Hydroxyl Radical Generated in Cells during Ferroptosis, Arabidopsis thaliana, and Mice Using a New Turn-On Near-Infrared Fluorescence Probe. Anal Chem 2024; 96:20189-20196. [PMID: 39671317 DOI: 10.1021/acs.analchem.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxyl radical (·OH), taken as the most active and aggressive reactive oxygen species (ROS), plays an important role in cell redox regulation and ferroptosis processes. It is a great challenge to develop methods for highly selective and sensitive detection and imaging of ·OH. A new near-infrared (NIR) fluorescence probe Probe-HMP was designed and synthesized by introducing 3-methylpyrazolone as the specific recognition moiety to the hemicyanine backbone of the NIR fluorophore AXPI-NH2, which formed with the hydrazine group. Probe-HMP exhibited excellent detection performance in vitro, such as instantaneous response, low detection limit of 24 nM, and excellent selectivity without the interference from other ROS. Based on the actions of ·OH promoter phenylmercuric acetate (PMA) and ·OH scavenger 4-hydroxy-TEMPO (Tempol), Probe-HMP was successfully applied to obtain images of endogenous ·OH in HepG2 cells, Arabidopsis thaliana, and mice. The results show that Probe-HMP can stably and efficiently image endogenous ·OH, the fluorescence intensity of the experimental group incubated with PMA was higher than that of the control group incubated with Probe-HMP only, and a significant decrease could be observed in the inhibitor group incubated with Tempol. More importantly, Probe-HMP can achieve the detection of endogenous ·OH in HepG2 cells during ferroptosis by using erastin and deferoxamine mesylate (DFO) to induce or inhibit ferroptosis, revealing that the fluorescence intensity change of Probe-HMP was caused by ·OH generated and ferroptosis is accompanied by significant ·OH generation. The excellent performance of Probe-HMP makes it a promising candidate for exploring the physiological and pathological processes associated with ferroptosis.
Collapse
Affiliation(s)
- Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Changying Song
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
5
|
Kong L, Zhao M, Zhu X, Liu J, Zhang D, Ye Y. A Novel ⋅OH-Monitor ER-Targeted Probe to Expose the Function of Sorafenib. Chem Asian J 2024; 19:e202400980. [PMID: 39316060 DOI: 10.1002/asia.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
The hydroxyl radical (⋅OH), widely recognized as the most potent free radical, plays a crucial role in numerous physiological and pathological pathways due to its strong oxidizability.Ferroptosis, as a novel mode of cell death, is initiated by the accumulation of iron-dependent lipid peroxidation. Among them, ⋅OH as the original reactive oxygen species (ROSs)is mass-produced due to Fenton reaction in vivo and closely related to cancer treatment.Besides, endoplasmic reticulum (ER) as a membrane-rich structure organelle, is a crucial organelle in all eukaryotes where excessive expression of ROSs, including ⋅OH can triggerER stress which was reported thatwasclosely related toferroptosis. So developing a new probe for their interrelationship research is important. In this paper, we constructed a1,8-naphthalimide-based ER-targeted fluorescence probe named M-1 to monitor ⋅OH variation in vitro and vivo. What's more, we achieved the monitor of ⋅OH during ER stress andferroptosis processesin cancer cells, andfurther explored the important role of ER stress and ferroptosis processes in SF (sorafenib) involved cancer cells.
Collapse
Affiliation(s)
- Lingyu Kong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Manfen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Guan G, Shi G, Liu H, Xu J, Zhang Q, Dong Z, Lu C, Wang Y, Lei L, Nan B, Zhang C, Yue R, Du Y, Tian J, Song G. Responsive Magnetic Particle Imaging Tracer: Overcoming "Always-On" Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409117. [PMID: 39410733 DOI: 10.1002/adma.202409117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Indexed: 12/06/2024]
Abstract
Magnetic particle imaging (MPI) has emerged as a novel technology utilizing superparamagnetic nanoparticles as tracers, essential for disease diagnosis and treatment guidance in preclinical animal models. Unlike other modalities, MPI provides high sensitivity, deep tissue penetration, and no signal attenuation. However, existing MPI tracers suffer from "always-on" signals, which complicate organ-specific imaging and hinder accuracy. To overcome these challenges, we have developed a responsive MPI tracer using pH-responsive PdFe alloy particles coated with a gatekeeper polymer. This tracer exhibits pH-sensitive Fe release and modulation of the MPI signal, enabling selective imaging with a higher signal-to-noise ratio and intratumoral pH quantification. Notably, this responsive tracer facilitates subtraction-enhanced MPI imaging, effectively eliminating interference from liver uptake and expanding the scope of abdominal imaging. Additionally, the tracer employs a dual-function mechanism for adaptive cancer therapy, combining pH-switchable enzyme-like catalysis with dual-key co-activation of ROS generation, and Pd skeleton that scavenges free radicals to minimize Fe-related toxicity. This advancement promises to significantly expand MPI's applicability in diagnostics and therapeutic monitoring, marking a leap forward in imaging technology.
