1
|
Li N, Pang J, Lang F, Bu XH. Flexible Metal-Organic Frameworks: From Local Structural Design to Functional Realization. Acc Chem Res 2024; 57:2279-2292. [PMID: 39115139 DOI: 10.1021/acs.accounts.4c00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusFlexible metal-organic frameworks (MOFs), also known as soft porous crystals, exhibit dynamic behaviors in response to external physical and chemical stimuli such as light, heat, electric or magnetic field, or the presence of particular matters, on the premise of maintaining their crystalline state. The reversible structural transformation of flexible MOFs, a unique characteristic seldomly found in other types of known solid-state materials, affords them distinct properties in the realms of molecule separation, optoelectronic devices, chemical sensing, information storage, biomedicine applications, and so on. The mechanisms underlying their dynamic behaviors can be comprehensively investigated at the molecular level by means of in situ single-crystal or powder X-ray diffraction as well as other in situ spectroscopic techniques due to the high regularity of these crystalline materials during stimuli-responsive phase transitions. Through the introduction of specific stimuli-responsive groups/moieties into the well-defined and ordered molecular arrays, targeted applications can be achieved, and the performance of flexible MOFs can also be further improved via rational structural design.In this Account, we summarize our progress on the design, synthesis, and applications of flexible MOFs over the past few years. First, we highlight the construction principle of flexible MOFs, emphasizing the pivotal role of local structural design. Using an F-modified ligand, a flexible MOF with remarkable structural transformations can be obtained; the regulation of the metal coordination environment and interpenetrating frameworks is also crucial for achieving flexible MOFs. We also propose a strong correlation strategy based on the supramolecular interactions between the guest molecules and the framework, which realizes the temperature-responsive dynamic spatial "open-closed" regulation. Mechanisms of the dynamic behaviors investigated by the in situ techniques were also presented for the obtained materials. Second, some representative specific applications of the newly developed dynamic coordination systems were reviewed. The gas molecule responsive flexible MOFs show efficient short-chain alkane separation properties with discriminatory sorption behavior toward similar gaseous substrates. Smart sensing of temperature, pressure, and volatile organic compounds was achieved by several novel flexible fluorescent MOFs, with optimization potential through state-of-the-art chemical design. Furthermore, multiferroic materials with multiple bistable states and high working temperatures were also obtained based on flexible MOFs.Finally, we provide a discussion of the challenges of flexible MOFs in future research, including precise and efficient synthesis, in-depth structure-property relationship investigation, performance optimization, and industrialization. We hope that this Account will stimulate further research interest in developing next-generation smart materials based on flexible MOFs for applications in challenging chemical separation, extreme environmental sensing, massive information storage, and beyond.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Zeng FL, Jin XT, Zhao J, Zhang SX, Xue C, Luo YH. Construction and screening of spin-crossover-sponge materials based on iron(II)-triazole coordination polymers. Dalton Trans 2024; 53:2333-2340. [PMID: 38205731 DOI: 10.1039/d3dt03531j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Iron(II)-triazole coordination polymers have attracted considerable interest for their synthetic versatility, which allows tuning their spin-crossover (SCO) properties. Embedding SCO solid particles in sponge matrices is a simple, powerful, and generic approach to construct processable SCO materials. Here, we have studied a series of magnetic frameworks based on partial ligand substitution by using different chemical mixtures of two organic ligands, yielding four isostructural coordination polymers. The integration of the hygroscopic SCO material has endowed the composite sponge with the ability to capture moisture under ambient conditions. In particular, not only does a spin-crossover transition during absorption occur, but also a color variation has been achieved by varying humidity. The consequences of cooperativity and the exposed surface of the composite sponge on the spin transition were evaluated and the most promising materials among them were screened. This work provides guiding significance for the fabrication and practical application of spin-crossover-sponge materials.
