1
|
Liu Q, Jiang ZC, Jiang X, Zhao J, Zhang Y, Liu Y, Hou JB, Xiao YY, Pu W, Zhao Y. Dynamic Liquid Crystal Elastomers for Body Heat- and Sunlight- Driven Self-Sustaining Motion via Material-Structure Synergy. Angew Chem Int Ed Engl 2025; 64:e202500527. [PMID: 39982173 DOI: 10.1002/anie.202500527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/22/2025]
Abstract
Self-sustained actuators powered by natural, low-energy sources based on liquid crystal elastomers (LCEs) are attractive as they offer high safety, abundant energy availability, and practicality in applications. However, achieving stable self-sustaining motion with low-energy sources requires high actuation strain rates within a narrow temperature range near ambient conditions - a great challenge as LCEs with low nematic-to-isotropic transition temperatures (Tni) generally exhibit reduced actuation strain and strain rates. To address this, we synthesized a carbon nanotube-doped LCE with a low Tni and reversible Diels-Alder crosslinks, termed DALCE, and readily (re)fabricated it into specific structures (e.g., twisted-and-coiled or bimorph shapes). By leveraging material-structure synergy, we achieved both low Tni and high actuation strain rates, enabling self-rolling, self-breathing and autonomous twisting-untwisting movements powered by ambient/body temperature or natural sunlight. This low-energy, self-sustained actuator design opens new possibilities for LCE-based biomedical applications and naturally powered automatic devices.
Collapse
Affiliation(s)
- Qing Liu
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhi-Chao Jiang
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xue Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing Zhao
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Zhang
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yue Liu
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jun-Bo Hou
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yao-Yu Xiao
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Pu
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| |
Collapse
|
2
|
Zhu Y, Huang J, Mi H, Xu Z, Ai Y, Gong S, Li C, Wang M, Chen L. Intrinsically Photothermal-Driven and Reconfigurable Liquid Crystal Elastomer Actuators Enabled by Multifunctional Dynamic Covalent Organic Photothermal Molecules. Angew Chem Int Ed Engl 2025; 64:e202421915. [PMID: 39895387 DOI: 10.1002/anie.202421915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/04/2025]
Abstract
Intrinsically photothermal-responsive soft actuators possessing reconfigurability have attracted great attention due to their ability to change their actuation mode to satisfy diverse practical applications. However, challenges remain in designing and fabricating organic photothermal molecules featuring polymerizable or cross-linkable groups, especially those with multifunctional properties. Here, a novel class of versatile light-driven reconfigurable liquid crystal elastomer (LCE) materials, denoted as PUOLCE, has been developed. The multifunctional dynamic covalent organic photothermal molecules, serving as chain extenders, photothermal agents, and dynamic covalent bond precursors, are chemically bonded into LCEs, thereby endowing the LCEs with photothermal-responsiveness and dynamic properties. The intrinsic photothermal effect of PUOLCE allows the exchange reaction of dynamic oxime-carbamate bonds to undergo rapid welding under near-infrared (NIR) light. Leveraging the NIR-assisted welding strategy, the PUOLCE-based building units are capable of assembling into various complex actuators with new deformation modes. Besides, the assembled actuators can be easily reconfigured to perform different mechanical tasks (e.g., flower blooming, grasping objects, and elevating objects) under NIR illumination. Furthermore, the PUOLCE actuators can be controlled globally or locally for light-driven locomotion by controlling the area exposed to the NIR irradiation. This work provides insights into the development of adaptive soft actuators with tunable shape-morphing capabilities.
Collapse
Affiliation(s)
- Yangyang Zhu
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Jiaxiang Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | | | - Zhentian Xu
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Sihui Gong
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | | | - Meng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lie Chen
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
3
|
Chen Q, Huang J, Feng X, Xie H, Zhou S. Controlling Self-Oscillation of a Single-Layer Liquid Crystal Elastomer at the Air-Water Interface via Light Programming for Water Strider-Inspired Aquatic Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17433-17444. [PMID: 40042360 DOI: 10.1021/acsami.5c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Biomimicking aquatic organisms offers many opportunities for designing intelligent robots that can freely move on water. However, most works were focused on multilayered materials or assembled structures and faced limitations in stability, versatility, and motion navigation. Here, we develop an assembly-free water-strider-like aquatic robot using a single layer of light-programmable liquid-crystal elastomer (LCE) that could be used to create asymmetric structures. The LCE strider mimics both the shape and functions of natural water striders; it is designed with four legs, with the fore and hind legs being programmed respectively via light. Consequently, the LCE strider shows self-oscillation and self-propulsion behaviors on low-grade thermal water with a temperature gradient at the air-water interface, owing to unbalanced changes in the contact areas and tensions between the legs and water. Furthermore, the trajectories of the LCE strider are manipulated by NIR light after selectively depositing polydopamine with photothermal conversion. In this way, path navigation is realized, that is, moving straight and on-demand turning, similar to the movement of natural water striders. This study should inspire the development of soft intelligent robots using shape-morphing materials.
Collapse
Affiliation(s)
- Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinran Feng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
4
|
He J, Huang P, Li B, Xing Y, Wu Z, Lee TC, Liu L. Untethered Soft Robots Based on 1D and 2D Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413648. [PMID: 39838723 DOI: 10.1002/adma.202413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials. First, the performance of soft actuators designed with different structures is compared. Then, the development of basic locomotion forms, including crawling, jumping, swimming, rolling, gripping, and multimodal, mimicking biological motion mechanisms under dynamic stimuli, is discussed. Subsequently, various self-sustained movements based on imbalance mechanisms under static stimuli are introduced, including light tracking, self-oscillating, self-crawling, self-rolling, and flying. Following that, the progress in soft actuators integrated with additional functionalities such as sensing, energy harvesting, and storage is summarized. Finally, the challenges faced in this field and the prospects for future development are discussed.
Collapse
Affiliation(s)
- Jingwen He
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London (UCL), London, WC1H 0AJ, UK
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Wang Z, Si M, Han J, Shen Y, Yin G, Yin K, Xiao P, Chen T. Hydrogen-Bonded Supramolecular Network Enabled Gentle Reprogramming of Liquid Crystal Elastomer toward Evolutionary Robot. Angew Chem Int Ed Engl 2025; 64:e202416095. [PMID: 39419761 DOI: 10.1002/anie.202416095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
In nature, many organisms augment chances of survival by reprogramming their structures to evolving environment, among which sea squirts being a prime example. Such reprogramming has been demonstrated in liquid crystal elastomer (LCE) actuator assembled with heat assistance. However, the required temperature being higher than the actuation temperature limits its application. Here, we reported a hydrogen-bonded supramolecular network LCE to construct soft modular and reprogrammable actuator by assembling with a gentle heat treatment. Leveraging the Michael addition reaction, we introduced hydrogen bonding to the LCE matrix with functionalized pyridine monomers. Experimental and molecular dynamics modeling proved the efficient dynamic hydrogen bond exchange at 60 °C, significantly lower than the actuating temperature of the LCE. This gave rise to the reversible and robust adhesion of the same collection of LCE modules capable of being built into different bilayers and performing various morphing upon a short thermal stimulation. Therefore, we demonstrated that these comparatively weak cross-links enabled reconfiguration of the LCE actuator. With the developed hydrogen-bonding LCEs, we built proof-of-concept modular reprogrammable robot, performing crawling, sailing, and microcircuit repair tasks. This bioinspired and efficient method for evolutionary LCE robot offers a viable path for further development of intelligent actuators sustainable in complex environments.
