1
|
Rankin MR, Khare D, Gerwick L, Sherman DH, Gerwick WH, Smith JL. Structure of a putative terminal amidation domain in natural product biosynthesis. Structure 2025; 33:935-947.e4. [PMID: 40086440 PMCID: PMC12048289 DOI: 10.1016/j.str.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Bacteria are rich sources of pharmaceutically valuable natural products, many crafted by modular polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). PKS and NRPS systems typically contain a thioesterase (TE) to offload a linear or cyclized product from a carrier protein, but alternative chemistry is needed for products with a terminal amide. Several pathways with amidated products also possess an uncharacterized 400-amino acid terminal domain. We present the characterization and structure of this putative terminal amidation domain (TAD). TAD binds NAD with the nicotinamide near an invariant cysteine that is also accessible to an intermediate on a carrier protein, indicating a catalytic role. The TAD structure resembles cyanobacterial acyl-ACP reductase (AAR), which binds NADPH near an analogous catalytic cysteine. Bioinformatic analysis reveals that TADs are broadly distributed across bacterial phyla and often occur at the end of terminal NRPS modules, suggesting many amidated products may yet be discovered.
Collapse
Affiliation(s)
- Michael R Rankin
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dheeraj Khare
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92039, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Liong A, Leão PN. Fatty acyl-AMP ligases in bacterial natural product biosynthesis. Nat Prod Rep 2025; 42:739-753. [PMID: 39968878 PMCID: PMC11837247 DOI: 10.1039/d4np00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Indexed: 02/20/2025]
Abstract
Covering: covering up to 2024Fatty Acyl-AMP Ligases (FAALs) belong to the family of adenylate-forming enzymes and activate fatty acyl substrates through adenylation. FAALs were discovered as key players in various natural product biosynthetic pathways, particularly in the assembly of polyketides and non-ribosomal peptides. These enzymes exhibit a conserved structural architecture that distinguishes them from their close relatives, the Fatty Acyl-CoA Ligases. FAALs display the starter unit in the biosynthesis of diverse natural products where they shuttle fatty acyl substrates into secondary metabolism for further chain elongation and/or modification. In this review, we cover the discovery, distribution and structure of FAALs as well as their role in natural product biosynthesis. In addition, we provide an overview about their genomic and biosynthetic contexts and summarize approaches used to analyze FAAL activity, predict their substrate specificity and to discover new compounds whose biosyntheses involve these enzymes.
Collapse
Affiliation(s)
- Anne Liong
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
3
|
Alexander KL, Naman CB, Iwasaki A, Mangoni A, Leao T, Reher R, Petras D, Kim H, Ternon E, Caro-Diaz EJE, Glukhov E, Mitrevska JA, Avalon NE, Duggan BM, Gerwick L, Gerwick WH. Fatuamide A, a Hybrid PKS/NRPS Metallophore from a Leptolyngbya sp. Marine Cyanobacterium Collected in American Samoa. JOURNAL OF NATURAL PRODUCTS 2025; 88:322-335. [PMID: 39879528 DOI: 10.1021/acs.jnatprod.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A structurally novel metabolite, fatuamide A (1), was discovered from a laboratory cultured strain of the marine cyanobacterium Leptolyngbya sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction. The planar structure of fatuamide A was elucidated by integrated NMR and MS/MS analysis, and a combination of bioinformatic and computational approaches was used to deduce the absolute configuration at its eight stereocenters. A putative hybrid PKS/NRPS biosynthetic gene cluster responsible for fatuamide A production was identified from the sequenced genomic DNA of the cultured cyanobacterium. The biosynthetic gene cluster possessed elements that suggested fatuamide A binds metals, and this metallophore property was demonstrated by native metabolomics and indicated a preference for binding copper. The producing strain was found to be highly resistant to toxicity from elevated copper concentrations in culture media.
Collapse
Affiliation(s)
- Kelsey L Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - C Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, California 92024, United States
| | - Arihiro Iwasaki
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Tiago Leao
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Raphael Reher
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Pharmaceutical Biology and Biotechnology, Department of Pharmacy, Philipps-University Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen 72076, Germany
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521-9800, United States
| | - Hyunwoo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- College of Pharmacy, Dongguk University, Goyang 10326, South Korea
| | - Eva Ternon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), 06230 Villefranche-sur-Mer, France
| | - Eduardo J E Caro-Diaz
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan 00935, Puerto Rico
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jana A Mitrevska
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole E Avalon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Brendan M Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Rankin MR, Khare D, Gerwick L, Sherman DH, Gerwick WH, Smith JL. Structure of a Putative Terminal Amidation Domain in Natural Product Biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620694. [PMID: 39554124 PMCID: PMC11565732 DOI: 10.1101/2024.10.28.620694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Bacteria are rich sources of pharmaceutically valuable natural products, many crafted by modular polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). PKS and NRPS systems typically contain a thioesterase (TE) to offload a linear or cyclized product from a carrier protein, but alternative chemistry is needed for products with a terminal amide. Several pathways with amidated products also possess an uncharacterized 400-amino acid terminal domain. We present the characterization and structure of this putative terminal amidation domain (TAD). TAD binds NAD with the nicotinamide near an invariant cysteine that is also accessible to an intermediate on a carrier protein, indicating a catalytic role. The TAD structure resembles cyanobacterial acyl-ACP reductase (AAR), which binds NADPH near an analogous catalytic cysteine. Bioinformatic analysis reveals that TADs are broadly distributed across bacterial phyla and often occur at the end of terminal NRPS modules, suggesting many amidated products may yet be discovered.
