1
|
Wang C, Dong W, Zhang P, Ma Y, Han Z, Zou Y, Wang W, Li H, Hollmann F, Liu J. Formate-Mediated Electroenzymatic Synthesis via Biological Cofactor NADH. Angew Chem Int Ed Engl 2024; 63:e202408756. [PMID: 39034766 DOI: 10.1002/anie.202408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
Synthetic biohybrid systems by coupling artificial system with nature's machinery may offer a disruptive solution to address the global energy crisis. We developed a versatile electroenzymatic pathway for the continuous synthesis of valuable chemicals, facilitated by formate-driven NADH regeneration. Utilizing a bismuth electrocatalyst, we achieved stable CO2 reduction to formate with approximately 90 % Faraday efficiency at a current density of 150 mA cm-2. The generated formate acts as a mediator to regenerate NADH, which is then coupled with immobilized redox enzymes-alcohol dehydrogenase (ADH), L-lactate dehydrogenase (LDH), and L-glutamate dehydrogenase (GDH)-to produce targeted chemicals at significant rates and exceptionally high turnover numbers (1.8×106 to 3.1×106). These achievements not only underscore the efficiency of the system but also its practical applicability in industrial settings. By leveraging in situ generated formate, this innovative approach demonstrates the potential of integrating electrocatalysis with enzymatic reactions for sustainable and efficient chemical production on a practical scale.
Collapse
Affiliation(s)
- Chuanjun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wenjin Dong
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Pengye Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yaya Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhiwei Han
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yutai Zou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenshuo Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hao Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, The, Netherlands
| | - Jian Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Guo J, Yue X, Hou Y, Wang Y, Liu Y, Liu G, He Y, Ma L, Zhou L, Jiang Y. Immobilization of cross-linked enzymes aggregates on hierarchical covalent organic frameworks: Highly stable chemoenzymatic nanoreactor for asymmetric synthesis of optically active halohydrins. Int J Biol Macromol 2024; 278:134641. [PMID: 39128755 DOI: 10.1016/j.ijbiomac.2024.134641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Organometallic catalyst is extensively applied for the non-enzymatic regeneration of nicotinamide adenine dinucleotide (phosphate) cofactors, but suffering from the mutual inactivation with the enzymes in one pot. The spatially separated immobilization of organometallic catalyst and enzymes on suitable carriers not only can reduce their mutual inhabitation but also can enhance their reusability. Here in this work, we present a hierarchical porous COFs (HP-TpBpy) that incorporated with [(Cp*RhCl2]2 to generate the metalized COF, Rh-HP-TpBpy. The obtained Rh-HP-TpBpy exhibited superior performance in nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration using formate as the hydride donor, significantly outperforming the natural formate dehydrogenases in cofactor preference toward NADP+. Subsequently, the Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) was then cross-linked into enzyme aggregates (CLEA) and immobilized on hierarchical Rh-HP-TpBpy, achieving the integrated chemoenzymatic catalyst, LfSDR1@Rh-HP-TpBpy, which can catalyze the chemoenzymatic reduction of halogenated aryl ketones and give the corresponding optically active halohydrins with high conversion and enantiomeric excess (ee) value up to 99 %. The LfSDR1@Rh-HP-TpBpy also exhibits largely enhanced stability compared with the free LfSDR1 and the CLEAs-LfSDR1, enabling its excellent reusability.
Collapse
Affiliation(s)
- Jiayi Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Xiaoyang Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Yuying Hou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yujie Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Bork H, Naße KE, Vorholt AJ, Gröger H. Merging High-Pressure Syngas Metal Catalysis and Biocatalysis in Tandem One-Pot Processes for the Synthesis of Nonchiral and Chiral Alcohols from Alkenes in Water. Angew Chem Int Ed Engl 2024; 63:e202401989. [PMID: 38628134 DOI: 10.1002/anie.202401989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 06/12/2024]
Abstract
While simultaneously proceeding reactions are among the most fascinating features of biosynthesis, this concept of tandem processes also offers high potential in the chemical industry in terms of less waste production and improved process efficiency and sustainability. Although examples of one-pot chemoenzymatic syntheses exist, the combination of completely different reaction types is rare. Herein, we demonstrate that extreme "antipodes" of the "worlds of catalysis", such as syngas-based high-pressure hydroformylation and biocatalyzed reduction, can be combined within a tandem-type one-pot process in water. No significant deactivation was found for either the biocatalyst or the chemocatalyst. A proof-of-concept for the one-pot process starting from 1-octene was established with >99 % conversion and 80 % isolated yield of the desired alcohol isomers. All necessary components for hydroformylation and biocatalysis were added to the reactor from the beginning. This concept has been extended to the enantioselective synthesis of chiral products by conducting the hydroformylation of styrene and an enzymatic dynamic kinetic resolution in a tandem mode, leading to an excellent conversion of >99 % and an enantiomeric ratio of 91 : 9 for (S)-2-phenylpropanol. The overall process runs in water under mild and energy-saving conditions, without any need for intermediate isolation.