Collapse
Affiliation(s)
- Zhenxing Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Muqing Si
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ying Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangqiang Yin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Kaiyang Yin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
6
|
Xu L, Zhang S, Yin L, Zhao Y. Humidity-Sensing and Moisture-Steering Liquid Crystal Elastomer Actuator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412547. [PMID: 39737734 PMCID: PMC11840466 DOI: 10.1002/smll.202412547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 01/01/2025]
Abstract
A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color. This humidity-dependent color change is fast, because surface protonation of the actuator is enough. The initial color and the sensitivity to humidity variation are determined by the extent of acid protonation, and the reversible color changes are distinguishable by the naked eye over a wide humidity range. The humidity sensing of LCE actuator in motion is demonstrated using thermally driven rolling rod actuators. Moreover, through spatial-selective exposure of the rolling rod actuator to water mist, the moisture can act as a stimulus to change or reverse the rolling direction and reduce the rolling speed. The achieved nature-inspired colorimetric humidity sensing capability represents an intelligent function for LCE actuators and may widen their application scope.
Collapse
Affiliation(s)
- Long Xu
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Shaoxia Zhang
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Lu Yin
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Yue Zhao
- Département de chimieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| |
Collapse
|
7
|
Zhang Y, Wang T, Wang F, Li X, Ma H, Sun Y. Sunlight-Drivable Composite Film Using Carbon Nanopowder-doped PVDF and Liquid Crystal Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5352-5359. [PMID: 39723939 DOI: 10.1021/acsami.4c17962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials. In this paper, we present a composite film fabricated using poly(vinylidene fluoride) doped with carbon nanopowders (PC) as a photothermal conversion material combined with a hybrid-alignment liquid crystal polymer network film. Under the midday sun during summer, the composite film is heated from room temperature to 74.5 °C quickly, resulting in a substantial angle change of 235°. Additionally, the actuators fabricated by this composite film can demonstrate phototactic and light-avoiding rolling behaviors. This sunlight-drivable composite film shows considerable promise for the research and development of bionic devices powered by natural light.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Tianxiong Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Feifei Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
8
|
Liu J, Yu X, Yu Z, Niu J, Zhao N, Shao S, Jia P, Wang J. Multiphase Janus Azobenzene Inverse Opal Membrane toward On-Demand Photocontrolled Motion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2041-2047. [PMID: 39693215 DOI: 10.1021/acsami.4c18563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Azobenzene actuators have generated extensive research investment in the field of soft robots, artificial muscles, etc., based on the typical photoresponsive trans-cis isomerization. However, it remains challenging to achieve multiphase actuation at the gas-liquid interface and liquid phase. To solve these problems, this paper demonstrated a simple fabrication method of a Janus azobenzene inverse opal membrane with one side having a polydomain azobenzene inverse opal structure and the other side having a monodomain bulk azobenzene polymer. The introduction of an inverse opal structure increases the interaction area between the liquid and polymer network. The proposed design can freely swim in any direction at the air-liquid interface based on the Marangoni effect or move forward in the liquid phase based on bubble propulsion under UV irradiation. This work is of great significance for the design and fabrication of multiphase photo actuators.
Collapse
Affiliation(s)
- Junchao Liu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaojiao Yu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Zhong Yu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Jinfen Niu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Ningning Zhao
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Songtao Shao
- School of Mathematics and Data Science, Shaanxi University of Science Technology,, Xi'an Wei-yang University Park, Xi'an710021, China
| | - Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jingxia Wang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Xue S, Shi Z, Wang Z, Tan H, Gao F, Zhang Z, Ye Z, Nian S, Han T, Zhang J, Zhao Z, Tang BZ, Zhang Q. Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide. Nat Commun 2024; 15:10084. [PMID: 39572542 PMCID: PMC11582805 DOI: 10.1038/s41467-024-54386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films. Then the fluorescent robust photoactuators with single-layered janus structure were directly obtained via UV assisted photo-crosslinking of the films, exhibiting reversible response driven by a pronounced mismatch in expansion between the front and back sides of the films. Achieving selective, non-uniform spatial distribution within the PI films, rapid and reversible complex morphing of the actuators, along with the capabilities for encrypting, reading, and erasing fluorescent information-all through the use of a single UV light source-becomes straightforward. The robust mechanical property and driving ability of these actuators enable the conversion of light energy into obvious motion even under heavy loads and the leaping through the storage and release of energy, ensuring their potential for practical applications that require durability and reliability.
Collapse
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zhipanxin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zaiyu Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Shifeng Nian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Zhang X, Aziz S, Salahuddin B, Zhu Z. Bioinspired Hydro- and Hydrothermally Responsive Tubular Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59202-59215. [PMID: 39435866 DOI: 10.1021/acsami.4c11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Soft actuators made of thermoresponsive polymers have great potential for intelligent robotics and biomedical devices due to their reversible deformation capability in response to temperature fluctuations. However, they are constrained by a predefined phase transition temperature, limited directional deformation, and nonbiocompatible formulations, thereby restricting their practical utility. Herein a new biomimicry approach is presented to overcome these limitations by developing hydro- and hydrothermally responsive soft actuators made of biocompatible and pliable materials i.e. cotton yarn and polyurethane. We mimic the tubular shape of elephant trunks with their unique muscle orientation by embedding a helical cotton yarn within a hydrophilic polyurethane tube, followed by targeted surface patterning. Unlike the narrow-range shape morphing across the phase transition temperature boundary of typical thermoresponsive hydrogel actuators, we harness hydrothermal stiffness variations in polyurethane to obtain consistent morphing capabilities over a much wider temperature range. The developed actuators can perform versatile activities such as linear, bending, curvilinear, and rotating movements, overcoming the unidirectional motion limitations of conventional soft actuators. The cell viability assay on the building block materials also confirms the high biocompatibility of the actuators. The reported facile fabrication strategy provides new insights for designing complex yet free-standing soft actuators from readily available supple materials.