Collapse
|
5
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Luo W, Zhang M, Zhou X, Xu X, Cheng X. Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm. Mol Oral Microbiol 2024; 39:261-269. [PMID: 38212261 DOI: 10.1111/omi.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.
Collapse
Affiliation(s)
- Wenxin Luo
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mengdie Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Pim S, Bourgès AC, Wu D, Durán-Sampedro G, Garre M, O'Shea DF. Observing bioorthogonal macrocyclizations in the nuclear envelope of live cells using on/on fluorescence lifetime microscopy. Chem Sci 2024:d4sc03489a. [PMID: 39184298 PMCID: PMC11343072 DOI: 10.1039/d4sc03489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The reactive partnership between azides and strained alkynes is at the forefront of bioorthogonal reactions, with their in situ cellular studies often achieved through the use of off to on fluorophores with fluorescence microscopy. In this work, the first demonstration of a bioorthogonal, macrocycle-forming reaction occurring within the nuclear envelope of live cells has been accomplished, utilising on/on fluorescence lifetime imaging microscopy for real-time continuous observation of the transformation. The fluorescent, macrocyclic BF2 azadipyrromethene was accessible through a double 1,3-dipolar cycloaddition within minutes, between a precursor bis-azido substituted fluorophore and Sondheimer diyne in water or organic solvents. Photophysical properties of both the starting bis-azide BF2 azadipyrromethene and the fluorescent macrocyclic products were obtained, with near identical emission wavelengths and intensities, but different lifetimes. In a novel approach, the progress of the live-cell bioorthogonal macrocyclization was successfully tracked through a fluorescence lifetime change of 0.6 ns from starting material to products, with reaction completion achieved within 45 min. The continuous monitoring and imaging of this bioorthogonal transformation in the nuclear membrane and invaginations, of two different cancer cell lines, has been demonstrated using a combination of fluorescence intensity and lifetime imaging with phasor plot analysis. As there is a discernible difference in fluorescence lifetimes between starting material and products, this approach removes the necessity for off-to-on fluorogenic probes when preparing for bioorthogonal cell-imaging and microscopy.
Collapse
Affiliation(s)
| | | | - Dan Wu
- Department of Chemistry, RCSI Dublin 2 Ireland
| | | | | | | |
Collapse
|
8
|
Yan D, Zhou M, Adduri A, Zhuang Y, Guler M, Liu S, Shin H, Kovach T, Oh G, Liu X, Deng Y, Wang X, Cao L, Sherman DH, Schultz PJ, Kersten RD, Clement JA, Tripathi A, Behsaz B, Mohimani H. Discovering type I cis-AT polyketides through computational mass spectrometry and genome mining with Seq2PKS. Nat Commun 2024; 15:5356. [PMID: 38918378 PMCID: PMC11199612 DOI: 10.1038/s41467-024-49587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol.
Collapse
Affiliation(s)
- Donghui Yan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Muqing Zhou
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhinav Adduri
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yihao Zhuang
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
| | - Mustafa Guler
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sitong Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hyonyoung Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Torin Kovach
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gloria Oh
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiao Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yuting Deng
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaofeng Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Liu Cao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David H Sherman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Schultz
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Ashootosh Tripathi
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Bahar Behsaz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Chemia Biosciences Inc, Pittsburgh, PA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Shigeta R, Suzuki T, Kaneko K, Tanaka H, Haishima I, Norio K, Tanaka-Yanuma A, Usuki T. Total synthesis of jamaicamide B. Org Biomol Chem 2024; 22:4637-4640. [PMID: 38716558 DOI: 10.1039/d4ob00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Jamaicamide B was isolated from the cyanobacterium Moorea producens in Jamaica and shows neurotoxicity. This unique mixed peptide-polyketide structure contains a pyrrolinone ring, a β-methoxy enone, an (E)-olefin, an undetermined stereocenter at C9, an (E)-chloroolefin, and a terminal alkyne. We report herein the first total synthesis and structural confirmation of the marine natural product (9R)-jamaicamide B.
Collapse
Affiliation(s)
- Ryosuke Shigeta
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Takahiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Kazuki Kaneko
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Hiroaki Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Ibuki Haishima
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Kanata Norio
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Ayano Tanaka-Yanuma
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
10
|
Via C, Grauso L, McManus KM, Kirk RD, Kim AM, Webb EA, Held NA, Saito MA, Scarpato S, Zimba PV, Moeller PDR, Mangoni A, Bertin MJ. Spatial and Temporal Resolution of Cyanobacterial Bloom Chemistry Reveals an Open-Ocean Trichodesmium thiebautii as a Talented Producer of Specialized Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9525-9535. [PMID: 38758591 PMCID: PMC11155244 DOI: 10.1021/acs.est.3c10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.