Collapse
Affiliation(s)
- Feng-Lian Zeng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Xue-Ting Jin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Shu-Xin Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Cheng Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| |
Collapse
|
4
|
Mandarić M, Topić E, Agustin D, Pisk J, Vrdoljak V. Preparative and Catalytic Properties of Mo VI Mononuclear and Metallosupramolecular Coordination Assemblies Bearing Hydrazonato Ligands. Int J Mol Sci 2024; 25:1503. [PMID: 38338782 PMCID: PMC10855701 DOI: 10.3390/ijms25031503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
A series of polynuclear, dinuclear, and mononuclear Mo(VI) complexes were synthesized with the hydrazonato ligands derived from 5-methoxysalicylaldehyde and the corresponding hydrazides (isonicotinic hydrazide (H2L1), nicotinic hydrazide (H2L2), 2-aminobenzhydrazide (H2L3), or 4-aminobenzhydrazide (H2L4)). The metallosupramolecular compounds obtained from non-coordinating solvents, [MoO2(L1,2)]n (1 and 2) and [MoO2(L3,4)]2 (3 and 4), formed infinite structures and metallacycles, respectively. By blocking two coordination sites with cis-dioxo ligands, the molybdenum centers have three coordination sites occupied by the ONO donor atoms from the rigid hydrazone ligands and one by the N atom of pyridyl or amine-functionalized ligand subcomponents from the neighboring Mo building units. The reaction in methanol afforded the mononuclear analogs [MoO2(L1-4)(MeOH)] (1a-4a) with additional monodentate MeOH ligands. All isolated complexes were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP) as an oxidant in water. The impact of the structure and ligand lability on the catalytic efficiency in homogeneous cyclooctene epoxidation was elucidated based on theoretical considerations. Thus, dinuclear assemblies exhibited better catalytic activity than mononuclear or polynuclear complexes.
Collapse
Affiliation(s)
- Mirna Mandarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Edi Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Dominique Agustin
- IUT P. Sabatier, Department of Chemistry, University of Toulouse, Av. G. Pompidou, BP20258, 81104 Castres CEDEX, France;
- CNRS (Centre National de la Recherche Scientifique), LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, 31077 Toulouse CEDEX 4F, France
| | - Jana Pisk
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Višnja Vrdoljak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| |
Collapse
|
5
|
Nieland E, Voss J, Schmidt BM. Photoresponsive Supramolecular Cages and Macrocycles. Chempluschem 2023; 88:e202300353. [PMID: 37638597 DOI: 10.1002/cplu.202300353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The utilisation of light to achieve precise manipulation and control over the structure and function of supramolecular assemblies has emerged as a highly promising approach in the development of complex, configurable, or multifunctional systems and nanoscopic machine-like entities. In this minireview, we highlight recent examples of self-assembled and covalently bound cages and macrocycles with a focus on the external and internal functionalisation of a structure with a photoswitchable unit or the embedment of a photoswitch into the framework of a structure. Functionalising the interior or exterior of a supramolecular cage or macrocycle with a photoresponsive group enables control over different properties, such as guest binding or assembly in the solid-state, while the overall shape of the assembly often undergoes no significant change. By directly integrating a photoswitchable unit into the framework of a supramolecular structure, the isomerisation can either induce a geometry change, the disassembly, or the disassembly and reassembly of the structure. Historical and recent examples covered in this review are based on azobenzene, diarylethene, stilbene photoswitches, or alkene motors that were incorporated into macrocycles and cages constructed by metal-organic, dynamic covalent, or covalent bonds.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jona Voss
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
7
|
Kamilya S, Mehta S, Semwal M, Lescouëzec R, Li Y, Pechousek J, Reddy VR, Rivière E, Rouzières M, Mondal A. ON/OFF Photo(switching) along with Reversible Spin-State Change and Single-Crystal-to-Single-Crystal Transformation in a Mixed-Valence Fe(II)Fe(III) Molecular System. Inorg Chem 2023. [PMID: 36867089 DOI: 10.1021/acs.inorgchem.2c03972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A mixed-valence Fe(II)Fe(III) molecular system, {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2·4MeOH (1·4MeOH) (bik = bis-(1-methylimidazolyl)-2-methanone, pzTp = tetrakis(pyrazolyl)borate), exhibits single-crystal-to-single-crystal (SC-SC) transformation while increasing the temperature and is converted into {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2 (1). Both complexes exhibit thermo-induced spin-state switching behavior along with reversible SC-SC transformation, where the low-temperature [FeIIILSFeIILS]2 phase transforms into a high-temperature [FeIIILSFeIIHS]2 phase. 1·4MeOH exhibits an abrupt spin-state switching with T1/2 at 355 K, whereas 1 undergoes a gradual and reversible spin-state switching with a lower T1/2 at 338 K. Astonishingly, 1 exhibits ON/OFF photo-induced spin-state switching with TLIESST = 67 K, whereas 1·4MeOH does not show such an effect.