Collapse
Affiliation(s)
- Xi Zhang
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
He C, Xiao Y, Wang S, Lu H, Li X, Xu L, Wang C, Tu Y. Main-Chain Azobenzene Poly(ether ester) Multiblock Copolymers for Strong and Tough Light-Driven Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56469-56480. [PMID: 39382379 DOI: 10.1021/acsami.4c13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The stimulus-responsive polymeric materials have attracted great research interest, especially those remotely manipulated materials with potential applications in actuators and soft robotics. Here we report a photoresponsive main-chain actuator based on azobenzene poly(ether ester) multiblock copolymer (mBCP) thermoplastic elastomers, (PTAD-b-PTMO-b-PTAD)n, which were synthesized by a cascade polycondensation-coupling ring-opening polymerization method using poly(tetramethylene oxide) (PTMO) and azobenzene-containing cyclic oligoesters (COTADs) as monomers. The thermal, mechanical, and microphase separation behaviors of mBCPs could be flexibly tuned by altering the ratios of soft-to-hard segments and block number (n). The oriented azobenzene mBCP fibers were prepared by melt spinning, showing reversible photoresponsive properties with remarkably high strength (∼1000 MPa) and high elongation at break comparable to spider silks. Fast photoinduced bending and contraction were successfully achieved in these fibers with high work and power densities and energy conversion efficiency, enabling it to lift up about 250 times of its own weight. Moreover, it can take out materials inside the tube by UV-light control. These fibers could be applied in light-driven actuators or telecontrolled robot arms.
Collapse
Affiliation(s)
- Chong He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Beijing Yanshan Petrochemical High-Tech Company, Ltd., Beijing 102500, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sheng Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lin Xu
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Company, Ltd., Yanshan Branch, Beijing 102500, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Company, Ltd., Yanshan Branch, Beijing 102500, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Zhou X, Chen G, Jin B, Feng H, Chen Z, Fang M, Yang B, Xiao R, Xie T, Zheng N. Multimodal Autonomous Locomotion of Liquid Crystal Elastomer Soft Robot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402358. [PMID: 38520731 PMCID: PMC11187929 DOI: 10.1002/advs.202402358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Self-oscillation phenomena observed in nature serve as extraordinary inspiration for designing synthetic autonomous moving systems. Converting self-oscillation into designable self-sustained locomotion can lead to a new generation of soft robots that require minimal/no external control. However, such locomotion is typically constrained to a single mode dictated by the constant surrounding environment. In this study, a liquid crystal elastomer (LCE) robot capable of achieving self-sustained multimodal locomotion, with the specific motion mode being controlled via substrate adhesion or remote light stimulation is presented. Specifically, the LCE is mechanically trained to undergo repeated snapping actions to ensure its self-sustained rolling motion in a constant gradient thermal field atop a hotplate. By further fine-tuning the substrate adhesion, the LCE robot exhibits reversible transitions between rolling and jumping modes. In addition, the rolling motion can be manipulated in real time through light stimulation to perform other diverse motions including turning, decelerating, stopping, backing up, and steering around complex obstacles. The principle of introducing an on-demand gate control offers a new venue for designing future autonomous soft robots.
Collapse
Affiliation(s)
- Xiaorui Zhou
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Guancong Chen
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Binjie Jin
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Haijun Feng
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Zike Chen
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceDepartment of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Mengqi Fang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Bo Yang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceDepartment of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Tao Xie
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Ning Zheng
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
13
|
Sun Y, Men Y, Liu S, Wang X, Li C. Liquid crystalline elastomer self-oscillating fiber actuators fabricated from soft tubular molds. SOFT MATTER 2024; 20:4246-4256. [PMID: 38747973 DOI: 10.1039/d4sm00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.
Collapse
Affiliation(s)
- Yuying Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanli Men
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Shiyu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
14
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Wu L, Huang X, Wang M, Chen J, Chang J, Zhang H, Zhang X, Conn A, Rossiter J, Birchall M, Song W. Tunable Light-Responsive Polyurethane-urea Elastomer Driven by Photochemical and Photothermal Coupling Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19480-19495. [PMID: 38581369 DOI: 10.1021/acsami.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Light-driven soft actuators based on photoresponsive materials can be used to mimic biological motion, such as hand movements, without involving rigid or bulky electromechanical actuations. However, to our knowledge, no robust photoresponsive material with desireable mechanical and biological properties and relatively simple manufacture exists for robotics and biomedical applications. Herein, we report a new visible-light-responsive thermoplastic elastomer synthesized by introducing photoswitchable moieties (i.e., azobenzene derivatives) into the main chain of poly(ε-caprolactone) based polyurethane urea (PAzo). A PAzo elastomer exhibits controllable light-driven stiffness softening due to its unique nanophase structure in response to light, while possessing excellent hyperelasticity (stretchability of 575.2%, elastic modulus of 17.6 MPa, and strength of 44.0 MPa). A bilayer actuator consisting of PAzo and polyimide films is developed, demonstrating tunable bending modes by varying incident light intensities. Actuation mechanism via photothermal and photochemical coupling effects of a soft-hard nanophase is demonstrated through both experimental and theoretical analyses. We demonstrate an exemplar application of visible-light-controlled soft "fingers" playing a piano on a smartphone. The robustness of the PAzo elastomer and its scalability, in addition to its excellent biocompatibility, opens the door to the development of reproducible light-driven wearable/implantable actuators and lightweight soft robots for clinical applications.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Xia Huang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Meng Wang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jishizhan Chen
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jinke Chang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Xuetong Zhang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Andrew Conn
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Jonathan Rossiter
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Ear Nose and Throat and Eastman Dental Hospitals (UCLH NHS Foundation Trust), University College London, London WC1X 8EE, United Kingdom
| | - Wenhui Song
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
16
|
Zhang H, Meng L, Zhang Y, Xin Q, Zhou Y, Ma Z, Zuo L, Zheng C, Luo J, Zhou Y, Ding C, Li J. Light and Magnetism Orchestrating Aquatic Pollutant-Degradation Robots in Programmable Trajectories. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311446. [PMID: 38160323 DOI: 10.1002/adma.202311446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Interfacial floating robots have promising applications in carriers, environmental monitoring, water treatment, and so on. Even though, engineering smart robots with both precisely efficient navigation and elimination of water pollutants in long term remains a challenge, as the superhydrophobicity greatly lowers resistance for aquatic motion while sacrificing chemical reactivity of the surface. Here, a pollutant-removing superhydrophobic robot integrated with well-assembled iron oxide-bismuth sulfide heterojunction composite minerals, which provide both light and magnetic propulsion, and the ability of catalytic degradation, is reported. The motion velocity of the robot reaches up to 51.9 mm s-1 within only 300 ms of acceleration under the orchestration of light, and brakes rapidly (≈200-300 ms) once turn off the light. And magnetism extends the robot to work in broad range of surface tensions in any programmable trajectory. Besides, purification of polluted water is efficiently achieved in situ and the degradation efficiency exhibits eightfold enhancements under the effect of light-triggered photothermal behavior coupled with magnetic induction, overcoming the dilemma of efficient motion with catalytic superhydrophobicity. This strategy developed here provides guidelines for the explorations of high-performance smart devices.