Collapse
Affiliation(s)
- Christopher
W. Via
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Laura Grauso
- Dipartimento
di Agraria, Università degli Studi
di Napoli Federico II, via Universita 100, Portici Napoli 80055, Italy
| | - Kelly M. McManus
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Riley D. Kirk
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Andrew M. Kim
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Eric A. Webb
- Marine
and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Noelle A. Held
- Marine
and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A. Saito
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Silvia Scarpato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Paul V. Zimba
- Rice Rivers
Center, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Peter D. R. Moeller
- Harmful
Algal Bloom Monitoring and Reference Branch, Stressor Detection and
Impacts Division, National Ocean Service/NOAA,
Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Alfonso Mangoni
- Dipartimento
di Farmacia, Università degli Studi
di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Matthew J. Bertin
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Ngo TE, Ecker A, Ryu B, Guild A, Remmel A, Boudreau PD, Alexander KL, Naman CB, Glukhov E, Avalon NE, Shende VV, Thomas L, Dahesh S, Nizet V, Gerwick L, Gerwick WH. Structure and Biosynthesis of Hectoramide B, a Linear Depsipeptide from Marine Cyanobacterium Moorena producens JHB Discovered via Coculture with Candida albicans. ACS Chem Biol 2024; 19:619-628. [PMID: 38330248 PMCID: PMC10949194 DOI: 10.1021/acschembio.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The tropical marine cyanobacterium Moorena producens JHB is a prolific source of secondary metabolites with potential biomedical utility. Previous studies on this strain led to the discovery of several novel compounds such as hectochlorins and jamaicamides. However, bioinformatic analyses of its genome indicate the presence of numerous cryptic biosynthetic gene clusters that have yet to be characterized. To potentially stimulate the production of novel compounds from this strain, it was cocultured with Candida albicans. From this experiment, we observed the increased production of a new compound that we characterize here as hectoramide B. Bioinformatic analysis of the M. producens JHB genome enabled the identification of a putative biosynthetic gene cluster responsible for hectoramide B biosynthesis. This work demonstrates that coculture competition experiments can be a valuable method to facilitate the discovery of novel natural products from cyanobacteria.
Collapse
Affiliation(s)
- Thuan-Ethan Ngo
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Andrew Ecker
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department
of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Byeol Ryu
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Aurora Guild
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ariana Remmel
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Paul D. Boudreau
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department
of BioMolecular Sciences,University of Mississippi,
School of Pharmacy, University, Mississippi 38677, United States
| | - Kelsey L. Alexander
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department
of Chemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - C. Benjamin Naman
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department
of Science and Conservation, San Diego Botanic
Garden, 300 Quail Gardens
Drive, Encinitas, California 92024, United States
| | - Evgenia Glukhov
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nicole E. Avalon
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vikram V. Shende
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Lamar Thomas
- Department
of Pediatrics, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Samira Dahesh
- Department
of Pediatrics, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Victor Nizet
- Department
of Pediatrics, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Lena Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Chen Y, Jiang H, Hao T, Zhang N, Li M, Wang X, Wang X, Wei W, Zhao J. Fluorogenic Reactions in Chemical Biology: Seeing Chemistry in Cells. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:590-619. [PMID: 39474135 PMCID: PMC11504613 DOI: 10.1021/cbmi.3c00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/05/2025]
Abstract
Among the recent development of click chemistry and bioorthogonal chemistry, fluorogenic reactions occupy a unique place in that fluorescence is generated from nonfluorescent reactants, thereby rendering them highly useful and convenient in no-wash live-cell imaging. This topic was extensively reviewed in 2010 by Wang et al. (Chem. Soc. Rev.2010, 39, 1233-1239) and in 2014 by Lin et al. (Curr. Opin. Chem. Biol.2014, 21, 89-95). This review presents a comprehensive and up-to-date overview on the fluorogenic reactions in the past decade. The reactions are classified into four major categories on the basis of the mechanisms of fluorescence generation. Representative examples of each type are discussed briefly in terms of structure, mechanism, and advantages. We describe the latest applications of fluorogenic reactions in chemical biology. In the end, future opportunities and challenges in this field are tentatively proposed.