Collapse
Affiliation(s)
- Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mohini Semwal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Rodrigue Lescouëzec
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, Paris 750005, France
| | - Yanling Li
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, Paris 750005, France
| | - Jiri Pechousek
- Department of Experimental Physics, Palacký University Olomouc, 17, listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Varimalla R Reddy
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, bât. 420, Université Paris-Sud, 11 rue George Clémenceau, 91405 Orsay Cedex, France
| | - Mathieu Rouzières
- Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 33600 Pessac, France
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
8
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
9
|
Selvanathan P, Tufenkjian E, Galangau O, Roisnel T, Riobé F, Maury O, Norel L, Rigaut S. Ytterbium(III) Complex with Photochromic Ruthenium(II) Acetylide Ligand: All Visible Light Photoswitching of NIR Luminescence. Inorg Chem 2023; 62:2049-2057. [PMID: 36680521 DOI: 10.1021/acs.inorgchem.2c03628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a ruthenium(II) bisacetylide complex bearing a photochromic dithienylethene (DTE) acetylide arm and a coordinating bipyridyl on the trans acetylide unit. Its coordination with Yb(TTA)3 centers (TTA = 2-thenoyltrifluoroacetonate) produces a bimetallic complex in which the dithienylethene isomerization is triggered by both ultraviolet (UV) light absorbed by the DTE unit and 450 nm excitation in a transition of the organometallic moiety. The redox behavior arising from the ruthenium(II) bisacetylide system is fully investigated by cyclic voltammetry and spectroelectrochemistry, revealing a lack of stability of the DTE-closed oxidized state preventing effective redox luminescence switching. On the other hand, the photoswitching of ytterbium(III) near-infrared (NIR) emission triggered by the photochromic reaction is fully operational. The electronic structure of this complex in its different states characterized by strong electronic coupling between the DTE and the ruthenium(II)-based moieties leading to metal-assisted photochromic behavior were rationalized with the help of time-dependent density functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- Pramila Selvanathan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Elsa Tufenkjian
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - François Riobé
- Univ. Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, F-69007 Lyon, France
| | - Olivier Maury
- Univ. Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, F-69007 Lyon, France
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| |
Collapse
|
10
|
Zhao JL, Li MH, Cheng YM, Zhao XW, Xu Y, Cao ZY, You MH, Lin MJ. Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
|
12
|
Dutta D, Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Supramolecular Assemblies involving Energetically Significant Unconventional π(CN)-π and Anion-π(nitrile) Contacts in Zn(II) Coordination Compounds: Antiproliferative Evaluation and Theoretical Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Gao ZN, Feng DX, Wang Y, Li FH, Sun HY, Hu JX, Wang GM. Large Room Temperature Magnetization Enhancement in a Copper-Based Photoactive Metal–Organic Framework. Inorg Chem 2022; 61:15812-15816. [DOI: 10.1021/acs.inorgchem.2c02687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhen-Ni Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Dong-Xue Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Fang-Hui Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hui-Yu Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
14
|
Wen W, Liu Q, Zhang S, Yao N, Oshio H, Meng Y, Liu T. Spin‐Crossover Tuned Rotation of Pyrazolyl Rings in a 2D Iron(II) Complex towards Synergetic Magnetic and Dielectric Transitions. Angew Chem Int Ed Engl 2022; 61:e202208886. [DOI: 10.1002/anie.202208886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wen Wen
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
- College of Chemistry & Chemical Engineering Yantai University 30 Qingquan Rd. 264005 Yantai China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Shi‐Hui Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Nian‐Tao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
15
|
Fluorescence emission modulation in cyanido-bridged Fe(II) spin crossover coordination polymers. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐Coordinated Hydrazone‐Based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022; 61:e202202655. [DOI: 10.1002/anie.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jufu Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shanying Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
- College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|
17
|
Wen W, Liu Q, Zhang SH, Yao NT, Oshio H, Meng YS, Liu T. Spin‐Crossover Tuned Rotation of Pyrazolyl Rings in a 2D Iron(II) Complex towards Synergetic Magnetic and Dielectric Transitions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen Wen
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Qiang Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Shi-Hui Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Nian-Tao Yao