Collapse
Affiliation(s)
- Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuhang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuyi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing, 100190, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
18
|
Yang R, Wang Y, Yao H, Li Y, Chen L, Zhao Y, Wang YZ. Dynamic Shape Change of Liquid Crystal Polymer Based on An Order-Order Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202314859. [PMID: 38224179 DOI: 10.1002/anie.202314859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Liquid crystal actuators conventionally undergo shape changes across an order-disorder phase transition between liquid crystal (LC) and isotropic phases. In this study, we introduce an innovative Liquid Crystal Polymer (LCP) actuator harnessing an order-order LC phase transition mechanism. The LCP film is easily stretchable within the LC phase, facilitated by the π-π stacking of phenyl groups serving as robust physical crosslinking points, and thereby transforms to a stable monodomain structure. The resultant monodomain LCP actuator shows a distinctive reversible dynamic shape change, exhibiting extension followed by contraction along the LC director on cooling. The extension is propelled by the reversible smectic C to smectic A phase transition, and the contraction is attributed to the re-entry to the smectic C phase from smectic A phase. Thermal annealing temperature determines this peculiar dynamic shape change, which occurs during both heating and cooling processes. This pivotal attribute finds manifestation in gripper and flower-shaped actuators, adeptly executing grabbing and releasing as well as blooming and closure motions within a single thermal stimulation. In essence, our study introduces an innovative approach to the realm of LCP actuators, ushering in a new avenue for the design and fabrication of versatile and dynamically responsive LCP actuators.
Collapse
Affiliation(s)
- Rong Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yahui Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Hongjing Yao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yanqing Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
19
|
Zhang G, Zhang Q, Guo Z, Li C, Ge F, Zhang Q. Reconfiguration, Welding, Reprogramming, and Complex Shape Transformation of An Optical Shape Memory Polymer Network Enabled by Patterned Secondary Crosslinking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306312. [PMID: 37817361 DOI: 10.1002/smll.202306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Indexed: 10/12/2023]
Abstract
Stimuli-triggered generation of complicated 3D shapes from 2D strips or plates without using sophisticated molds is desirable and achieving such 2D-to-3D shape transformation in combination with shape reconfiguration, welding, and reprogramming on a single material is very challenging. Here, a convenient and facile strategy using the solution of a disulfide-containing diamine for patterned secondary crosslinking of an optical shape-memory polymer network is developed to integrate the above performances. The dangling thiolectones attached to the backbones react with the diamine in the solution-deposited region so that the secondary crosslinking may not only weld individual strips into assembled 3D shapes but also suppress the relaxation of the deformed polymer chains to different extents for shape reconfiguration or heating-induced complex 3D deformations. In addition, as the dynamic disulfide bonds can be thermally activated to erase the initial programming information and the excessive thiolectones are available for subsequent patterned crosslinking, the material also allows shape reprogramming. Combining welding with patterning treatment, it is further demonstrated that a gripper can be assembled and photothermally controlled to readily grasp an object.
Collapse
Affiliation(s)
- Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qing Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Feijie Ge
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
20
|
Ji Y, Yu H. Manipulation of photoresponsive liquid-crystalline polymers and their applications: from nanoscale to macroscale. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:10246-10266. [DOI: 10.1039/d4tc02213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We summarize the molecular design of photoresponsive liquid-crystalline polymers, manipulation at multiple scales and various applications based on their intrinsic properties, providing an opportunity for future development in this field.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Qian Y, Zhou P, Wang Y, Zheng Y, Luo Z, Chen L. A PEDOT:PSS/MXene-based actuator with self-powered sensing function by incorporating a photo-thermoelectric generator. RSC Adv 2023; 13:32722-32733. [PMID: 38022765 PMCID: PMC10630741 DOI: 10.1039/d3ra06290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Actuators with sensing functions are becoming increasingly important in the field of soft robotics. However, most of the actuators are lack of self-powered sensing ability, which limits their applications. Here, we report a light-driven actuator with self-powered sensing function, which is designed to incorporate a photo-thermoelectric generator into the actuator based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/MXene composite and polyimide. The actuator shows a large bending curvature of 1.8 cm-1 under near-infrared light (800 mW cm-2) irradiation for 10 s, which is attribute to photothermal expansion mismatch between PEDOT:PSS/MXene composite and polyimide. Simultaneously, the actuator shows enhanced thermoelectric properties with Seebeck coefficient of 35.7 μV K-1, which are mainly attributed to a combination of energy filtering effects between the PEDOT:PSS and MXene interfaces as well as the synergistic effect of its charge carrier migration. The output voltage of the actuator changes in accordance with the bending curvature, so as to achieve the self-powered sensing function and monitor the operating state of the actuator. Moreover, a bionic flower is fabricated, which not only simulates the blooming and closing of the flower, but also perceives the real-time actuation status through the output voltage signal. Finally, a smart Braille system is elaborately designed, which can not only simulate Braille characters for tactile recognition of the blind people, but also automatically output the voltage signal of Braille for self-powered sensing, enabling multi-channel output and conversion of light energy. This research proposes a new idea for exploring multifunctional actuators, integrated devices and self-powered soft robots.
Collapse
Affiliation(s)
- Yongqiang Qian
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian University of Technology Fuzhou 350118 China
| | - Yi Wang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Ying Zheng
- Department of Obstetrics, Fuzhou Second Hospital Fuzhou 350007 China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| |
Collapse
|
22
|
Dong C, Yue X, Zhang Y, Wang Y, Ren ZH, Guan ZH. Synthesis of Self-healing and Light-, Thermal-, and Humidity-induced Deformative Polyurethane Actuator. Macromol Rapid Commun 2023; 44:e2300281. [PMID: 37543181 DOI: 10.1002/marc.202300281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Intelligent actuating materials have drawn enormous attention because of their potential applications in soft robots, smart sensors, bionics, etc. Aiming to integrate light, thermal, and humidity stimuli deformations and self-healing function into a single polymer, a smart actuating polyurethane material CPPU-50 is designed and successfully synthesized through co-polymerization of azobenzene-containing Azo-C12 , polyethylene glycol 200 (PEG200), and 4,4'-diphenylmethane diisocyanate (MDI) at a ratio of 1:1:2. The obtained polyurethane CPPU-50 exhibits good photoinduced bending, thermal responsive shape memory effect, humidity triggered deflections and self-healing properties. Furthermore, an actuator combining light and thermal stimuli is created and the self-healing CPPU-50 film can withstand the object of 1800 times without tearing. This work can pave a way for further development of long-lived multi-stimuli-responsive actuating devices and intelligent materials.