Collapse
Affiliation(s)
- Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juntao Xu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qingpeng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhe Dong
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bin Nan
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| | - Guosheng Song
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
7
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
8
|
Li Z, Lu J, Zhang T, Liu Y, Pan R, Fu Q, Liu X, Mao S, Xu B. Pyrazine-based iron metal organic frameworks (Fe-MOFs) with modulated O-Fe-N coordination for enhanced hydroxyl radical generation in Fenton-like process. J Colloid Interface Sci 2024; 674:279-288. [PMID: 38936084 DOI: 10.1016/j.jcis.2024.06.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Rational design of coordination environment of Fe-based metal-organic frameworks (Fe-MOFs) is still a challenge in achieving enhanced catalytic activity for Fenten-like advanced oxidation process. Here in, novel porous Fe-MOFs with modulated O-Fe-N coordination was developed by configurating amino terephthalic acid (H2ATA) and pyrazine-dicarboxylic acid (PzDC) (Fe-ATA/PzDC-7:3). PzDC ligands introduce pyridine-N sites to form O-Fe-N coordination with lower binding energy, which affect the local electronic environment of Fe-clusters in Fe-ATA, thus decreased its interfacial H2O2 activation barrier. O-Fe-N coordination also accelerate Fe(II)/Fe(III) cycling of Fe-clusters by triggering the reactive oxidant species mediated Fe(III) reduction. As such, Fe-ATA/PzDC-7:3/H2O2 system exhibited excellent degradation performance for typical antibiotic sulfamethoxazole (SMX), in which the steady-state concentration of hydroxyl radical (OH) was 1.6 times higher than that of unregulated Fe-ATA. Overall, this study highlights the role of O-Fe-N coordination and the electronic environment of Fe-clusters on regulating Fenton-like catalytic performance, and provides a platform for precise engineering of Fe-MOFs.
Collapse
Affiliation(s)
- Zongchen Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Xinru Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
9
|
Lv XH, Xu X, Zhao KM, Zhou ZY, Wang YC, Sun SG. The Lifetime of Hydroxyl Radical in Realistic Fuel Cell Catalyst Layer. CHEMSUSCHEM 2024; 17:e202301428. [PMID: 38302692 DOI: 10.1002/cssc.202301428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The lifetime of hydroxyl radicals (⋅OH) in the fuel cell catalyst layer remains uncertain, which hampers the comprehension of radical-induced degradation mechanisms and the development of longevity strategies for proton-exchange membrane fuel cells (PEMFCs). In this study, we have precisely determined that the lifetime of ⋅OH radicals can extend up to several seconds in realistic fuel cell catalyst layers. This finding reveals that ⋅OH radicals are capable of carrying out long-range attacks spanning at least a few centimeters during PEMFCs operation. Such insights hold great potential for enhancing our understanding of radical-mediated fuel cell degradation processes and promoting the development of durable fuel cell devices.
Collapse
Affiliation(s)
- Xue-Hui Lv
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
| | - Xia Xu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
| | - Kuang-Min Zhao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005, Xiamen, P. R. China
| | - Yu-Cheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005, Xiamen, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, Xiamen, P. R. China
| |
Collapse
|
10
|
Cao B, Zhang H, Sun M, Xu C, Kuang H, Xu L. Chiral MoSe 2 Nanoparticles for Ultrasensitive Monitoring of Reactive Oxygen Species In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2208037. [PMID: 36528789 DOI: 10.1002/adma.202208037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are involved in neurodegenerative diseases, cancer, and acute hepatitis, and quantification of ROS is critical for the early diagnosis of these diseases. In this work, a novel probe is developed, based on chiral molybdenum diselenide (MoSe2 ) nanoparticles (NPs) modified by the fluorescent molecule, cyanine 3 (Cy3). Chiral MoSe2 NPs show intensive circular dichroism (CD) signals at 390 and 550 nm, whereas the fluorescence of Cy3 at 560 nm is quenched by MoSe2 NPs. In the presence of ROS, the probe reacts with the ROS and then oxidates rapidly, resulting in decreased CD signals and the recovery of the fluorescence. Using this strategy, the limit of detection values of CD and fluorescent signals in living cells are 0.0093 nmol/106 cells and 0.024 nmol/106 cells, respectively. The high selectivity and sensitivity to ROS in complex biological environments is attributed to the Mo4+ and Se2- oxidation reactions on the surface of the NPs. Furthermore, chiral MoSe2 NPs are able to monitor the levels of ROS in vivo by the fluorescence. Collectively, this strategy offers a new approach for ROS detection and has the potential to inspire others to explore chiral nanomaterials as biosensors to investigate biological events.
Collapse
Affiliation(s)
- Beijia Cao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| |
Collapse
|
11
|
Chen Y, Ji X, Tao L, Ma C, Nie J, Lu C, Yang G, Wang E, Liu H, Wang F, Ren J. Rational design of a ratiometric fluorescent nanoprobe for real-time imaging of hydroxyl radical and its therapeutic evaluation of diabetes. Biosens Bioelectron 2024; 246:115868. [PMID: 38029709 DOI: 10.1016/j.bios.2023.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Hydroxyl radical (•OH), one of the most reactive and deleterious substances in organisms, belongs to a class of reactive oxygen species (ROS), and it has been verified to play an essential role in numerous pathophysiological scenarios. However, due to its extremely high reactivity and short lifetime, the development of a reliable and robust method for tracking endogenous •OH remains an ongoing challenge. In this work, we presented the first ratiometric fluorescent nanoprobe NanoDCQ-3 for •OH sensing based on oxidative C-H abstraction of dihydroquinoline to quinoline. The study mainly focused on how to modulate the electronic effects to achieve an ideal ratiometric detection of •OH, as well as solving the inherent problem of hydrophilicity of the probe, so that it was more conducive to monitoring •OH in living organisms. The screened-out probe NanoDCQ-3 exhibited an exceptional ratiometric sensing capability, better biocompatibility, good cellular uptake, and appropriate in vivo retention, which has been reliably used for detecting exogenous •OH concentration fluctuation in living cells and zebrafish models. More importantly, NanoDCQ-3 facilitated visualization of •OH and evaluation of drug treatment efficacy in diabetic mice. These findings afforded a promising strategy for designing ratiometric fluorescent probes for •OH. NanoDCQ-3 emerged as a valuable tool for the detection of •OH in vivo and held potential for drug screening for inflammation-related diseases.