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Hiroki Oshio
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Yin-Shan Meng
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd., Dalian, 116024, China. 116024 Dalian CHINA
| | - Tao Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| |
Collapse
|
18
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
19
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐coordinated Hydrazone‐based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Ma
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiandong Shen
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jufu Zhao
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiangang Li
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shanying Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Chenyuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Juan Wei
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications 9 Wenyuan Road 210023 Nanjing CHINA
| |
Collapse
|
20
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
21
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
22
|
Liu JH, Guo XQ, Wang ZC, Cai LX, Zhou LP, Tian CB, Sun QF. Cation modulated spin state and near room temperature transition within a family of compounds containing the same [FeL 2] 2- center. Dalton Trans 2022; 51:3894-3901. [PMID: 35167636 DOI: 10.1039/d1dt04254h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active compounds have received much attention due to their potential application in molecular devices. Herein, a family of solvent-free FeII compounds, formulated as (A)2[FeL2], (H2L = pyridine-2,6-bi-tetrazolate, A = (Me)4N+1, Et2NH2+2, iPr2NH2+3 and iPrNH3+4), were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that 1-4 are all supramolecular frameworks containing the same [FeL2]2- center, which is arranged into two packing modes via inter-molecular interactions, that is, a 3D architecture in 1 and 1D chain in 2-4. The spin states of 1-4 at different temperatures are assigned on the basis of the single-crystal X-ray diffraction data. Solid state magnetic investigations indicate that 1 and 4 exhibit a low spin state (below 350 K) and high spin state (2-400 K), respectively. 2 and 3 display clear SCO behavior in the measured temperature, but with different profiles and critical temperatures. 2 undergoes a complete gradual SCO with a critical temperature of T1/2 = 260 K. 3 has an abrupt near room temperature transition between T1/2 cooling = 278 K and T1/2 warming = 286, centered at 282 K (9 °C). This study reveals the importance of organic cations in the modulation of SCO behavior and offers a new insight for the design of SCO compounds with near room temperature spin transitions.
Collapse
Affiliation(s)
- Jia-Hui Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Cheng Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chong-Bin Tian
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
23
|
Sarma P, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Baruwa B, Bhattacharyya MK. Charge assisted hydrogen bonded assemblies and unconventional O···O dichalcogen bonding interactions in pyrazole-based isostructural Ni(II) and Mn(II) compounds involving anthraquinone disulfonate: Antiproliferative evaluation and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Tan P, Yang Y, Lv W, Jing R, Cui H, Zheng SJ, Chen L, Yuan A, Chen XT, Zhao Y. A cyanometallate- and carbonate-bridged dysprosium chain complex with a pentadentate macrocyclic ligand: synthesis, structure, and magnetism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel one-dimensional polymeric cyanometallate- and carbonate-bridged dysprosium(iii) chain with a pentadentate macrocyclic ligand exhibits field-induced multiple-relaxation processes.
Collapse
Affiliation(s)
- Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shao-Jun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuyuan Zhao
- School of Medical Technology, Zhenjiang College, Zhenjiang 212003, P. R. China
| |
Collapse
|
25
|
Sulaiman A, Jiang YZ, Javed MK, Wu SQ, Li ZY, Bu XH. Tuning of spin-crossover behavior in two cyano-bridged mixed-valence FeIII2FeII trinuclear complexes based on a TpR ligand. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01086g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the use of TpR derivatives, we have demonstrated the modulation in the SCO behavior in two analogous trinuclear complexes. Moreover, a change in the spin transition temperature via solvent loss is observed.
Collapse
Affiliation(s)
- Arshia Sulaiman
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yi-Zhan Jiang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Mohammad Khurram Javed
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
26
|
Pittala N, Cuza E, Pinkowicz D, Magott M, Marchivie M, Boukheddaden K, Triki S. Antagonist elastic interactions tuning spin crossover and LIESST behaviours in Fe II trinuclear-based one-dimensional chains. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01629j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new 1-D spin SCO coordination polymer based on FeII trinuclear units covalently linked by a flexible coligand has been reported as an unusual platform and model system for experimental study on the origin of the step-like feature in 1-D systems.