Collapse
Affiliation(s)
- Yanyan Chen
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tingting Hao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingyu Li
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingyun Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
14
|
Schwark M, Martínez Yerena JA, Röhrborn K, Hrouzek P, Divoká P, Štenclová L, Delawská K, Enke H, Vorreiter C, Wiley F, Sippl W, Sobotka R, Saha S, Wilde SB, Mareš J, Niedermeyer THJ. More than just an eagle killer: The freshwater cyanobacterium Aetokthonos hydrillicola produces highly toxic dolastatin derivatives. Proc Natl Acad Sci U S A 2023; 120:e2219230120. [PMID: 37751550 PMCID: PMC10556625 DOI: 10.1073/pnas.2219230120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cyanobacteria are infamous producers of toxins. While the toxic potential of planktonic cyanobacterial blooms is well documented, the ecosystem level effects of toxigenic benthic and epiphytic cyanobacteria are an understudied threat. The freshwater epiphytic cyanobacterium Aetokthonos hydrillicola has recently been shown to produce the "eagle killer" neurotoxin aetokthonotoxin (AETX) causing the fatal neurological disease vacuolar myelinopathy. The disease affects a wide array of wildlife in the southeastern United States, most notably waterfowl and birds of prey, including the bald eagle. In an assay for cytotoxicity, we found the crude extract of the cyanobacterium to be much more potent than pure AETX, prompting further investigation. Here, we describe the isolation and structure elucidation of the aetokthonostatins (AESTs), linear peptides belonging to the dolastatin compound family, featuring a unique modification of the C-terminal phenylalanine-derived moiety. Using immunofluorescence microscopy and molecular modeling, we confirmed that AEST potently impacts microtubule dynamics and can bind to tubulin in a similar matter as dolastatin 10. We also show that AEST inhibits reproduction of the nematode Caenorhabditis elegans. Bioinformatic analysis revealed the AEST biosynthetic gene cluster encoding a nonribosomal peptide synthetase/polyketide synthase accompanied by a unique tailoring machinery. The biosynthetic activity of a specific N-terminal methyltransferase was confirmed by in vitro biochemical studies, establishing a mechanistic link between the gene cluster and its product.
Collapse
Affiliation(s)
- Markus Schwark
- Institute of Pharmacy, Pharmacognosy, Martin-Luther-University Halle-Wittenberg, Halle (Saale)06120, Germany
| | - José A. Martínez Yerena
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice37005, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice37005, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Kristin Röhrborn
- Institute of Pharmacy, Pharmacognosy, Martin-Luther-University Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Petra Divoká
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Lenka Štenclová
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice37005, Czech Republic
| | - Kateřina Delawská
- Faculty of Science, University of South Bohemia, České Budějovice37005, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Heike Enke
- Simris Biologics GmbH, Berlin12489, Germany
| | - Christopher Vorreiter
- Institute of Pharmacy, Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Faith Wiley
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, SC29412
| | - Wolfgang Sippl
- Institute of Pharmacy, Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Roman Sobotka
- Faculty of Science, University of South Bohemia, České Budějovice37005, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Subhasish Saha
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Susan B. Wilde
- Warnell School of Forestry and Natural Resources, Fisheries and Wildlife, University of Georgia, Athens, GA30602
| | - Jan Mareš
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice37005, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice37005, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň37901, Czech Republic
| | - Timo H. J. Niedermeyer
- Institute of Pharmacy, Pharmacognosy, Martin-Luther-University Halle-Wittenberg, Halle (Saale)06120, Germany
- Institute of Pharmacy, Pharmaceutical Biology, Free University of Berlin, Berlin14195, Germany
| |
Collapse
|
15
|
Lukowski AL, Hubert FM, Ngo TE, Avalon NE, Gerwick WH, Moore BS. Enzymatic Halogenation of Terminal Alkynes. J Am Chem Soc 2023; 145:18716-18721. [PMID: 37594919 PMCID: PMC10486310 DOI: 10.1021/jacs.3c05750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The biosynthetic installation of halogen atoms is largely performed by oxidative halogenases that target a wide array of electron-rich substrates, including aromatic compounds and conjugated systems. Halogenated alkyne-containing molecules are known to occur in Nature; however, halogen atom installation on the terminus of an alkyne has not been demonstrated in enzyme catalysis. Herein, we report the discovery and characterization of an alkynyl halogenase in natural product biosynthesis. We show that the flavin-dependent halogenase from the jamaicamide biosynthetic pathway, JamD, is not only capable of terminal alkyne halogenation on a late-stage intermediate en route to the final natural product but also has broad substrate tolerance for simple to complex alkynes. Furthermore, JamD is specific for terminal alkynes over other electron-rich aromatic substrates and belongs to a newly identified family of halogenases from marine cyanobacteria, indicating its potential as a chemoselective biocatalyst for the formation of haloalkynes.
Collapse
Affiliation(s)
- April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Felix M Hubert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Thuan-Ethan Ngo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Nicole E Avalon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Ngo TE, Ecker A, Guild A, Remmel A, Boudreau PD, Alexander KL, Naman CB, Glukhov E, Avalon NE, Shende VV, Gerwick L, Gerwick WH. Structure and Biosynthesis of Hectoramide B, a Linear Depsipeptide from the Marine Cyanobacterium Moorena producens JHB Discovered via Co-culture with Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547815. [PMID: 37461655 PMCID: PMC10350029 DOI: 10.1101/2023.07.06.547815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The tropical marine cyanobacterium Moorena producens JHB is a prolific source of secondary metabolites with potential biomedical utility. Previous studies of this strain led to the discovery of several novel compounds such as the hectochlorins and jamaicamides; however, bioinformatic analyses of its genome suggested that there were many more cryptic biosynthetic gene clusters yet to be characterized. To potentially stimulate the production of novel compounds from this strain, it was co-cultured with Candida albicans. From this experiment, we observed the increased production of a new compound that we characterize here as hectoramide B. Bioinformatic analysis of the M. producens JHB genome enabled the identification of a putative biosynthetic gene cluster responsible for hectoramide B biosynthesis. This work demonstrates that co-culture competition experiments can be a valuable method to facilitate the discovery of novel natural products from cyanobacteria.