Collapse
Affiliation(s)
- Hannah Bork
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kim E Naße
- Department of Molecular Catalysis, Group Multiphase Catalysis, MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Andreas J Vorholt
- Department of Molecular Catalysis, Group Multiphase Catalysis, MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Zhao H, Zhang J, Liu Y, Liu X, Ma L, Zhou L, Gao J, Liu G, Yue X, Jiang Y. Molecular Engineering and Morphology Control of Covalent Organic Frameworks for Enhancing Activity of Metal-Enzyme Cascade Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400730. [PMID: 38654621 PMCID: PMC11220694 DOI: 10.1002/advs.202400730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Metal-enzyme integrated catalysts (MEICs) that combine metal and enzyme offer great potential for sustainable chemoenzymatic cascade catalysis. However, rational design and construction of optimal microenvironments and accessible active sites for metal and enzyme in individual nanostructures are necessary but still challenging. Herein, Pd nanoparticles (NPs) and Candida antarctica lipase B (CALB) are co-immobilized into the pores and surfaces of covalent organic frameworks (COFs) with tunable functional groups, affording Pd/COF-X/CALB (X = ONa, OH, OMe) MEICs. This strategy can regulate the microenvironment around Pd NPs and CALB, and their interactions with substrates. As a result, the activity of the COF-based MEICs in catalyzing dynamic kinetic resolution of primary amines is enhanced and followed COF-OMe > COF-OH > COF-ONa. The experimental and simulation results demonstrated that functional groups of COFs modulated the conformation of CALB, the electronic states of Pd NPs, and the affinity of the integrated catalysts to the substrate, which contributed to the improvement of the catalytic activity of MEICs. Further, the MEICs are prepared using COF with hollow structure as support material, which increased accessible active sites and mass transfer efficiency, thus improving catalytic performance. This work provides a blueprint for rational design and preparation of highly active MEICs.
Collapse
Affiliation(s)
- Hao Zhao
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Jialin Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Yunting Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Xinlong Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Li Ma
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Liya Zhou
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Jing Gao
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Guanhua Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Xiaoyang Yue
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| | - Yanjun Jiang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401China
| |
Collapse
|
5
|
Zeng H, Zhou S, Zhang X, Liang Q, Yan M, Xu Y, Guo Y, Hu X, Jiang L, Kong B. Super-assembled periodic mesoporous organosilica membranes with hierarchical channels for efficient glutathione sensing. Analyst 2024; 149:3522-3529. [PMID: 38787653 DOI: 10.1039/d4an00559g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 μM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong 250103, P. R. China
| |
Collapse
|
6
|
Gao Z, Li Y, Xing J, Lu Y, Shao Q, Hu J, Zhao S, He W, Sun B. Transition Metal Ru(II) Catalysts Immobilized Nanoreactors for Conditional Bioorthogonal Catalysis in Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15870-15878. [PMID: 38520329 DOI: 10.1021/acsami.3c19133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Employing transition metal catalysts (TMCs) to perform bioorthogonal activation of prodrugs and pro-fluorophores in biological systems, particularly in a conditional fashion, remains a challenge. Here, we used a mesoporous organosilica nanoscaffold (RuMSN), which localizes Ru(II) conjugates on the pore wall, enabling the biorthogonal photoreduction reactions of azide groups. Due to easily adjustable surface charges and pore diameter, this efficiently engineering RuMSN catalyst, with abundant active sites on the inner pore well, could spontaneously repel or attract substrates with different molecular sizes and charges and thus ensure selective bioorthogonal catalysis. Depending on it, engineering RuMSN nanoreactors showed fascinating application scales from conditional bioorthogonal activation of prodrugs and pro-fluorophores in either intra- or extracellular localization to performing intracellular concurrent and tandem catalysis together with natural enzymes.