Collapse
Affiliation(s)
- Yiyu Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Xueying Ji
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Linlin Tao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Erfei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Heng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Li Z, Xu L, Li JY, Lei L, Liang PZ, Wu Q, Yang F, Ren TB, Yin X, Yuan L, Zhang XB. Superoxide Anion-Mediated Afterglow Mechanism-Based Water-Soluble Zwitterion Dye Achieving Renal-Failure Mice Detection. J Am Chem Soc 2023; 145:26736-26746. [PMID: 38015824 DOI: 10.1021/jacs.3c08579] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Afterglow materials-based biological imaging has promising application prospects, due to negligible background. However, currently available afterglow materials mainly include inorganic materials as well as some organic nanoparticles, which are difficult to translate to the clinic, resulting from non-negligible metabolic toxicity and even leakage risk of inorganic heavy metals. Although building small organic molecules could solve such obstacles, organic small molecules with afterglow ability are extremely scarce, especially with a sufficient renal metabolic capacity. To address these issues, herein, we designed water-soluble zwitterion Cy5-NF with renal metabolic capacity and afterglow luminescence, which relied on an intramolecular cascade reaction between superoxide anion (O2•-, instead of 1O2) and Cy5-NF to release afterglow luminescence. Of note, compared with different reference contrast agents, zwitterion Cy5-NF not only had excellent afterglow properties but also had a rapid renal metabolism rate (half-life period, t1/2, around 10 min) and good biocompatibility. Unlike prior afterglow nanosystems possessing a large size, for the first time, zwitterion Cy5-NF has achieved the construction of water-soluble renal metabolic afterglow contrast agents, which showed higher sensitivity and signal-to-background ratio in afterglow imaging than fluorescence imaging for the kidney. Moreover, zwitterion Cy5-NF had a longer kidney retention time in renal-failure mice (t1/2 more than 15 min). More importantly, zwitterion Cy5-NF can be metabolized very quickly even in severe renal-failure mice (t1/2 around 25-30 min), which greatly improved biosecurity. Therefore, we are optimistic that the O2•--mediated afterglow mechanism-based water-soluble zwitterion Cy5-NF is very promising for clinical application, especially rapid detection of kidney failure.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jin-Yu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ping-Zhao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feiyu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
15
|
Niu L, Cao Q, Zhang T, Zhang Y, Liang T, Wang J. Simultaneous detection of mitochondrial viscosity and peroxynitrite in livers from subjects with drug-induced fatty liver disease using a novel fluorescent probe. Talanta 2023; 260:124591. [PMID: 37141820 DOI: 10.1016/j.talanta.2023.124591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Drug-induced fatty liver disease (DIFLD) is a basic clinicopathological example of drug-induced liver injury (DILI). Some drugs can inhibit β-oxidation in hepatocyte mitochondria, leading to steatosis in the liver. Additionally, drug-induced inhibition of β-oxidation and the electron transport chain (ETC) can lead to increased production of reactive oxygen species (ROS) such as peroxynitrite (ONOO-). Therefore, it is reasonable to suspect that compared to a healthy liver, viscosity and ONOO- levels are elevated in livers during DIFLD. A novel, smart, dual-response fluorescent probe-Mito-VO-was designed and synthesized for the simultaneous detection of viscosity and ONOO- content. This probe had a large emission shift of 293 nm and was capable of monitoring the viscosity of, and the ONOO- content in, cell and animal models alike, either individually or simultaneously. For the first time, Mito-VO was successfully used to demonstrate the elevated viscosity and the amount of ONOO- in livers from mice with DIFLD.
Collapse
Affiliation(s)
- Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Qijuan Cao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tian Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
16
|
Liu X, Lei H, Hu Y, Fan X, Zhang Y, Xie L, Huang J, Cai Q. A turn-on fluorescent nanosensor for H 2S detection and imaging in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122739. [PMID: 37084684 DOI: 10.1016/j.saa.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 μM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China.