Collapse
Affiliation(s)
- Narsimhulu Pittala
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Emmelyne Cuza
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mathieu Marchivie
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Kamel Boukheddaden
- Université Paris-Saclay, Université de Versailles Saint Quentin, CNRS, GEMaC UMR 8635, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
| | - Smail Triki
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| |
Collapse
|
27
|
Galangau O, Norel L, Rigaut S. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans 2021; 50:17879-17891. [PMID: 34792058 DOI: 10.1039/d1dt03397b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
28
|
Shen KY, Zhang CJ, Qu LY, Jiang SQ, Zhang Y, Tong ML, Bao X. Thermodriven, Acidity-Driven, and Photodriven Spin-State Switching in Pyridylacylhydrazoneiron(II) Complexes at or above Room Temperature. Inorg Chem 2021; 60:18225-18233. [PMID: 34784709 DOI: 10.1021/acs.inorgchem.1c02866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The magnetic bistability of spin-crossover (SCO) materials is highly appealing for applications as molecular switches and information storage. However, switching of the spin state around room temperature remains challenging. In this work, we reported the successful manipulation of the spin states of two iron(II) complexes (1-Fe and 2-Fe) based on pyridylacylhydrazone ligands in manifold ways. Both complexes are stabilized in the low-spin (LS) state at room temperature because of the strong ligand-field strength imposed by the ligands. 2-Fe shows thermoinduced SCO above room temperature with a very large and reproducible hysteresis (>50 K), while 1-Fe remains in the LS state up to 400 K. Acidity-driven spin-state switching of the two complexes was achieved at room temperature as a result of the complex dissociation and release of iron(II) in its high-spin (HS) state. Recovery of the complex is feasible upon further alkalization treatment in the case of 1-Fe, allowing bidirectional modulation of the spin state of the metal center. Light-driven one-way switching from LS to HS is also achieved by virtue of E-to-Z isomerization at the C═N double bond, which results in dissociation of the complex because of the poor binding affinity in the Z configuration.
Collapse
Affiliation(s)
- Kai Yan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chen Ju Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lei Yu Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shi Qing Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ming Liang Tong
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
29
|
Meng L, Deng YF, Liu S, Zheng Z, Zhang YZ. A smart post-synthetic route towards [Fe2Co2] molecular capsules with electron transfer and bidirectional switching behaviors. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1043-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ghosh S, Kamilya S, Pramanik T, Mohanty A, Rouzières M, Herchel R, Mehta S, Mondal A. Thermo- and photoinduced spin state switching in an iron(II) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality via ligand modulation. Dalton Trans 2021; 50:7725-7735. [PMID: 33988205 DOI: 10.1039/d1dt00212k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three iron(ii) complexes, [Fe(L1)2(NCS)2(MeOH)2] (1), [Fe(L1)2(NCSe)2(MeOH)2] (2), and [Fe(L2)2(NCS)2]n (3) (L1 = 2,5-dipyridyl-3,4-ethylenedioxythiophene and L2 = 2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), have been synthesized using redox-active luminescent ethylenedioxythiophene (EDOT)-based ligands, and characterized by variable temperature single-crystal X-ray diffraction, (photo)magnetic, optical reflectivity, and spectroscopy studies. Magneto-structural investigations revealed that 1 and 2 are mononuclear with a FeN4O2 octahedral coordination geometry and remain in a high-spin (HS) (S = 2) state in a temperature range of 2-280 K. Interestingly, a 2D coordination network structure with FeN6 surrounding each iron center was observed for 3, which exhibits reversible thermo-induced spin-state switching between the paramagnetic high-spin (HS) (S = 2) and diamagnetic low-spin (LS) (S = 0) states at around 105 K (T1/2). Furthermore, optical reflectivity and photomagnetic measurements at low temperature confirmed that 3 shows reversible ON/OFF switching between the photoinduced excited paramagnetic HS metastable state and diamagnetic LS state under light irradiation (ON mode using red light and OFF mode using green light). Finally, the photoinduced excited HS state can be reversibly relaxed back to the diamagnetic ground LS state by heating the system at ca. 88 K (TLIESST = 88 K) (light-induced excited spin state trapping (LIESST) effect). Furthermore, 3 also showed an exciting and unique 18 K wide light-induced thermal hysteresis (LITH) effect above liquid nitrogen temperature (100 K). DFT and CASSCF level theoretical calculations were utilized to better understand the magneto-structural correlations of these complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Ashutosh Mohanty
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
31
|
Bu N, Wu WY, Jiang P, Zhan ZY, Wan JL, Wu ZJ, Wan R. Self-assembly and steric hindrance for further host–guest interactions of a tetrahedral cage FeII4L4. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Huang W, Ma X, Sato O, Wu D. Controlling dynamic magnetic properties of coordination clusters via switchable electronic configuration. Chem Soc Rev 2021; 50:6832-6870. [PMID: 34151907 DOI: 10.1039/d1cs00101a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Large-sized coordination clusters have emerged as a new class of molecular materials in which many metal atoms and organic ligands are integrated to synergize their properties. As dynamic magnetic materials, such a combination of multiple components functioning as responsive units has many advantages over monometallic systems due to the synergy between constituent components. Understanding the nature of dynamic magnetism at an atomic level is crucial for realizing the desired properties, designing responsive molecular nanomagnets, and ultimately unlocking the full potential of these nanomagnets for practical applications. Therefore, this review article highlights the recent development of large-sized coordination clusters with dynamic magnetic properties. These dynamic properties can be associated with spin transition, electron transfer, and valence fluctuation through their switchable electronic configurations. Subsequently, the article also highlights specialized characterization techniques with different timescales for supporting switching mechanisms, chemistry, and properties. Afterward, we present an overview of coordination clusters (such as cyanide-bridged and non-cyanide assemblies) with dynamic magnetic properties, namely, spin transition and electron transfer in magnetically bistable systems and mixed-valence complexes. In particular, the response mechanisms of coordination clusters are highlighted using representative examples with similar transition principles to gain insights into spin state and mixed-valence chemistry. In conclusion, we present possible solutions to challenges related to dynamic magnetic clusters and potential opportunities for a wide range of intelligent next-generation devices.