Collapse
Affiliation(s)
- Thuan-Ethan Ngo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew Ecker
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Aurora Guild
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ariana Remmel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Paul D Boudreau
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi 38677, USA
| | - Kelsey L Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Chemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - C Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Science and Conservation, San Diego Botanic Garden, 300 Quail Gardens Drive, Encinitas, CA, 92024, USA
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole E Avalon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Vikram V Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Kudo F, Chikuma T, Nambu M, Chisuga T, Sumimoto S, Iwasaki A, Suenaga K, Miyanaga A, Eguchi T. Unique Initiation and Termination Mechanisms Involved in the Biosynthesis of a Hybrid Polyketide-Nonribosomal Peptide Lyngbyapeptin B Produced by the Marine Cyanobacterium Moorena bouillonii. ACS Chem Biol 2023; 18:875-883. [PMID: 36921345 PMCID: PMC10127204 DOI: 10.1021/acschembio.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Takuji Chikuma
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Mizuki Nambu
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Shimpei Sumimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
18
|
Dhakal D, Kokkaliari S, Rubin GM, Paul VJ, Ding Y, Luesch H. Biosynthesis of Lyngbyastatins 1 and 3, Cytotoxic Depsipeptides from an Okeania sp. Marine Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2023; 86:85-93. [PMID: 36546857 PMCID: PMC10197921 DOI: 10.1021/acs.jnatprod.2c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lyngbyastatins (Lbns) 1 (1) and 3 (2) belong to a group of cyclic depsipeptides that inhibit cancer cell proliferation. These compounds have been isolated from different marine cyanobacterial collections, while further development of these compounds relies on their lengthy total synthesis. Biosynthetic studies of these compounds can provide viable strategies to access these compounds and develop new analogs. In this study, we report the identification and characterization of one Lbn biosynthetic gene cluster (BGC) from the marine cyanobacterium Okeania sp. VPG18-21. We initially identified 1 and 2 in the organic extract by mass spectrometry and performed the targeted isolation of these compounds, which feature a (2S,3R)-3-amino-2-methylpentanoic acid (MAP) and a (2S,3R)-3-amino-2-methylhexanoic acid (Amha) moiety, respectively. Parallel metagenomic sequencing of VPG18-21 led to the identification of a putative Lbn BGC that encodes six megaenzymes (LbnA-F), including one polyketide synthase (PKS, LbnE), four nonribosomal peptide synthetases (NRPSs, LbnB-D and -F), and one PKS-NRPS hybrid (LbnA). Bioinformatic analysis of these enzymes suggested that the BGC produces 1 and 2. Furthermore, our biochemical studies of three recombinant adenylation domains uncovered their substrate specificities, supporting the identity of the BGC. Finally, we identified near-complete Lbn-like BGCs in the genomes of two other marine cyanobacteria.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sofia Kokkaliari
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Garret M. Rubin
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
| | - Yousong Ding
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
19
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
20
|
Choirunnisa AR, Arima K, Abe Y, Kagaya N, Kudo K, Suenaga H, Hashimoto J, Fujie M, Satoh N, Shin-ya K, Matsuda K, Wakimoto T. New azodyrecins identified by a genome mining-directed reactivity-based screening. Beilstein J Org Chem 2022; 18:1017-1025. [PMID: 36051562 PMCID: PMC9379638 DOI: 10.3762/bjoc.18.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Only a few azoxy natural products have been identified despite their intriguing biological activities. Azodyrecins D–G, four new analogs of aliphatic azoxides, were identified from two Streptomyces species by a reactivity-based screening that targets azoxy bonds. A biological activity evaluation demonstrated that the double bond in the alkyl side chain is important for the cytotoxicity of azodyrecins. An in vitro assay elucidated the tailoring step of azodyrecin biosynthesis, which is mediated by the S-adenosylmethionine (SAM)-dependent methyltransferase Ady1. This study paves the way for the targeted isolation of aliphatic azoxy natural products through a genome-mining approach and further investigations of their biosynthetic mechanisms.