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Xinyao Fan
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qinuo Cai
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
17
|
Li W, Yin S, Shen Y, Li H, Yuan L, Zhang XB. Molecular Engineering of pH-Responsive NIR Oxazine Assemblies for Evoking Tumor Ferroptosis via Triggering Lysosomal Dysfunction. J Am Chem Soc 2023; 145:3736-3747. [PMID: 36730431 DOI: 10.1021/jacs.2c13222] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferroptosis, a newly discovered form of regulated cell death, is emerging as a promising approach to tumor therapy. However, the spatiotemporal control of cell-intrinsic Fenton chemistry to modulate tumor ferroptosis remains challenging. Here, we report an oxazine-based activatable molecular assembly (PTO-Biotin Nps), which is capable of triggering the lysosomal dysfunction-mediated Fenton pathway with excellent spatiotemporal resolution via near-infrared (NIR) light to evoke ferroptosis. In this system, a pH-responsive NIR photothermal oxazine molecule was designed and functionalized with a tumor-targeting hydrophilic biotin-poly(ethylene glycol) (PEG) chain to engineer well-defined nanostructured assemblies within a single-molecular framework. PTO-Biotin Nps possesses a selective tropism to lysosome accumulation inside tumor cells, accommodated by its enhanced photothermal activity in the acidic microenvironment. Upon NIR light activation, PTO-Biotin Nps promoted lysosomal dysfunction and induced cytosolic acidification and impaired autophagy. More importantly, photoactivation-mediated lysosomal dysfunction via PTO-Biotin Nps was found to markedly enhance cellular Fenton reactions and evoke ferroptosis, thereby improving antitumor efficacy and mitigating systemic side effects. Overall, our study demonstrates that the molecular engineering approach of pH-responsive photothermal oxazine assemblies enables the spatiotemporal modulation of the intrinsic ferroptosis mechanism, offering a novel strategy for the development of metal-free Fenton inducers in antitumor therapy.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shulu Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Liu Q, Yuan J, Jiang R, He L, Yang X, Yuan L, Cheng D. γ-Glutamyltransferase-Activatable Fluoro-Photoacoustic Reporter for Highly Sensitive Diagnosis of Acute Liver Injury and Tumor. Anal Chem 2023; 95:2062-2070. [PMID: 36633322 DOI: 10.1021/acs.analchem.2c04894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
γ-Glutamyltransferase (GGT) has been recognized as an important clinical biomarker that is closely related to many diseases. Visualizing the GGT fluctuation facilitates early disease-related diagnosis and therapy. Herein, an activated probe (NIR-GGT) for the imaging of GGT activity was prepared. The probe consists of a stable NIR fluorophore with the tunable amino group decorated with the γ-glutamate group as a GGT-sensing unit linked by a self-elimination group. NIR-GGT can sensitively recognize GGT and cause a strong turn-on fluorescent and photoacoustic signal. The up-regulation of the GGT expression in acetaminophen-induced acute liver injury was imaged using NIR-GGT. The probe can track changes in the GGT level in the early stages of drug-induced acute liver injury (DIALI) and its remedy process by fluorescent and photoacoustic dual-modality imaging with a high temporal-spatial resolution. NIR-GGT can also be used to differentiate between tumor and para-carcinowa tissues in vivo. The probe may be a potential tool for the diagnosis of early-stage DIALI and accurate tumor resection in the clinical field.
Collapse
Affiliation(s)
- Qian Liu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Dan Cheng
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
19
|
Wei X, Ji T, Zhang S, Xue Z, Lou C, Zhang M, Zhao S, Liu H, Guo X, Yang B, Chen J. Cerium-terephthalic acid metal-organic frameworks for ratiometric fluorescence detecting and scavenging·OH from fuel combustion gas. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129603. [PMID: 35872454 DOI: 10.1016/j.jhazmat.2022.129603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyl radical (•OH) in fuel combustion gas seriously damages human health. The techniques for simultaneously detecting and scavenging •OH in these gases are limited by poor thermal resistance. To meet this challenge, herein, metal organic frameworks (MOFs) with high thermal stability (80-400 °C) and dual function (•OH detection and elimination) are developed by coordinating Ce ions with terephthalic acid (TA) (Ce-BDC). Due to the reversible conversion between Ce3+ and Ce4+, and the high concentration of Ce3+ on the surface of Ce-BDC MOFs (89.6%), an •OH scavenging efficiency over 90% is realized. Ratiometric fluorescence (I440 nm/I355 nm) detection of •OH with a low detection limit of ∼4 μM is established by adopting Ce ions as an internal standard and TA as an •OH-responsive fluorophore. For real applications, the Ce-BDC MOFs demonstrate excellent •OH detection sensitivity and high •OH scavenging efficiency in gas produced from cigarettes, wood fiber and machine oil. Mouse model results show that the damage caused by •OH in cigarette smoke can be greatly reduced by Ce-BDC MOFs. This work provides a promising strategy for sensitively detecting and efficiently eliminating •OH in fuel combustion gas.
Collapse
Affiliation(s)
- Xue Wei
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Tingshuo Ji
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Zhen Xue
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Chenfang Lou
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Mengyu Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Sijing Zhao
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Huili Liu
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Xuming Guo
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China.
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China; Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou, Henan 450006, China.
| |
Collapse
|
20
|