Collapse
Affiliation(s)
- Zhiguo Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojia Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaqi Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Quanlin Shao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Shan Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| |
Collapse
|
7
|
Qiao L, Zhang J, Jiang Y, Ma B, Chen H, Gao P, Zhang P, Wang A, Sheldon RA. Near-infrared light-driven asymmetric photolytic reduction of ketone using inorganic-enzyme hybrid biocatalyst. Int J Biol Macromol 2024; 264:130612. [PMID: 38447845 DOI: 10.1016/j.ijbiomac.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Effective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing H2O as the sacrificial reductant. To this end we utilized TiO2/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation. This upconversion system, in which the Ti-O-C bonds formed between r-GQDs and TiO2 enabled efficient interfacial charge transfer, was able to regenerate NADPH efficiently in 64 % yield in 105 min. Based on this, the pharmaceutical intermediate (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol was obtained, in 84 % yield and 99.98 % ee, by reduction of the corresponding ketone. The photo-enzymatic system is recyclable with a polymeric electron mediator, which maintained 66 % of its original catalytic efficiency and excellent enantioselectivity (99.9 % ee) after 6 cycles.
Collapse
Affiliation(s)
- Li Qiao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jing Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Haomin Chen
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Peng Gao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Pengfei Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
8
|
Wang M, Dai H, Yang Q. Enzyme-Compatible Core-Shell Nanoreactor for in Situ H 2 -Driven NAD(P)H Regeneration. Angew Chem Int Ed Engl 2023; 62:e202309929. [PMID: 37584440 DOI: 10.1002/anie.202309929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
The regeneration of the reduced form cofactor NAD(P)H is essential for the extra-cellular application of bio-reduction, which necessitates not only the development of efficient artificial NAD(P)H regeneration catalytic system but also its well compatibility with the cascade enzymatic reduction system. In this work, we reported the preparation of a metal nanoparticle (NP) and metal complex integrated core-shell nanoreactor for H2 -driven NAD(P)H regeneration through the immobilization of a Rh complex on Ni/TiO2 surface via a bipyridine contained 3D porous organic polymer (POP). In comparison with the corresponding single component metal NPs and the immobilized Rh complex, the integrated catalyst presented simultaneously enhanced activity and selectivity in NAD(P)H regeneration thanks to the rapid spillover of activated H species from metal NPs to Rh complex. In addition, the size-sieving effect of POP precluded the direct interaction of enzyme and Rh complex confined in the pores, enabling the success coupling of core-shell nanoreactor and aldehyde ketone reductase (AKR) for chemoenzymatic reduction of acetophenone to (R)-1-phenylethan-1-ol. This work provides a strategy for the rational manipulation of multicomponent cooperation catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
9
|
Wu R, Li F, Cui X, Li Z, Ma C, Jiang H, Zhang L, Zhang YHPJ, Zhao T, Zhang Y, Li Y, Chen H, Zhu Z. Enzymatic Electrosynthesis of Glycine from CO 2 and NH 3. Angew Chem Int Ed Engl 2023; 62:e202218387. [PMID: 36759346 DOI: 10.1002/anie.202218387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Enzymatic electrosynthesis has gained more and more interest as an emerging green synthesis platform, particularly for the fixation of CO2 . However, the simultaneous utilization of CO2 and a nitrogenous molecule for the enzymatic electrosynthesis of value-added products has never been reported. In this study, we constructed an in vitro multienzymatic cascade based on the reductive glycine pathway and demonstrated an enzymatic electrocatalytic system that allowed the simultaneous conversion of CO2 and NH3 as the sole carbon and nitrogen sources to synthesize glycine. Through effective coupling and the optimization of electrochemical cofactor regeneration and the multienzymatic cascade reaction, 0.81 mM glycine was yielded with a highest reaction rate of 8.69 mg L-1 h-1 and faradaic efficiency of 96.8 %. These results imply a promising alternative for enzymatic CO2 electroreduction and expand its products to nitrogenous chemicals.