Collapse
Affiliation(s)
- Chen Dong
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiaolei Yue
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yaodu Zhang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yucheng Wang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
23
|
Kong S, Wang H, Ubba E, Xiao Y, Yu T, Huang W. Recent Developments of Photodeformable Polymers: From Materials to Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0242. [PMID: 37779636 PMCID: PMC10540999 DOI: 10.34133/research.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Photodeformable polymer materials have a far influence in the fields of flexibility and intelligence. The stimulation energy is converted into mechanical energy through molecular synergy. Among kinds of photodeformable polymer materials, liquid crystalline polymer (LCP) photodeformable materials have been a hot topic in recent years. Chromophores such as azobenzene, α-cyanostilbene, and 9,10-dithiopheneanthracene have been widely used in LCP, which are helpful for designing functional molecules to increase the penetration depth of light to change physical properties. Due to the various applications of photodeformable polymer materials, there are many excellent reports in intelligent field. In this review, we have systematized LCP containing azobenzene into 3 categories depending on the degree of crosslinking liquid crystalline elastomers, liquid crystalline networks, and linear LCPs. Other structural, typical polymer materials and their applications are discussed. Current issues faced and future directions to be developed for photodeformable polymer materials are also summarized.
Collapse
Affiliation(s)
- Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Eethamukkala Ubba
- OMC Research Laboratory, Department of Chemistry,
School of Advanced Sciences, VITVellore, Tamilnadu, India
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays &Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
24
|
Sun J, Liao W, Yang Z. Additive Manufacturing of Liquid Crystal Elastomer Actuators Based on Knitting Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302706. [PMID: 37278691 DOI: 10.1002/adma.202302706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.
Collapse
Affiliation(s)
- Jiahao Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongqiang Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
25
|
Yang Z, An Y, He Y, Lian X, Wang Y. A Programmable Actuator as Synthetic Earthworm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303805. [PMID: 37226690 DOI: 10.1002/adma.202303805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Natural earthworm with the ability to loosen soils that favors sustainable agriculture has inspired worldwide interest in the design of intelligent actuators. Given the inability to carry heavy loads and uncontrolled deformation, the vast majority of actuators can only perform simple tasks by bending, contraction, or elongation. Herein, a degradable actuator with the ability to deform in desired ways is presented, which successfully mimics the burrowing activities of earthworms to loosen soils with increased soil porosity by digging, grabbing, and lifting the soil when it receives rains. Such a scarifying actuator is made of degradable cellulose acetate and uncrosslinked polyacrylamide via the swelling-photopolymerizing method. The water absorption of polyacrylamide in moisture conditions causes rapid and remarkable bending. Such mechanical bending can be controlled in specific areas of the cellulose acetate film if polyacrylamide is polymerized in a patterned way, so as to generate complicated deformations of the whole cellulose acetate. Patterning polyacrylamide within cellulose acetate is achieved based on reversible surface protection by means of pen writing, rather than the traditional masking techniques. The water-induced deformation of programmable cellulose-based actuators is well preserved in soil, which is appropriate for promoting rain diffusion as well as root breath.
Collapse
Affiliation(s)
- Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
26
|
Jiang J, Zhao Y. Liquid Crystalline Elastomer for Separate or Collective Sensing and Actuation Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301932. [PMID: 37162491 DOI: 10.1002/smll.202301932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
A porous liquid crystalline elastomer actuator filled with an ionic liquid (PLCE-IL) is shown to exhibit the functions of two classes of materials: electrically responsive, deformable materials for sensing and soft active materials for stimuli-triggered actuation. On one hand, upon the order-disorder phase transition of aligned mesogens, PLCE-IL behaves like a typical actuator capable of reversible shape change and can be used to assemble light-fuelled soft robot. On the other hand, at temperatures below the phase transition, PLCE-IL is an elastomer that can sustain and sense large deformations of various modes as well as environmental condition changes by reporting the corresponding electrical resistance variation. The two distinguished functions can also be used collectively with PLCE-IL integrated in one device. This intelligent feature is demonstrated with an artificial arm. When the arm is manually powered to fold and unfold, the PLCE-IL strip serves as a deformation sensor; while when the manual power is not available, the role of the PLCE-IL strip is switched to an actuator that enables light-driven folding and unfolding of the arm. This study shows that electrically responsive LCEs are a potential materials platform that offers possibilities for merging deformable electronic and actuation applications.
Collapse
Affiliation(s)
- Jie Jiang
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
27
|
Zhang X, Liao W, Wang Y, Yang Z. Thermal-Responsive Liquid Crystal Elastomer Foam-based Compressible and Omnidirectional Gripper. Chem Asian J 2023; 18:e202300340. [PMID: 37325932 DOI: 10.1002/asia.202300340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Liquid crystal elastomers (LCEs) are considered to be a promising material for the fabrication of soft grippers because of their large and reversible deformations, an LCE gripper with suitable compressibility and omnidirectionality has not yet been developed. To overcome these obstacles, this study utilizes salt template method to fabricate a rod-like LCE foam as gripper. The thickness of the compressible foam can be reduced by up to 77%, temporarily maintaining the deformation and enabling the gripper to pass through slits. The foam was aligned along the long axis and the length of the foam exhibits reversible thermal responsiveness and contract up to 57% along its alignment. Additionally, when the foam approaches a heat source, the generated temperature gradient results in a contraction gradient owing to the low thermal conductivity of the LCE foam. This in turn causes the foam to reversibly bend with a bending angle up to 93° and follow the movement of a heat source omnidirectionally. The developed gripper successfully grasps, moves, and releases hot objects in a cold and safe place, demonstrating its potential for emergency disposal. Thus, LCE foams can be considered suitable materials for novel gripper design and construction.
Collapse
Affiliation(s)
- Xinyuhang Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yunpeng Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
28
|
Song B, Zhang J, Zhou J, Qin A, Lam JWY, Tang BZ. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat Commun 2023; 14:3115. [PMID: 37253717 DOI: 10.1038/s41467-023-38769-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Exploring approaches to utilize abundant water to synthesize functional molecules and polymers with efficient clusteroluminescence properties is highly significant but has yet to be reported. Herein, a chemistry of water and alkyne is developed. The synthesized products are proven as nonaromatic clusteroluminogens that could emit visible light. Their emission colors and luminescent efficiency could be adjusted by manipulating through-space interaction using different starting materials. Besides, the free-standing polymeric films with much high photoluminescence quantum yields (up to 45.7%) are in situ generated via a water-involved interfacial polymerization. The interfacial polymerization-enhanced emission of the polymeric films is observed, where the emission red-shifts and efficiency increases when the polymerization time is prolonged. The synthesized polymeric film is also verified as a Janus film. It exhibits a vapor-triggered reversible mechanical response which could be applied as a smart actuator. Thus, this work develops a method to synthesize clusteroluminogens using water, builds a clear structure-property relationship of clusteroluminogens, and provides a strategy to in situ construct functional water-based polymeric films.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China.
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Ceamanos L, Mulder DJ, Kahveci Z, López-Valdeolivas M, Schenning APHJ, Sánchez-Somolinos C. Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators. J Mater Chem B 2023; 11:4083-4094. [PMID: 37092961 DOI: 10.1039/d2tb02757g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.