Yu X, Ouyang W, Qiu H, Zhang Z, Wang Z, Xing B. Detection of Reactive Oxygen and Nitrogen Species by Upconversion Nanoparticle‐Based Near‐Infrared Nanoprobes: Recent Progress and Perspectives. Chemistry 2022; 28:e202201966. [DOI: 10.1002/chem.202201966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaokan Yu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Wenao Ouyang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Hao Qiu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhijun Zhang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing 10008 China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Chemistry Chemical Engineering & Biotechnology Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
21
|
Shang J, Zhang X, He Z, Shen S, Liu D, Shi W, Ma H. An Oxazine‐Based Fluorogenic Probe with Changeable π‐Conjugation to Eliminate False‐Positive Interference of Albumin and Its Application to Sensing Aminopeptidase N. Angew Chem Int Ed Engl 2022; 61:e202205043. [DOI: 10.1002/anie.202205043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jizhen Shang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies School of Life Sciences Huzhou University Zhejiang 313000 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shili Shen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022; 61:e202117229. [DOI: 10.1002/anie.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
23
|
Wang H, Fu T, Ai M, Liu J. Ratiometric fluorescence nanoprobe based on carbon dots and terephthalic acid for determining Fe 2+ in environmental samples. Anal Bioanal Chem 2022; 414:6735-6741. [PMID: 35864267 DOI: 10.1007/s00216-022-04233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
A ratiometric fluorescent nanoprobe using carbon dots (CDs) and involving oxidation of terephthalic acid (TPA) induced by hydroxyl radicals (·OH) was developed for sensitively and selectively determining Fe2+ ions. When Fe2+ ions are added to the TPA@CDs/H2O2 system, ·OH produced through the Fenton reaction oxidizes the non-fluorescent TPA to give 2-hydroxyl terephthalic acid, which fluoresces at 423 nm when excited at 286 nm. The ·OH and Fe3+ produced quench CD fluorescence at 326 nm. The 2-hydroxyl terephthalic acid to CD fluorescence intensity ratio linearly increased as the Fe2+ concentration increased in the range 0.5-50 μM, and the detection limit was 0.25 μM. The new assay is very selective because it involves dual-emission reverse change ratio fluorescence sensing, which can exclude matrix effects. The new nanoprobe was used to determine Fe2+ concentrations in real water samples, and the recoveries were found to be acceptable. Schematic of the ratiometric fluorometric method for determining Fe2+ based on CDs and TPA.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Ting Fu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
24
|
He Z, Liu D, Liu Y, Li X, Shi W, Ma H. Golgi-Targeted Fluorescent Probe for Imaging NO in Alzheimer's Disease. Anal Chem 2022; 94:10256-10262. [PMID: 35815650 DOI: 10.1021/acs.analchem.2c01885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a crucial neurotransmitter participating in many biological processes via nitrosylation reaction. NO produced in diverse subcellular regions also regulates the function of cells in different manners. A Golgi apparatus is rich in nitric oxide synthase and may serve as a potential therapeutic target for Alzheimer's disease (AD). However, due to the lack of an effective tool, it is difficult to reveal the relationship between Golgi-NO and AD. Herein, we report Golgi-NO as the first Golgi-targeted fluorescent probe for sensing and imaging NO in the Golgi apparatus. The probe is designed and synthesized by incorporating 4-sulfamoylphenylamide as a Golgi-targeted moiety to 6-carboxyrhodamine B, generating a fluorophore of Golgi-RhB with modifiable carboxyl, which is then combined with the NO recognition moiety of o-diaminobenzene. The probe shows superior analytical performance including accurate Golgi-targeted ability and high selectivity for NO. Moreover, using the probe, we disclose a significant increase of NO in Golgi apparatus in the AD model. This study provides a competent tool for studying the function and nitrosylation of NO in the Golgi apparatus in related diseases.
Collapse
Affiliation(s)
- Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
26
|
Ma H, Shang J, Zhang X, He Z, Shen S, Liu D, Shi W. An Oxazine‐Based Fluorogenic Probe with Changeable π‐conjugation to Eliminate False‐Positive Interference of Albumin and Its Application to Sensing Aminopeptidase N. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huimin Ma
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems No. 2, The 1st North Street, Zhongguancun 100190 Beijing CHINA
| | - Jizhen Shang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Xiaofan Zhang
- CAS Institute of Chemistry: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Zixu He
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Shili Shen
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Diankai Liu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Wen Shi
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| |
Collapse
|
27
|
Huang C, Sun Y, Zhao Y, Li J, Qu L, Yang R, Li Z. Visual Monitoring of Nucleic Acid Dynamic Structures during Cellular Ferroptosis Using Rationally Designed Carbon Dots with Robust Anti-Interference Ability to Reactive Oxygen Species. ACS APPLIED BIO MATERIALS 2022; 5:2703-2711. [PMID: 35648103 DOI: 10.1021/acsabm.2c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis triggered by an iron-dependent accumulation of lipid reactive oxygen species (ROS) has drawn widespread attention. Directly visualizing the dynamic structures of nucleic acids during the ferroptosis of cells is of great importance considering their vital roles in numerous biological functions. However, direct imaging remains challenging, largely due to the extremely high concentrations of ROS generated during ferroptosis, which can affect the imaging of nucleic acid targeted fluorescent probes. To overcome this challenge, nucleic acid-responsive carbon dots (CDs) providing favorable optical properties together with high chemical stability were synthesized. Furthermore, the CDs penetrated the cell membrane quickly and accumulated in the nuclei of cells. The robust anti-interference ability to ROS allows the CDs to visualize the dynamic structures of nucleic acids during ferroptosis. Moreover, the CDs were successfully employed in the imaging of nucleic acids during cell division. The nuclei-targeting CDs show great potential as a powerful tool for imaging nuclei in ferroptosis-related biological and clinical research.