Collapse
Affiliation(s)
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yo Abe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Noritaka Kagaya
- Technology Research Association for Next Generation Natural Products Chemistry, Tokyo 135-0064, Japan
| | - Kei Kudo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
21
|
Back D, Shaffer BT, Loper JE, Philmus B. Untargeted Identification of Alkyne-Containing Natural Products Using Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reactions Coupled to LC-MS/MS. JOURNAL OF NATURAL PRODUCTS 2022; 85:105-114. [PMID: 35044192 PMCID: PMC8853637 DOI: 10.1021/acs.jnatprod.1c00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alkyne-containing natural products have been identified from plants, insects, algae, fungi, and bacteria. This class of natural products has been characterized as having a variety of biological activities. Polyynes are a subclass of acetylenic natural products that contain conjugated alkynes and are underrepresented in natural product databases due to the fact that they decompose during purification. Here we report a workflow that utilizes alkyne azide cycloaddition (AAC) reactions followed by LC-MS/MS analysis to identify acetylenic natural products. In this report, we demonstrate that alkyne azide cycloaddition reactions with p-bromobenzyl azide result in p-bromobenzyl-substituted triazole products that fragment to a common brominated tropylium ion. We were able to identify a synthetic alkyne spiked into the extract of Anabaena sp. PCC 7120 at a concentration of 10 μg/mL after optimization of MS/MS conditions. We then successfully identified the known natural product fischerellin A in the extract of Fischerella muscicola PCC 9339. Lastly, we identified the recently identified natural products protegenins A and C from Pseudomonas protegens Pf-5 through a combination of genome mining and RuAAC reactions. This is the first report of RuAAC reactions to detect acetylenic natural products. We also compare CuAAC and RuAAC reactions and find that CuAAC reactions produce fewer byproducts compared to RuAAC but is limited to terminal-alkyne-containing compounds. In contrast, RuAAC is capable of identification of both terminal and internal acetylenic natural products, but byproducts need to be eliminated from analysis by creation of an exclusion list. We believe that both CuAAC and RuAAC reactions coupled to LC-MS/MS represent a method for the untargeted identification of acetylenic natural products, but each method has strengths and weaknesses.
Collapse
Affiliation(s)
- Daniel Back
- Department of Pharmaceutical Sciences, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331
| | - Brenda T. Shaffer
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330
| | - Joyce E. Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331
| |
Collapse
|
22
|
Adak S, Moore BS. Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 2021; 38:1760-1774. [PMID: 34676862 DOI: 10.1039/d1np00010a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Up to December 2020Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C-C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed "cryptic". In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
23
|
Investigating the Role of Vanadium-Dependent Haloperoxidase Enzymology in Microbial Secondary Metabolism and Chemical Ecology. mSystems 2021; 6:e0078021. [PMID: 34427499 PMCID: PMC8407465 DOI: 10.1128/msystems.00780-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chemical diversity of natural products is established by an elegant network of biosynthetic machinery and controlled by a suite of intracellular and environmental cues. Advances in genomics, transcriptomics, and metabolomics have provided useful insight to understand how organisms respond to abiotic and biotic factors to adjust their chemical output; this has permitted researchers to begin asking bigger-picture questions regarding the ecological significance of these molecules to the producing organism and its community. Our lab is motivated by understanding how select microbes construct and manipulate bioactive molecules by utilizing vanadium-dependent haloperoxidase (VHPO) enzymology. This commentary will give perspective into our efforts to understand the unique VHPO-catalyzed conversions which modulate the activities within two ecologically relevant natural product families. Through enhancing our knowledge of microbial natural product biosynthesis, we can understand how and why these bioactive molecules are created.
Collapse
|
24
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Behsaz B, Bode E, Gurevich A, Shi YN, Grundmann F, Acharya D, Caraballo-Rodríguez AM, Bouslimani A, Panitchpakdi M, Linck A, Guan C, Oh J, Dorrestein PC, Bode HB, Pevzner PA, Mohimani H. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat Commun 2021; 12:3225. [PMID: 34050176 PMCID: PMC8163882 DOI: 10.1038/s41467-021-23502-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.
Collapse
Affiliation(s)
- Bahar Behsaz
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edna Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia
| | - Yan-Ni Shi
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Grundmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Deepa Acharya
- Tiny Earth Chemistry Hub, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Annabell Linck
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Changhui Guan
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt & Senckenberg Research Institute, Frankfurt am Main, Germany.
- Max-Planck-Institute for Terrestrial Microbiology, Department for Natural Products in Organismic Interactions, Marburg, Germany.
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 2021; 371:eaax9050. [PMID: 33766860 PMCID: PMC8318203 DOI: 10.1126/science.aax9050] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.
Collapse
Affiliation(s)
- Steffen Breinlinger
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Tabitha J Phillips
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Brigette N Haram
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Jan Mareš
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - José A Martínez Yerena
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - W Matthew Henderson
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - H Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA, USA
| | - Wesley Gerrin
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Andreja Kust
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - John W Washington
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Christoph Wagner
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | | | - Timo H J Niedermeyer
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Susan B Wilde
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Li X, Lv JM, Hu D, Abe I. Biosynthesis of alkyne-containing natural products. RSC Chem Biol 2021; 2:166-180. [PMID: 34458779 PMCID: PMC8341276 DOI: 10.1039/d0cb00190b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
28
|
A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Mar Drugs 2021; 19:md19010020. [PMID: 33418911 PMCID: PMC7825088 DOI: 10.3390/md19010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.