Collapse
Affiliation(s)
- Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | | | | | | |
Collapse
|
33
|
Evariste S, Xu C, Calvez G, Lescop C. Straightforward coordination-driven supramolecular chemistry preparation of a discrete solid-state luminescent Cu4 polymetallic compact assembly based on conformationally flexible building blocks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Wang JH, Li ZY, Yamashita M, Bu XH. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Xue S, Guo Y, Garcia Y. Spin crossover crystalline materials engineered via single-crystal-to-single-crystal transformations. CrystEngComm 2021. [DOI: 10.1039/d1ce00234a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the latest crystalline materials engineered via SCSC transformations, with emphasis on the onset and progress of spin crossover in a crystal control.
Collapse
Affiliation(s)
- Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Zhao XH, Shao D, Chen JT, Liu M, Li T, Yang J, Zhang YZ. Spin and valence isomerism in cyanide-bridged {FeM II} (M = Fe and Co) clusters. Dalton Trans 2021; 50:9768-9774. [PMID: 34169954 DOI: 10.1039/d1dt01298c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two cyanide-bridged V-shaped isostructural trinuclear complexes [{(Tp*)FeIII(CN)3}2MII(bztpen)]·Sol (M = Fe, Sol = CH3OH·3H2O, 1; M = Co, Sol = 2CH3OH·2H2O, 2; bztpen = N-benzyl-N,N',N'-tris(2-methylpyridyl)ethylenediamine; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) were synthesized and characterized. The bztpen ligand serves as a tetradentate capping ligand around the inner metal ion, leaving one pyridyl group intact. Complex 1 exhibits a spin crossover (SCO) behavior between the {FeIIILSFeIIHSFeIIILS} and {FeIIILSFeIILSFeIIILS} spin isomers, while 2 shows both thermally- and photo-induced electron-transfer coupled spin transition (ETCST) property between the {FeIIILSCoIIHSFeIIILS} and {FeIIILSCoIIILSFeIILS} valence isomers. The total entropy changes for 1 and 2 between their corresponding two electronic states were found to be very close with the values of 87.46 and 84.49 J mol-1 K-1, respectively, indicating the comparable thermal energy barriers necessary for either an SCO or ETCST event for such a given system. Furthermore, both complexes undergo desolvation-induced irreversible and sharp magnetic change at high temperatures.