Collapse
Affiliation(s)
- Changsheng Huang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yanmin Zhao
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jinquan Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry, Zhengzhou 450000, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Gong Y, Yang M, Lv J, Li H, Gao J, Zeli Y. A 1,2‐Dioxetane‐Based Chemiluminescent Probe for Highly Selective and Sensitive Detection of Superoxide Anions In Vitro and In Vivo. Chempluschem 2022; 87:e202200054. [PMID: 35384394 DOI: 10.1002/cplu.202200054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mingyan Yang
- Zunyi Medical University School of Pharmacy CHINA
| | - Jiajia Lv
- Zunyi Medical University School of Pharmacy CHINA
| | - Hongyu Li
- Zunyi Medical University School of Pharmacy CHINA
| | - Jie Gao
- Zunyi Medical University School of Pharmacy CHINA
| | - Yuan Zeli
- Zunyi Medical University School of Pharmacy No.6 West Xuefu RoadXinpu District 563000 Zunyi CHINA
| |
Collapse
|
29
|
Zhang L, Jiang FL, Guo QL, Liu Y, Jiang P. pH-Sensitive Bioprobe for Multichannel Mitochondrial Imaging and Photodynamic Therapy. Anal Chem 2022; 94:4126-4133. [PMID: 35220719 DOI: 10.1021/acs.analchem.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor targeting therapy and photodynamic therapy are effective anti-cancer therapies. Their research progress has attracted wide attention and is one of the focuses of anti-cancer drug research and development. The design and synthesis of multifunctional organic phototheranostic agents for superior image-guided diagnosis and phototherapy play an increasingly positive role in cancer diagnosis and treatment. Herein, F16M and CyM were obtained through functional design from cyanine and F16. Physicochemical characterization and biological application results showed that CyM is a multifunctional organic biological probe, which can realize intracellular multichannel (green, yellow, red, and NIR) imaging, pH detection, and mitochondrial-targeted photodynamic therapy. As an organic phototheranostic agent, it could not only realize near-infrared imaging and photodynamic therapy in vivo and in vitro but also has excellent biocompatibility and good guiding significance for the development of multichannel imaging and mitochondrial-targeting photodynamic therapy.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing-Lian Guo
- Zhongnan Hospital, Wuhan University, Wuhan 430071, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
30
|
Zhang L, Li HM, Chen JL, She WY, Zhao Y, Liu Y, Jiang FL, Liu Y, Jiang P. Multifunctional Probes with High Utilization Rates: Self-Assembled Merocyanine Nanoparticles in Water as Acid-Base Indicators and Mitochondrion-Targeting Chemotherapeutic Agents. J Phys Chem Lett 2022; 13:1090-1098. [PMID: 35080405 DOI: 10.1021/acs.jpclett.1c04092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multifunctional probes with high utilization rates have great value in practical applications in various fields such as cancer diagnosis and therapy. Here we have synthesized two organic molecules based on merocyanine. They can self-assemble in water to form ∼1.5 nm nanoparticles. Both of them have good application potential in fluorescent anticounterfeit printing ink and pH detection. More importantly, they have excellent mitochondrial targeting ability, intracellular red light and near-infrared dual-channel imaging ability, strong antiphotobleaching ability, and in vivo and in vitro near-infrared imaging capabilities, showing superior chemotherapy capabilities and biocompatibility in the 4T1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Hai-Mei Li
- Institute of Advanced Materials and Nanotechnology and Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Ji-Lei Chen
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Yan She
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yang Liu
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- Institute of Advanced Materials and Nanotechnology and Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Peng Jiang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
31
|
Ning J, Tian Z, Wang J, Wang B, Tian X, Yu Z, Huo X, Feng L, Cui J, James TD, Ma X. Rational Design of a Two‐Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanism‐Based Inactivation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ning
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhenhao Tian
- School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China
| | - Jiayue Wang
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
- Department of Pharmacy Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Bo Wang
- School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xiangge Tian
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhenlong Yu
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Xiaokui Huo
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Tony D. James
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Department of Chemistry University of Bath Bath BA2 7AY United Kingdom
| | - Xiaochi Ma
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| |
Collapse
|
32
|
Ning J, Tian Z, Wang J, Wang B, Tian X, Yu Z, Huo X, Feng L, Cui J, James TD, Ma X. Rational Design of a Two-Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanism-Based Inactivation. Angew Chem Int Ed Engl 2022; 61:e202113191. [PMID: 34851011 DOI: 10.1002/anie.202113191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Mechanism-based inactivation (MBI) can mediate adverse reactions and hepatotoxicity from drugs, which is a result of their conversion into highly reactive metabolites catalyzed by enzymes such as cytochrome P450 3A (CYP3A). In the present research, we optimized the key interaction domain of the fluorophore with the target protein to develop a two-photon fluorescent probe for CYP3A that is involved in the metabolism of more than half of all clinical drugs. The developed BN-1 probe exhibited appropriate selectivity and sensitivity for the semi-quantitative detection and imaging of endogenous CYP3A activity in various living systems, thereby providing a high-throughput screening system enabling evaluation of MBI-associated hepatotoxicity by CYP3A. Using BN-1 as a fluorescent molecular tool facilitates the efficient discovery and characterization of CYP3A-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangge Tian
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenlong Yu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaokui Huo
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
33
|
Wang S, Zhang L, Luo Y, Bai Y, Huang Y, Zhao S. A Circular Dichroism and Photoacoustic Dual-Mode Probe for Detection In Vitro and Imaging In Vivo of Hydroxyl Radicals. Anal Chem 2022; 94:2453-2464. [DOI: 10.1021/acs.analchem.1c04237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yulong Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
34
|
Chen L, Wu X, Yu H, Wu L, Wang Q, Zhang J, Liu X, Li Z, Yang XF. An Edaravone-Guided Design of a Rhodamine-Based Turn-on Fluorescent Probe for Detecting Hydroxyl Radicals in Living Systems. Anal Chem 2021; 93:14343-14350. [PMID: 34643369 DOI: 10.1021/acs.analchem.1c03877] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hydroxyl radical (·OH), one of the reactive oxygen species (ROS) in biosystems, is found to be involved in many physiological and pathological processes. However, specifically detecting endogenous ·OH remains an outstanding challenge owing to the high reactivity and short lifetime of this radical. Herein, inspired by the scavenging mechanism of a neuroprotective drug edaravone toward ·OH, we developed a new ·OH-specific fluorescent probe RH-EDA. RH-EDA is a hybrid of rhodamine and edaravone and exploits a ·OH-specific 3-methyl-pyrazolone moiety to control its fluorescence behavior. RH-EDA itself is almost nonfluorescent in physiological conditions, which was attributed to the formation of a twisted intramolecular charge transfer (TICT) state upon photoexcitation and the acylation of its rhodamine nitrogen at the 3' position. However, upon a treatment with ·OH, its edaravone subunit was converted to the corresponding 2-oxo-3-(phenylhydrazono)-butanoic acid (OPB) derivative (to afford RH-OPB), thus leading to a significant fluorescence increase (ca. 195-fold). RH-EDA shows a high sensitivity and selectivity to ·OH without interference from other ROS. RH-EDA has been utilized for imaging endogenous ·OH production in living cells and zebrafishes under different stimuli. Moreover, RH-EDA allows a high-contrast discrimination of cancer cells from normal ones by monitoring their different ·OH levels upon stimulation with β-Lapachone (β-Lap), an effective ROS-generating anticancer therapeutic agent. The present study provides a promising methodology for the construction of probes through a drug-guided approach.