Collapse
Affiliation(s)
- Lorena Ceamanos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.
| | - Dirk J Mulder
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Zehra Kahveci
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.
| | - María López-Valdeolivas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlos Sánchez-Somolinos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 50018 Zaragoza, Spain
| |
Collapse
|
30
|
Zhan Y, Broer DJ, Liu D. Perspiring Soft Robotics Skin Constituted by Dynamic Polarity-Switching Porous Liquid Crystal Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211143. [PMID: 36608160 DOI: 10.1002/adma.202211143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Secretion of functional fluids is essential for affecting surface properties in ecosystems. The existing polymer membranes that mimic human skin functions are limited to secreting, either apolar or polar, liquid. However, the development of membranes that grant exchange liquid with different polarities remains a grand challenge. This process is prohibited by the mismatch of the polarity between the carrier polymer and the loaded liquid. To conquer this limitation, an innovative strategy is reported to dynamically switch the polarity of the porous membrane, thereby empowering the exchange of apolar liquid with polar liquid and vice versa. This approach incorporates a benzoic acid derivative into the original apolar polymer network. The benzoic acid dimerizes and forms hydrogen bonds, which supports the molecular alignment, but can be broken into the ionic state when subjected to alkaline treatment, changing the polarity of themembrane. Consequently, the apolar liquid can be replaced with a more polar one. This polar liquid is ejected upon safe-dose UV illumination from the membrane. Reabsorption occurs on demand by illumination of visible light or when left in contact with the membrane, spontaneously in the dark. Based on this, the consumed membrane is replenished with the same or different exchanging liquid.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Dirk J Broer
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Danqing Liu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| |
Collapse
|
31
|
Hu J, Nie Z, Wang M, Liu Z, Huang S, Yang H. Springtail-inspired Light-driven Soft Jumping Robots Based on Liquid Crystal Elastomers with Monolithic Three-leaf Panel Fold Structure. Angew Chem Int Ed Engl 2023; 62:e202218227. [PMID: 36624053 DOI: 10.1002/anie.202218227] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Jump is an important form of motion that enables animals to escape from predators, increase their range of activities, and better adapt to the environment. Inspired by springtails, we describe a light-driven soft jumping robot based on a double-folded liquid crystal elastomer (LCE) ribbon actuator with a monolithic three-leaf panel fold structure. This robot can achieve remarkable jumping height, jumping distance, and maximum take-off velocity, of up to 87 body length (BL), 65 BL, and 930 BL s-1 , respectively, under near-infrared light irradiation. Further, it is possible to control the height, distance, and direction of jump by changing the size and crease angle of the double-folded LCE ribbon actuators. These robots can efficiently jump over obstacles and can jump continuously, even in complex environments. Our simple design strategy improves the performance of jumping actuators and we expect it to have a wide-ranging impact on the strength, continuity, and adaptability of future soft robots.
Collapse
Affiliation(s)
- Jun Hu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| | - Zhenzhou Nie
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| | - Zhiyang Liu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| | - Shuai Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Bioelectronics, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, Jiangsu Province, 211189 (P. R. of, China
| |
Collapse
|
32
|
Chen SJ, Cheng HF, Du B, Liu JS, Shen WB, Zhuo HT. Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-022-2883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Wang Y, Guan Q, Lei D, Esmaeely Neisiany R, Guo Y, Gu S, You Z. Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid-Air Interface. ACS NANO 2022; 16:19393-19402. [PMID: 36367434 DOI: 10.1021/acsnano.2c09066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains a formidable challenge to realize three-dimensional locomotion (X, Y, and Z axes) at the liquid-air two-phase interface due to the unbalanced mechanical environment. Inspired by meniscus-climbing beetle larva Pyrrhalta, the mechanism of a three-phase (liquid-solid-air) contact line is here proposed to address the aforementioned challenge. A corresponding 3D printed fully soft robotics (named larvobot) based on photoresponsive liquid crystal elastomer/carbon nanotubes composites endowed repeatable programmable deformation and high degree-of-freedom locomotion. Three-dimensional locomotion at the liquid-air interface including twisting and rolling-up has been developed. The equation of motion is established by analyzing the mechanics along the solid-water surface of the larvobot. Meanwhile, ANSYS is used to calculate the stress distribution, which coincides with the speculation. Moreover, soft robotics is remotely driven by light in a precise spatiotemporal control, which provides a great advantage for applications. As an example, we demonstrate the controllable locomotion of the soft robotics inside closed tubes, which could be used for drug delivery and intelligent transportation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Dong Lei
- Department of Cardiology, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai200011, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar9617976487, Iran
| | - Yue Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| |
Collapse
|
34
|
Yan H, He Y, Yao L, Wang X, Zhang X, Zhang Y, Han D, Li C, Sun L, Zhang J. Thermo-crosslinking assisted preparation of thiol-acrylate main-chain liquid-crystalline elastomers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212596. [DOI: 10.1002/anie.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yanjun Ding
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
36
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Fang Fang
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Basem Moosa
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Yanjun Ding
- KAUST: King Abdullah University of Science and Technology chemistry SAUDI ARABIA
| | - Niveen M. Khashab
- King Abdullah University of Science and Technology KAUST 4700 King Abdullah University 23955 Thuwal SAUDI ARABIA
| |
Collapse
|
37
|
Wang J, Yang B, Yu M, Yu H. Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15632-15640. [PMID: 35333059 DOI: 10.1021/acsami.2c00680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Light-activated self-oscillators have drawn enormous attention for their potential applications in mobile machines, energy harvesting, signal modulation, etc. Herein, we report one graphene oxide (GO)/liquid crystalline network (LCN) actuator that presents a unique light-activated oscillation with amplitude and frequency superposition. The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. Owing to the asymmetric contraction/expansion, changing the cutting direction gives rise to notably different actuation behaviors for GO/LCN composite films. Moreover, it twists a little during the deflection process as a result of experimental error during the cutting process, which may cause the strip to be cut inaccurately. When the composite film is embedded in a self-shadowing system, it produces an unconventional hybrid oscillation mode upon near-infrared light irradiation, i.e., bending and twisting oscillation coupled. Furthermore, when the aspect ratio of the film decreases, the twisting mode is suppressed and the actuator changes from a coupled mode to a single bending mode. The proposed strategy may extend the application of GO/LCN composite materials and enrich light-activated self-oscillating behaviors.