Collapse
|
29
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
30
|
Applying a Chemogeographic Strategy for Natural Product Discovery from the Marine Cyanobacterium Moorena bouillonii. Mar Drugs 2020; 18:md18100515. [PMID: 33066480 PMCID: PMC7602127 DOI: 10.3390/md18100515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
The tropical marine cyanobacterium Moorena bouillonii occupies a large geographic range across the Indian and Western Tropical Pacific Oceans and is a prolific producer of structurally unique and biologically active natural products. An ensemble of computational approaches, including the creation of the ORCA (Objective Relational Comparative Analysis) pipeline for flexible MS1 feature detection and multivariate analyses, were used to analyze various M. bouillonii samples. The observed chemogeographic patterns suggested the production of regionally specific natural products by M. bouillonii. Analyzing the drivers of these chemogeographic patterns allowed for the identification, targeted isolation, and structure elucidation of a regionally specific natural product, doscadenamide A (1). Analyses of MS2 fragmentation patterns further revealed this natural product to be part of an extensive family of herein annotated, proposed natural structural analogs (doscadenamides B–J, 2–10); the ensemble of structures reflect a combinatorial biosynthesis using nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) components. Compound 1 displayed synergistic in vitro cancer cell cytotoxicity when administered with lipopolysaccharide (LPS). These discoveries illustrate the utility in leveraging chemogeographic patterns for prioritizing natural product discovery efforts.
Collapse
|
31
|
Lundy TA, Mori S, Garneau-Tsodikova S. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. RSC Chem Biol 2020; 1:233-250. [PMID: 34458763 PMCID: PMC8341866 DOI: 10.1039/d0cb00092b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Interrupted adenylation (A) domains are key to the immense structural diversity seen in the nonribosomal peptide (NRP) class of natural products (NPs). Interrupted A domains are A domains that contain within them the catalytic portion of another domain, most commonly a methylation (M) domain. It has been well documented that methylation events occur with extreme specificity on either the backbone (N-) or side chain (O- or S-) of the amino acid (or amino acid-like) building blocks of NRPs. Here, through taxonomic and phylogenetic analyses as well as multiple sequence alignments, we evaluated the similarities and differences between interrupted A domains. We probed their taxonomic distribution amongst bacterial organisms, their evolutionary relatedness, and described conserved motifs of each type of M domain found to be embedded in interrupted A domains. Additionally, we categorized interrupted A domains and the M domains within them into a total of seven distinct families and six different types, respectively. The families of interrupted A domains include two new families, 6 and 7, that possess new architectures. Rather than being interrupted between the previously described a2–a3 or a8–a9 of the ten conserved A domain sequence motifs (a1–a10), family 6 contains an M domain between a6–a7, a previously unknown interruption site. Family 7 demonstrates that di-interrupted A domains exist in Nature, containing an M domain between a2–a3 as well as one between a6–a7, displaying a novel arrangement. These in-depth investigations of amino acid sequences deposited in the NCBI database highlighted the prevalence of interrupted A domains in bacterial organisms, with each family of interrupted A domains having a different taxonomic distribution. They also emphasized the importance of utilizing a broad range of bacteria for NP discovery. Categorization of the families of interrupted A domains and types of M domains allowed for a better understanding of the trends of naturally occurring interrupted A domains, which illuminated patterns and insights on how to harness them for future engineering studies. In-depth study of intriguing bacterial interrupted adenylation domains from seven distinct families and six different types.![]()
Collapse
Affiliation(s)
- Taylor A Lundy
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Shogo Mori
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| |
Collapse
|
32
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
33
|
Della Sala G, Mangoni A, Costantino V, Teta R. Identification of the Biosynthetic Gene Cluster of Thermoactinoamides and Discovery of New Congeners by Integrated Genome Mining and MS-Based Molecular Networking. Front Chem 2020; 8:397. [PMID: 32528927 PMCID: PMC7253712 DOI: 10.3389/fchem.2020.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
The putative non-ribosomal peptide synthetase (NRPS) gene cluster encoding the biosynthesis of the bioactive cyclohexapeptide thermoactinoamide A (1) was identified in Thermoactinomyces vulgaris DSM 43016. Based on an in silico prediction, the biosynthetic operon was shown to contain two trimodular NRPSs, designated as ThdA and ThdB, respectively. Chemical analysis of a bacterial crude extract showed the presence of thermoactinoamide A (1), thereby supporting this biosynthetic hypothesis. Notably, integrating genome mining with a LC-HRMS/MS molecular networking-based investigation of the microbial metabolome, we succeeded in the identification of 10 structural variants (2–11) of thermoactinoamide A (1), five of them being new compounds (thermoactinoamides G-K, 7–11). As only one thermoactinoamide operon was found in T. vulgaris, it can be assumed that all thermoactinoamide congeners are assembled by the same multimodular NRPS system. In light of these findings, we suggest that the thermoactinoamide synthetase is able to create chemical diversity, combining the relaxed substrate selectivity of some adenylation domains with the iterative and/or alternative use of specific modules. In the frame of our screening program to discover antitumor natural products, thermoactinoamide A (1) was shown to exert a moderate growth-inhibitory effect in BxPC-3 cancer cells in the low micromolar range, while being inactive in PANC-1 and 3AB-OS solid tumor models.