Collapse
Affiliation(s)
- Liqin Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xia Wu
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Hanjie Yu
- College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Lei Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Qin Wang
- School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, P. R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Zheng Li
- College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
35
|
Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun 2021; 12:6145. [PMID: 34686685 PMCID: PMC8536768 DOI: 10.1038/s41467-021-26380-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor response to radiotherapy or ferroptosis is closely related to hydroxyl radical (•OH) production. Noninvasive imaging of •OH fluctuation in tumors can allow early monitoring of response to therapy, but is challenging. Here, we report the optimization of a diene electrochromic material (1-Br-Et) as a •OH-responsive chromophore, and use it to develop a near-infrared ratiometric fluorescent and photoacoustic (FL/PA) bimodal probe for in vivo imaging of •OH. The probe displays a large FL ratio between 780 and 1113 nm (FL780/FL1113), but a small PA ratio between 755 and 905 nm (PA755/PA905). Oxidation of 1-Br-Et by •OH decreases the FL780/FL1113 while concurrently increasing the PA755/PA905, allowing the reliable monitoring of •OH production in tumors undergoing erastin-induced ferroptosis or radiotherapy. The hydroxyl radical is generated during radiotherapy and ferroptosis and accurate imaging of this reactive oxygen species may permit the monitoring of response to therapy. Here, the authors develop a ratiometric probe for accurate imaging of hydroxyl radical generation in vivo.
Collapse
|
36
|
Zhou Y, Dong H, Gu Z, Yang S, Ouyang M, Qing Z, Ma X, Hu S, Li J, Yang R. Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage. Anal Chem 2021; 93:12944-12953. [PMID: 34523923 DOI: 10.1021/acs.analchem.1c02412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For sensing low abundance of biomarkers, utilizing nanocarriers to load dyes is an efficient method to amplify the detected signal. However, the non-specific leak of the internal dyes in this approach is accompanied by false positive signals, resulting in inaccurate signal acquirement. To address this issue, in this work, we reported a novel signal amplification strategy with dye as a scaffold to construct a self-immolative dye-doped polymeric probe (SDPP). In our proposed approach, the dyes were covalently integrated into the main chain of a polymer, which can avoid the non-specific leak of the dye when used in a rigorous biological environment, thus evading the false positive signal. As a prototype of this concept, a SDPP, which responds to hydroxyl radicals (•OH), was rationally fabricated. Upon being activated by •OH, SDPP will liberate the dye through a self-immolative reaction to bind with protein for amplifying the fluorescence signal. Compared with a dye-loaded nanoprobe, SDPP can precisely track intracellular basal •OH levels and visualize the •OH associated with myocarditis in vivo. More importantly, the attempt in this work not only provides an effective molecular tool to investigate the role of •OH in cardiopathy, but also puts forward a new direction to current signal-amplifying strategies for precisely and reliably acquiring the intracellular molecular information.
Collapse
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hao Dong
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhengxuan Gu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Minzhi Ouyang
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha 410011, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaofei Ma
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Shan Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - JunBin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
37
|
Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. NANO LETTERS 2021; 21:7569-7578. [PMID: 34472343 DOI: 10.1021/acs.nanolett.1c02073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective amplification of reactive oxygen species (ROS) generation in tumor cells has been recognized as an effective strategy for cancer therapy. However, an abnormal tumor metabolism, especially the mitochondrial glutaminolysis, could promote tumor cells to generate high levels of antioxidants (e.g., glutathione) to evade ROS-induced damage. Here, we developed a tumor-targeted nanoparticle (NP) platform for effective breast cancer therapy via combining inhibition of mitochondrial glutaminolysis and chemodynamic therapy (CDT). This NP platform is composed of bovine serum albumin (BSA), ferrocene, and purpurin. After surface decoration with a tumor-targeting aptamer and then intravenous administration, this NP platform could target tumor cells and release ferrocene to catalyze hydrogen peroxide (H2O2) into the hydroxyl radical (·OH) for CDT. More importantly, purpurin could inhibit mitochondrial glutaminolysis to concurrently prevent the nutrient supply for tumor cells and disrupt intracellular redox homeostasis for enhanced CDT, ultimately leading to the combinational inhibition of tumor growth.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
38
|
Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia‐Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
39
|
Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia-Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021; 60:9553-9561. [PMID: 33569863 DOI: 10.1002/anie.202017349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Photocaging holds promise for the precise manipulation of biological events in space and time. However, current near-infrared (NIR) photocages are oxygen-dependent for their photolysis and lack of timely feedback regulation, which has proven to be the major bottleneck for targeted therapy. Herein, we present a hypoxia-dependent photo-activation mechanism of dialkylamine-substituted cyanine (Cy-NH) accompanied by emissive fragments generation, which was validated with retrosynthesis and spectral analysis. For the first time, we have realized the orthogonal manipulation of this hypoxia-dependent photocaging and dual-modal optical signals in living cells and tumor-bearing mice, making a breakthrough in the direct spatiotemporal control and in vivo feedback regulation. This unique photoactivation mechanism overcomes the limitation of hypoxia, which allows site-specific remote control for targeted therapy, and expands the photo-trigger toolbox for on-demand drug release, especially in a physiological context with dual-mode optical imaging under hypoxia.