Collapse
Affiliation(s)
- Jianchuang Wang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Bowen Yang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
38
|
Zhao Y, Peng H, Zhou X, Li Z, Xie X. Interfacial AIE for Orthogonal Integration of Holographic and Fluorescent Dual-Thermosensitive Images. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105903. [PMID: 35112805 PMCID: PMC8981879 DOI: 10.1002/advs.202105903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Indexed: 05/10/2023]
Abstract
Orthogonal integration of thermosensitive images is of vital significance for advanced anticounterfeiting, which however remains formidably challenging due to the trade-off that facile thermoresponse needs easy molecular motion while robust imaging requires molecular restriction. Herein, a viable approach is demonstrated to tackle the challenge by in situ fixing a predesigned aggregation induced emission luminogen (AIEgen) at the polymer/liquid crystal (LC) interface via precisely controlled interfacial engineering, in which the AIEgen is enriched in LC phases during polymerization induced phase separation and subsequently driven to the interface by the interfacial thiol-ene click reaction. Crosstalk-free integration of holographic and fluorescent dual-thermosensitive images with high sensitivity, high contrast ratio, and robust performance is successfully realized in a single unit, attributed to the simultaneously LC-facilitated AIEgen molecular motion and polymer-restricted AIEgen diffusion at the interface. The exciting characteristics of these orthogonally integrated dual images will enable them to prevent illegal replication and thus are expected to be promising for high-security-level anticounterfeiting applications.
Collapse
Affiliation(s)
- Ye Zhao
- Key Lab for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical Engineeringand National Anti‐Counterfeit Engineering Research CenterHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical Engineeringand National Anti‐Counterfeit Engineering Research CenterHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Xingping Zhou
- Key Lab for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical Engineeringand National Anti‐Counterfeit Engineering Research CenterHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Zhong'an Li
- Key Lab for Material Chemistry of Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHUSTWuhan430074China
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical Engineeringand National Anti‐Counterfeit Engineering Research CenterHuazhong University of Science and Technology (HUST)Wuhan430074China
| |
Collapse
|
39
|
Hu J, Yu M, Wang M, Choy KL, Yu H. Design, Regulation, and Applications of Soft Actuators Based on Liquid-Crystalline Polymers and Their Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12951-12963. [PMID: 35259869 DOI: 10.1021/acsami.1c25103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators designed from stimuli-responsive polymers often possess a certain amount of bionic functionality because of their versatile deformation. Liquid-crystalline polymers (LCPs) and their composites are among the most fascinating materials for soft actuators due to their great advantages of flexible structure design and easy regulation. In this Spotlight on Applications, we mainly focus on our group's latest research progress in soft actuators based on LCPs and their composites. Some representative research findings from other groups are also included for a better understanding of this research field. Above all, the essential principles for the responsive behavior and reconfigurable performance of the soft actuators are discussed, from the perspective of material morphology and structure design. Further on, we analyze recent work on how to precisely regulate the responsive modes and quantify the operating parameters of soft actuators. Finally, some application examples are given to demonstrate well-designed soft actuators with different functions under varied working environments, which is expected to provide inspiration for future research in developing more intelligent and multifunctional integrated soft actuators.
Collapse
Affiliation(s)
- Jing Hu
- College of Mechanical Engineering, Shenyang University, Shenyang 110044, People's Republic of China
- Institute of New Structural Materials, School of Materials Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mingqing Wang
- Institute for Materials Discovery, University College of London, London WC1E 7JE, United Kingdom
| | - Kwang-Leong Choy
- Institute for Materials Discovery, University College of London, London WC1E 7JE, United Kingdom
| | - Haifeng Yu
- Institute of New Structural Materials, School of Materials Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
40
|
Yu Z, Shang J, Shi Q, Xia Y, Zhai DH, Wang H, Huang Q, Fukuda T. Electrically Controlled Aquatic Soft Actuators with Desynchronized Actuation and Light-Mediated Reciprocal Locomotion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12936-12948. [PMID: 35244389 DOI: 10.1021/acsami.2c01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft-bodied aquatic invertebrates can overcome hydrodynamic resistance and display diverse locomotion modes in response to environmental cues. Exploring the dynamics of locomotion from bioinspired aquatic actuators will broaden the perspective of underwater manipulation of artificial systems in fluidic environments. Here, we report a multilayer soft actuator design based on a light-driven hydrogel and a laser-induced graphene (LIG) actuator, minimizing the effect of the time delay by a monolithic hydrogel-based system while maintaining shape-morphing functionality. Moreover, different time scales in the response of actuator materials enable a real-time desynchronization of energy inputs, holding great potential for applications requiring desynchronized stimulation. This hybrid design principle is ultimately demonstrated with a high-performance aquatic soft actuator possessing an underwater walking speed of 0.81 body length per minute at a relatively low power consumption of 3 W. When integrated with an optical sensor, the soft actuator can sense the variation in light intensity and achieve mediated reciprocal motion. Our proposed locomotion mechanism could inspire other multilayer soft actuators to achieve underwater functionalities at the same spatiotemporal scale. The underwater actuation platform could be used to study locomotion kinematics and control mechanisms that mimic the motion of soft-bodied aquatic organisms.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Junyi Shang
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Yuanqing Xia
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Di-Hua Zhai
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| |
Collapse
|
41
|
Ji Y, Yang B, Cai F, Yu H. Regulate Surface Topography of Liquid‐Crystalline Polymer by External Stimuli. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Bowen Yang
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Feng Cai
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
42
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid–Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022; 61:e202117390. [DOI: 10.1002/anie.202117390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Affiliation(s)
- En Lin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Xiuyu Zhao
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhaoyi Liu
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Dong Yan
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Fazheng Jin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
43
|
Zhang X, Xue P, Yang X, Valenzuela C, Chen Y, Lv P, Wang Z, Wang L, Xu X. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11834-11841. [PMID: 35192332 DOI: 10.1021/acsami.1c24702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-programmable hydrogel-based soft actuators that can adaptively respond to external stimuli are of paramount significance for the development of bioinspired aquatic smart soft robots. Herein, we report the design and synthesis of near-infrared (NIR) light-driven hydrogel actuators through in situ photopolymerization of poly(N-isopropylacrylamide) (PNIPAM) hydrogels loaded with metal-organic frameworks (MOFs) onto the surface of the poly(dimethylsiloxane) (PDMS) thin film. The MOFs can not only function as an excellent photothermal nanotransducer but also accelerate the adsorption/desorption of water due to their porous nanostructure, which speeds up the response rate of the actuators. Shape-programmable hydrogel actuators are fabricated by tailoring the patterning of PDMS thin film, and thus different shape-morphing modes such as directional bending and chiral twisting are observed under the NIR light irradiations. As the proof-of-concept demonstrations, an artificial hand, biomimetic mimosa, and flower are conceptualized with light-driven MOF-containing hydrogel actuators. Interestingly, we are able to achieve an octopus-inspired light-driven soft swimmer upon cyclic NIR illumination due to the fast photoresponsiveness of as-prepared hydrogel actuators. This work can offer insights for fabricating programmable and reconfigurable smart aquatic soft actuators, thus shining a light into their potential applications in emerging fields including soft robots, biomedical devices, and beyond.