Collapse
Affiliation(s)
- Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Dong Shao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Jia-Tao Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Min Liu
- College of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| | - Tao Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
37
|
Zhang Y, Zhou Y, Gao T, Yan P, Li H. Metal-directed synthesis of quadruple-stranded helical Eu(III) molecular switch: a significant improvement in photocyclization quantum yield. Chem Commun (Camb) 2020; 56:13213-13216. [PMID: 33026367 DOI: 10.1039/d0cc05698g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The self-assembly of a quadruple-stranded Eu(iii) helicate induces the conformation transformation of a DAE-based photochromic ligand from parallel to antiparallel, which brings a significant improvement in the photocyclization quantum yield (Φo-c) as compared with the free ligand. Furthermore, the photocontrolled open- and closed-rings of the ligand realized a reversible modulation toward Eu3+ center emission.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China. and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China. and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China. and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China. and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China. and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
38
|
Ghosh S, Kamilya S, Pramanik T, Rouzières M, Herchel R, Mehta S, Mondal A. ON/OFF Photoswitching and Thermoinduced Spin Crossover with Cooperative Luminescence in a 2D Iron(II) Coordination Polymer. Inorg Chem 2020; 59:13009-13013. [PMID: 32875794 DOI: 10.1021/acs.inorgchem.0c02136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A 2D coordination polymer, {[Fe(L)2(NCSe)2]·6MeOH·14H2O}n (1; L = 2,5-dipyridylethynylene-3,4-ethylenedioxythiophene), has been synthesized based on a redox active luminescence ligand. 1 possesses a 2D [4 × 4] square-grid network where the iron(II) center is in a FeN6 octahedral coordination environment. 1 displays reversible thermoinduced high-spin (HS; S = 2) to diamagnetic low-spin (LS; S = 0) ON/OFF spin-state switching with a T1/2 value of 150 K. Interestingly, optical reflectivity and photomagnetic studies at 10 K under light irradiation revealed an efficient conversion to a photoinduced metastable HS excited state from a LS ground state. Remarkably, the photoexcited HS state can be reversibly switched ON and OFF by using 625 and 850 nm light-emitting-diode lights. Intriguingly, the thermal dependence of the luminescence intensity of the maximum emission at 524 nm for 1 shows a minimum at around the spin-crossover (SCO) temperature, indicating a cooperative nature between the SCO and luminescence properties. Theoretical calculations confirmed the above findings.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Mathieu Rouzières
- Centre de Recherche Paul Pascal, University of Bordeaux, UMR 5031, CNRS, Pessac 33600, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc CZ-771 46, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
39
|
Zhang JH, Wang HP, Zhang LY, Wei SC, Wei ZW, Pan M, Su CY. Coordinative-to-covalent transformation, isomerization dynamics, and logic gate application of dithienylethene based photochromic cages. Chem Sci 2020; 11:8885-8894. [PMID: 34123142 PMCID: PMC8163336 DOI: 10.1039/d0sc03290e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Photochromic coordinative cages containing dynamic C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N imine bonds are assembled from a dithienylethene-based aldehyde and tris-amine precursors via metallo-component self-assembly. The resulting metal-templated cages are then reduced and demetalated into pure covalent-organic cages (COCs), which are otherwise difficult to prepare via de novo organic synthesis. Both the obtained coordinative and covalent cages can be readily interconverted between the ring-open (o-isomer) and one-lateral ring-closed (c-isomer) forms by UV/vis light irradiation, demonstrating distinct absorption, luminescence and photoisomerization dynamics. Specifically, the ring-closed c-COCs show a blue-shifted absorption band compared with analogous metal-templated cages, which can be applied in photoluminescence (PL) color-tuning of upconversion materials in different ways, showing potential for constructing multi-readout logic gate systems. Metal-templated component self-assembly and then demetalation affords photochromic covalent organic cages applicable for upconversion PL-color tuning for logic gates.![]()
Collapse
Affiliation(s)
- Jian-Hua Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Hai-Ping Wang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 China
| | - Lu-Yin Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Shi-Chao Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
40
|
|
41
|
Hu YX, Hao X, Xu L, Xie X, Xiong B, Hu Z, Sun H, Yin GQ, Li X, Peng H, Yang HB. Construction of Supramolecular Liquid-Crystalline Metallacycles for Holographic Storage of Colored Images. J Am Chem Soc 2020; 142:6285-6294. [PMID: 32160466 DOI: 10.1021/jacs.0c00698] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Design and construction of new functionalized supramolecular coordination complexes (SCCs) via coordination-driven self-assembly strategy is highly important in supramolecular chemistry and materials science. Herein, we present a family of well-defined metallacycles decorated with mesogenic forklike dendrons through the strategy of coordination-driven self-assembly. Due to the existence of mesogenic forklike dendrons, the obtained metallacycles displayed the smectic A liquid crystal phase at room temperature while their precursors exhibited the rectangular columnar liquid crystal phase. Interestingly, by taking advantage of the electrostatic interactions between the positively charged metallacycle and the negatively charged heparin, the doping of heparin induced a significant change of the liquid-crystalline behaviors of metallacycles. More importantly, the prepared liquid-crystalline metallacycles could be further applied for holographic storage of colored images. Notably, the rhomboidal metallacycle and hexagonal metallacycle gave rise to different holographic performances although they featured a similar liquid crystal phase behavior. Therefore, this research not only provides the first successful example of supramolecular liquid-crystalline metallacycles for holographic storage of colored images but also opens a new door for supramolecular liquid-crystalline metallacycles toward advanced optical applications.