Collapse
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
40
|
Zhang L, Wang JL, Ba XX, Hua SY, Jiang P, Jiang FL, Liu Y. Multifunction in One Molecule: Mitochondrial Imaging and Photothermal & Photodynamic Cytotoxicity of Fast-Response Near-Infrared Fluorescent Probes with Aggregation-Induced Emission Characteristics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7945-7954. [PMID: 33588525 DOI: 10.1021/acsami.0c20283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
HJS and DHJS, two near-infrared emissive and mitochondria-targeted therapy probes, have been designed. They exhibited photothermal & photodynamic cytotoxicity and aggregation-induced emission (AIE) characteristics. Interestingly, we could receive fluorescence immediately after adding the probes without washing in 1 min. They could quickly enter cancer cells and selectively localized to the mitochondria firstly. When the concentration of probes was low (<5 μM), they could respond sensitively to the mitochondrial membrane potential and would selectively enter the mitochondria with red fluorescence. However, when the concentration was high (≥5 μM), they would preferentially enter the mitochondria and have the property of dual-channel fluorescence imaging (red and near-infrared) even after 24 h. What's more, they increased the intracellular reactive oxygen species (ROS) levels, decreased the mitochondrial membrane potentials, and then induced apoptosis, which were proved by confocal imaging and flow cytometry experiments. In addition, the results of photothermal experiment and cytotoxicity test showed that the probes had good photothermal and photodynamic toxicity to cancer cells. In vitro and in vivo experiments also proved the excellent near-infrared (NIR) imaging ability, good biocompatibility and certain inhibition of tumor growth ability of DHJS.
Collapse
Affiliation(s)
- Lu Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiang-Lin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Xu Ba
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Yu Hua
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- Institute of Advanced Materials and Nanotechnology & Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
41
|
Zhang Y, Yang J, Meng T, Qin Y, Li T, Fu J, Yin J. Nitric oxide-donating and reactive oxygen species-responsive prochelators based on 8-hydroxyquinoline as anticancer agents. Eur J Med Chem 2021; 212:113153. [PMID: 33453603 DOI: 10.1016/j.ejmech.2021.113153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
Metal ion chelators based on 8-hydroxyquinoline (8-HQ) have been widely explored for the treatment of many diseases. When aimed at being developed into potent anticancer agent, a largely unmet issue is how to avoid nonspecific chelation of metal ions by 8-HQ in normal cells or tissues. In the current work, a two-step strategy was employed to both enhance the anticancer activity of 8-HQ and improve its cancer cell specificity. Considering the well-known anticancer activity of nitric oxide (NO), NO donor furoxan was first connected to 8-HQ to construct HQ-NO conjugates. These conjugates were screened for their cytotoxicity, metal-binding ability, and NO-releasing efficiency. Selected conjugates were further modified with a ROS-responsive moiety to afford prochelators. Among all the target compounds, prodrug HQ-NO-11 was found to potently inhibit the proliferation of many cancer cells but not normal cells. The abilities of metal chelation and NO generation by HQ-NO-11 were confirmed by various methods and were demonstrated to be essential for the anticancer activity of HQ-NO-11. In vivo studies revealed that HQ-NO-11 inhibited the growth of SW1990 xenograft to a larger extent than 8-HQ. Our results showcase a general method for designing novel 8-HQ derivatives and shed light on obtaining more controllable metal chelators.
Collapse
Affiliation(s)
- Yuxia Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jiaxin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Tingting Meng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
42
|
Nan Y, Gu Y, Zhou Q, Zhao W, Zhang J. Ultra-low background signaling cascade amplifiers for in vivo fluorescence imaging of hydroxyl radical production induced by testosterone. NEW J CHEM 2021. [DOI: 10.1039/d1nj02772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ultra-low background signal cascade amplifier was developed to understand the production mechanism of ˙OH pools in situ stimulated by testosterone.
Collapse
Affiliation(s)
- Yanxia Nan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Gu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiulan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenjie Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
43
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
44
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
45
|
|
46
|
Hou JT, Zhang M, Liu Y, Ma X, Duan R, Cao X, Yuan F, Liao YX, Wang S, Xiu Ren W. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: A review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
MEN Y, ZHOU X, YAN Z, NIU L, LUO Y, WANG J, WANG J. A Water-soluble Near-infrared Fluorescent Probe for Cysteine/Homocysteine and Its Application in Live Cells and Mice. ANAL SCI 2020; 36:1053-1057. [DOI: 10.2116/analsci.20p016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuhui MEN
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Xiaomin ZHOU
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Zhijie YAN
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Linqiang NIU
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Yang LUO
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Jiamin WANG
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| | - Jianhong WANG
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University
| |
Collapse
|
48
|
Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed Engl 2020; 59:21143-21150. [DOI: 10.1002/anie.202009380] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Yiyu Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Guang Tan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dechao Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai 200237 China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
49
|
Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yiyu Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Guang Tan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dechao Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai 200237 China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
50
|
Fu Q, Li H, Duan D, Wang C, Shen S, Ma H, Liu Z. External‐Radiation‐Induced Local Hydroxylation Enables Remote Release of Functional Molecules in Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qunfeng Fu
- College of Chemistry and Molecular Engineering Peking University Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences Beijing 100871 China
| | - Hongyu Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Dongban Duan
- College of Chemistry and Molecular Engineering Peking University Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences Beijing 100871 China
| | - Changlun Wang
- College of Chemistry and Molecular Engineering Peking University Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences Beijing 100871 China
| | - Siyong Shen
- College of Chemistry and Molecular Engineering Peking University Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences Beijing 100871 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering Peking University Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences Beijing 100871 China
- Peking University-Tsinghua University Center for Life Sciences Beijing 100871 China
| |
Collapse
|