Collapse
Affiliation(s)
- Xinmu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhaokai Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
44
|
Wang Y, Sun J, Liao W, Yang Z. Liquid Crystal Elastomer Twist Fibers toward Rotating Microengines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107840. [PMID: 34933404 DOI: 10.1002/adma.202107840] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Untethered twist fibers do not require end-anchoring structures to hold their twist orientation and offer simple designs and convenient operation. The reversible responsiveness of these fibers allows them to generate torque and rotational deformation continuously upon the application of external stimuli. The fibers therefore have potential in rotating microengines. In practical applications, high torque and rotational deformation are desirable to meet work capacity requirements. However, the simultaneous endowment of reversible responsiveness and high rotational performance to untethered twist fibers remains a challenge. In this study, a liquid crystal elastomer twist fiber (LCETF) is designed and developed with a fixed twisting alignment of mesogens to provide untethered and reversible responsiveness. Outstanding rotational performance can be achieved when the mesogenic orientation is disrupted through heat triggering. Owing to the significant intrinsic contractile ratio of the LCE material, the rotational deformation of the LCETF can reach 243.6° mm-1 . More importantly, the specific torque can reach 10.1 N m kg-1 , which exceeds previously reported values. In addition, the LCETF can be exploited in a rotating microengine to convert heat into electricity with an induction voltage as high as 9.4 V. This work broadens the applications of LCEs for energy harvesters, micromachines, and soft robots.
Collapse
Affiliation(s)
- Yunpeng Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiahao Sun
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
45
|
Zhao N, Wang X, Yao L, Yan H, Qin B, Li C, Zhang J. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers. SOFT MATTER 2022; 18:1264-1274. [PMID: 35044410 DOI: 10.1039/d1sm01356d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomer (LCE) materials have been developed and investigated for several decades. One important obstacle, which impedes the practical industrial application of LCE materials, is their modest robustness as actuator materials. In this work, we developed a LCE composite which was fabricated by incorporating eiderdown fibers into a polysiloxane-based main-chain LCE matrix. The eiderdown fibers were used as the flexible reinforcement phase suitable for the shape-morphing performance of LCE materials upon being stimulated. Due to the long fiber property, specific structure and surface characteristics of the eiderdown fibers, they constructed a reinforcement network in the LCE matrix and formed tight interfacial adhesion with the matrix. The LCE composite demonstrated enhanced actuation mechanical properties and robust actuation performance. Its actuation blocking stress and modulus were increased due to the reinforcement effect of the eiderdown fibers. The tensile strength and the performance of anti-fatigue failure under repeated actuation cycles and high loadings were greatly improved due to the crack-resisting effect and bridging effect of the eiderdown fibers. While other properties, such as the liquid crystalline phase structure, the stimulus deformation ratio, phase transition temperature of the LCE matrix, etc., did not deteriorate or change due to the high flexibility, thermal stability and chemical stability of the eiderdown fibers.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Ban Qin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
46
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid‐Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- En Lin
- Nankai University College of Chemistry CHINA
| | | | - Xiuyu Zhao
- Nankai University College of Chemistry CHINA
| | - Zhaoyi Liu
- Nankai University College of Chemistry CHINA
| | - Dong Yan
- Nankai University College of Chemistry CHINA
| | - Fazheng Jin
- Nankai University College of Chemistry CHINA
| | - Yao Chen
- Nankai University College of Chemistry CHINA
| | - Peng Cheng
- Nankai University College of Chemistry CHINA
| | - Zhenjie Zhang
- Nankai University Chemistry Weijin Road 94# 300071 Tianjin CHINA
| |
Collapse
|
47
|
Liu J, Shang Y, Liu J, Wang J, Ikeda T, Jiang L. Janus Photochemical/Photothermal Azobenzene Inverse Opal Actuator with Shape Self-Recovery toward Sophisticated Motion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1727-1739. [PMID: 34962760 DOI: 10.1021/acsami.1c19826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Azobenzene actuators have aroused enormous research interest due to their excellent performance and promising applications in the fields of soft robots, artificial muscles, etc. However, there are still challenges for the fabrication of azobenzene actuators with a sophisticated actuation mode owing to the unitary actuation direction and slow thermal relaxation of cis- to trans-azobenzene mesogens. To solve these problems, this paper presents a facile fabrication method of a Janus azobenzene inverse opal actuator with one side made of the monodomain azobenzene polymer and the other side made of the polydomain azobenzene inverse opal structure. Gradient-layer spacing structure of the film in its cross section is proven by synchrotron small-angle X-ray diffraction. The introduction of the inverse opal structure mainly provides a polydomain mesogen alignment, large specific surface area, low elastic modulus, and structure color. The synergetic actuation of the photochemical/photothermal mode produces multiple actuation directions, a larger actuation force, and an alteration of the structure color. Shape self-recovery of this Janus azobenzene actuator contributes to some promising applications, such as crawling on a smooth surface, driving an engine axis, and logic electric circuit for the coding technique. This work is of great significance for the design and fabrication of novel-type photoactuators.
Collapse
Affiliation(s)
- Junchao Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanyuan Shang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 101407, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Tomiki Ikeda
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
- Ji Hua Laboratory, Foshan, Guangdong 528000, China
| |
Collapse
|
48
|
Sun X, Wei J, Yu Y. Photoinduced deformation of amorphous polyimide enabled by an improved azobenzene isomerization efficiency. Polym Chem 2022. [DOI: 10.1039/d2py00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly designed azo-PI, without pre-stretching or polarized-light irradiation, exhibits reversible bending behaviors under alternate UV and visible light irradiation, providing a facile route to deformable 2D/3D structure actuators.
Collapse
Affiliation(s)
- Xuejie Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jia Wei
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021; 61:e202116689. [PMID: 34970834 DOI: 10.1002/anie.202116689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
A porous liquid crystalline network (LCN), prepared using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100% swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures thermally induced shape change associated with LC-isotropic phase transition. Combining the characteristic actuation mechanisms of LCN (order-disorder transition of mesogens) and hydrogel (water absorption), such porous LCN can be explored for versatile stimuli-triggered shape transformations. Moreover, the porosity enables loading/removal/reloading of functional fillers such as ionic liquid, photothermal dye and fluorophore, which imparts a same porous LCN actuator with reconfigurable functions such as ionic conductivity, light-driven locomotion, and emissive color.
Collapse
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, Department of Chemistry, University of Sherbrooke, J1K2R1, Sherbrooke, CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yue Zhao
- University of Sherbrooke, Department of Chemistry, Blvd. Universite, J1K 2R1, Sherbrooke, CANADA
| |
Collapse
|
50
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel‐Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke Chemistry Department of ChemistryUniversity of Sherbrooke J1K2R1 Sherbrooke CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yue Zhao
- University of Sherbrooke Department of Chemistry Blvd. Universite J1K 2R1 Sherbrooke CANADA
| |
Collapse
|