Collapse
Affiliation(s)
- Gerardo Della Sala
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Naples Federico II, Naples, Italy
| | - Valeria Costantino
- Dipartimento di Farmacia, Università degli Studi di Naples Federico II, Naples, Italy
| | - Roberta Teta
- Dipartimento di Farmacia, Università degli Studi di Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Porterfield WB, Poenateetai N, Zhang W. Engineered Biosynthesis of Alkyne-Tagged Polyketides by Type I PKSs. iScience 2020; 23:100938. [PMID: 32146323 PMCID: PMC7063234 DOI: 10.1016/j.isci.2020.100938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 01/20/2023] Open
Abstract
Polyketides produced by modular polyketide synthases (PKSs) are important small molecules widely used as drugs, pesticides, and biological probes. Tagging these polyketides with a clickable functionality enables the visualization, diversification, and mode of action study through bio-orthogonal chemistry. We report the de novo biosynthesis of alkyne-tagged polyketides by modular type I PKSs through starter unit engineering. Specifically, we use JamABC, a terminal alkyne biosynthetic machinery from the jamaicamide B biosynthetic pathway, in combination with representative modular PKSs. We demonstrate that JamABC works as a trans loading system for engineered type I PKSs to produce alkyne-tagged polyketides. In addition, the production efficiency can be improved by enhancing the interactions between the carrier protein (JamC) and PKSs using docking domains and site-directed mutagenesis of JamC. This work thus provides engineering guidelines and strategies that are applicable to additional modular type I PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications. Alkyne-tagged polyketides are de novo biosynthesized using type I PKSs Docking domains and ACP mutagenesis improve alkyne starter unit translocation Docking domains, but not ACP mutagenesis, perturb alkyne biosynthetic machinery
Collapse
Affiliation(s)
- William B Porterfield
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Nannalin Poenateetai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Ji Z, Nie Q, Yin Y, Zhang M, Pan H, Hou X, Tang G. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Yu Ji
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiu‐Yue Nie
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xian‐Feng Hou
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
36
|
Ji ZY, Nie QY, Yin Y, Zhang M, Pan HX, Hou XF, Tang GL. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019; 58:18046-18054. [PMID: 31553109 DOI: 10.1002/anie.201910882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/15/2022]
Abstract
One biosynthetic gene cluster (BGC) usually governs the biosynthesis of a series of compounds exhibiting either the same or similar molecular scaffolds. Reported here is a multiplex activation strategy to awaken a cryptic BGC associated with tetracycline polyketides, resulting in the discovery of compounds having different core structures. By constitutively expressing a positive regulator gene in tandem mode, a single BGC directed the biosynthesis of eight aromatic polyketides with two types of frameworks, two pentacyclic isomers and six glycosylated tetracyclines. The proposed biosynthetic pathway, based on systematic gene inactivation and identification of intermediates, employs two sets of tailoring enzymes with a branching point from the same intermediate. These findings not only provide new insights into the role of tailoring enzymes in the diversification of polyketides, but also highlight a reliable strategy for genome mining of natural products.
Collapse
Affiliation(s)
- Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
37
|
Li T, Tripathi A, Yu F, Sherman DH, Rao A. DDAP: docking domain affinity and biosynthetic pathway prediction tool for type I polyketide synthases. Bioinformatics 2019; 36:942-944. [PMID: 31504190 PMCID: PMC8215927 DOI: 10.1093/bioinformatics/btz677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023] Open
Abstract
SUMMARY DDAP is a tool for predicting the biosynthetic pathways of the products of type I modular polyketide synthase (PKS) with the focus on providing a more accurate prediction of the ordering of proteins and substrates in the pathway. In this study, the module docking domain (DD) affinity prediction performance on a hold-out testing dataset reached 0.88 as measured by the area under the receiver operating characteristic (ROC) curve (AUC); the Mean Reciprocal Ranking (MRR) of pathway prediction reached 0.67. DDAP has advantages compared to previous informatics tools in several aspects: (i) it does not rely on large databases, making it a high efficiency tool, (ii) the predicted DD affinity is represented by a probability (0-1), which is more intuitive than raw scores, (iii) its performance is competitive compared to the current popular rule-based algorithm. DDAP is so far the first machine learning based algorithm for type I PKS DD affinity and pathway prediction. We also established the first database of type I modular PKSs, featuring a comprehensive annotation of available docking domains information in bacterial biosynthetic pathways. AVAILABILITY AND IMPLEMENTATION The DDAP database is available at https://tylii.github.io/ddap. The prediction algorithm DDAP is freely available on GitHub (https://github.com/tylii/ddap) and released under the MIT license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tingyang Li
- Department of Computational Medicine and Bioinformatics, MI, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, MI, USA,Department of Medicinal Chemistry, MI, USA
| | - Fengan Yu
- Natural Products Discovery Core, Life Sciences Institute, MI, USA
| | - David H Sherman
- Natural Products Discovery Core, Life Sciences Institute, MI, USA,Department of Medicinal Chemistry, MI, USA,Department of Chemistry, Department of Microbiology and Immunology, MI, USA
| | - Arvind Rao
- To whom correspondence should be addressed.
| |
Collapse
|