Collapse
Affiliation(s)
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bijin Xiong
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | | | | - Guang-Qiang Yin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | |
Collapse
|
42
|
Salinas‐Uber J, Barrios LA, Estrader M, Roubeau O, Aromí G. Dinuclear Copper(II) Complexes Exhibiting Reversible Photochromism. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jorge Salinas‐Uber
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA) CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) 08028 Barcelona Spain
| |
Collapse
|
43
|
Evariste S, El Sayed Moussa M, Wong H, Calvez G, Yam VW, Lescop C. Straightforward Preparation of a Solid‐state Luminescent Cu
11
Polymetallic Assembly via Adaptive Coordination‐driven Supramolecular Chemistry. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sloane Evariste
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Mehdi El Sayed Moussa
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Hok‐Lai Wong
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guillaume Calvez
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Christophe Lescop
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| |
Collapse
|
44
|
Dutta B, Dey S, Pal K, Bera S, Naaz S, Jana K, Sinha C, Mir MH. Supramolecular assembly of a 4-(1-naphthylvinyl)pyridine-appended Zn( ii) coordination compound for the turn-on fluorescence sensing of trivalent metal ions (Fe 3+, Al 3+, and Cr 3+) and cell imaging application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01608j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The as-synthesized Zn(ii) coordination compound exhibited turn-on fluorescence sensing of analytical group-IIIA metal ions (Fe3+, Al3+, and Cr3+) and applications in cell imaging.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Sunanda Dey
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
- Division of Molecular Medicine and Centre for Translational Research
| | | | - Sanobar Naaz
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Kuladip Jana
- Division of Molecular Medicine and Centre for Translational Research
- Bose Institute
- Kolkata 700056
- India
| | | | | |
Collapse
|
45
|
Zhu Z, Li XL, Liu S, Tang J. External stimuli modulate the magnetic relaxation of lanthanide single-molecule magnets. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00785d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic relaxation of lanthanide single-molecule magnets (Ln-SMMs) can be modulated reversibly by external stimuli including light irradiation, thermal treatment, protonation/deprotonation and oxidation/reduction etc.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shuting Liu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
46
|
El Sayed Moussa M, Khalil AM, Evariste S, Wong HL, Delmas V, Le Guennic B, Calvez G, Costuas K, Yam VWW, Lescop C. Intramolecular rearrangements guided by adaptive coordination-driven reactions toward highly luminescent polynuclear Cu(i) assemblies. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01595g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Highly luminescent solid-state Cu6, Au2Cu10 and Pt4Cu11 derivatives are obtained in one step reaction thanks to adaptive coordination-driven supramolecular chemistry using pre-assembled flexible Cu(i) precursors.
Collapse
|
47
|
Salinas-Uber J, Barrios LA, Roubeau O, Aromí G. Two [Ln 4] molecular rings folded as compact tetrahedra. Dalton Trans 2020; 49:7182-7188. [DOI: 10.1039/d0dt01259a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new highly photo-switchable ligand furnishes supramolecular tetrahedral nanomagnets with Ln(iii) ions (Ln = Dy, Tb). Intramolecular weak interactions define the conformation of the ligand, quenching the photochromic activity.
Collapse
Affiliation(s)
- Jorge Salinas-Uber
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- Zaragoza
- Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| |
Collapse
|
48
|
Kong M, Feng X, Li J, Wang J, Zhang YQ, Song Y. Switchable slow relaxation of magnetization in photochromic dysprosium( iii) complexes manipulated by a dithienylethene ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04457a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The admirable photochromic and magnetic properties of two dithienylethene-based complexes can be modulated with UV/Vis light irradiation.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jing Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory For NSLSCS, School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| |
Collapse
|
49
|
Lv LL, Sun YX, Ji CX, Ma S, Ren JW, Wang WW, Zhao JP, Liu ZY, Lin Q, Su K, He Y, Liu FC. Magnetite-like mixed-valence iron ferrimagnetic homohelical chains exhibiting spin canting, spin-flop and field induced SCM like behaviours. Inorg Chem Front 2020. [DOI: 10.1039/c9qi00869a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Homohelical chains with magnetite like valence distribution exhibit ferrimagnetism, canted antiferromagnetism, spin-flop and field-induced SCM like behaviours.
Collapse
|
50
|
Dong JL, Xie F, Du JQ, Lan HM, Yang RX, Wang DZ. Cobalt MOFs base on benzimidazol and varied carboxylate ligands with higher capacitance for supercapacitors and magnetic properties. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|