Collapse
Affiliation(s)
- Ranran Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zehua Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunling Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Tongxin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Zhiguang Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
10
|
Wei J, Zhao L, Zhang Y, Han G, He C, Wang C, Duan C. Enzyme Grafting with a Cofactor-Decorated Metal-Organic Capsule for Solar-to-Chemical Conversion. J Am Chem Soc 2023; 145:6719-6729. [PMID: 36916689 DOI: 10.1021/jacs.2c12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Semi-artificial approaches to solar-to-chemical conversion can achieve chemical transformations that are beyond the capability of natural enzymes, but face marked challenges to facilitate in vivo cascades, due to their inevitable need for cofactor shuttling and regeneration. Here, we report on an enzyme grafting strategy to build a metal-organic capsule-docking artificial enzyme (metal-organic-enzyme, MOE) that comprised the self-assembly of a cofactor-decorated capsule and the supramolecular enzyme-recognition features between the enzyme scaffold and the capsule to bypass cofactor shuttling and regeneration. The incorporated NADH mimics within the metal-organic capsule interacted with the imine intermediate that formed from the condensation of the amines and the dehydrogenation of alcohol substrates in the microenvironment to form complexes within the capsule and subsequently served as an in situ-generated photoresponsive cofactor. Upon illumination, the photoresponsive cofactor facilitates efficient proton/electron transport between the inner space (supramolecular hydrogenation) and outer space (enzymatic dehydrogenation) of the capsule to dehydrogenize the alcohols and hydrogenize the imine intermediates, respectively, circumventing the conventionally complex multistep cofactor shuttling and regeneration. The semi-artificial enzyme endows the conversion of diverse types of alcohol to amine products in both aqueous/organic solutions and Escherichia coli with high efficiency, offering a wide range of opportunities for sustainable and environmentally friendly biomanufacturing of commodity and fine chemicals.
Collapse
Affiliation(s)
- Jianwei Wei
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
11
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
12
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
13
|
Zhang J, Shen Y, Jin N, Zhao X, Li H, Ji N, Li Y, Zha B, Li L, Yao X, Zhang S, Huo F, Zhang W. Chemo-Biocascade Reactions Enabled by Metal–Organic Framework Micro-Nanoreactor. Research (Wash D C) 2022; 2022:9847698. [PMID: 36072270 PMCID: PMC9414180 DOI: 10.34133/2022/9847698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022] Open
Abstract
The one-pot combination of biocatalytic and chemocatalytic reactions represents an economically and ecologically attractive concept in the emerging cascade processes for manufacturing. The mutual incompatibility of biocatalysis and chemocatalysis, however, usually causes the deactivation of catalysts, the mismatching of reaction dynamic, and further challenges their integration into concurrent chemo-biocascades. Herein, we have developed a convenient strategy to construct versatile functional metal–organic framework micro-nanoreactors (MOF–MNRs), which can realize not only the encapsulation and protection of biocatalysts but also the controllable transmission of substances and the mutual communication of the incompatible chemo-biosystems. Importantly, the MOFs serving as the shell of MNRs have the capability of enriching the chemocatalysts on the surface and improving the activity of the chemocatalysts to sufficiently match the optimum aqueous reaction system of biocatalysts, which greatly increase the efficiency in the combined concurrent chemo-biocatalysis. Such strategy of constructing MOF–MNRs provides a unique platform for connecting the “two worlds” of chemocatalysis and biocatalysis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Xiaopeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yingjie Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Baoli Zha
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005 Fujian, China
| | - Xikuang Yao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005 Fujian, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| |
Collapse
|
14
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal-Organic Framework MIL-125-NH 2 for Photocatalytic NADH Regeneration and Gas-Liquid-Solid Three-Phase Enzymatic CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206283. [PMID: 35585038 DOI: 10.1002/anie.202206283] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/06/2023]
Abstract
Coenzyme NADH regeneration is crucial for sustained photoenzymatic catalysis of CO2 reduction. However, light-driven NADH regeneration still suffers from the low regeneration efficiency and requires the use of a homogeneous Rh complex. Herein, a Rh complex-based electron transfer unit was chemically attached onto the linker of the MIL-125-NH2 . The coupling between the light-harvesting iminopyridine unit and electron-transferring Rh-complex facilitated the photo-induced electron transfer for the NADH regeneration with the yield of 66.4 % in 60 mins for 5 cycles. The formate dehydrogenase was further deposited onto the hydrophobic layer of the membrane by a reverse filtering technique, which forms the gas-liquid-solid reaction interface around the enzyme site. It gave an enhanced formic acid yield of 9.5 mM in 24 hours coupled with the in situ regenerated NADH. The work could shed light on the construction of integrated inorganic-enzyme hybrid systems for artificial photosynthesis.
Collapse
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
15
|
Qiu S, Xu SY, Wang YJ, Zheng YG. Chemoenzymatic Catalysis of tert-Butyl 6-Cyano-(3R,5R)-dihydroxyhexanoate by Aldo-keto Reductase Coupled with Composite Fe3O4 Nanozyme Scaffold. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired Metalation of the Metal‐Organic Framework MIL‐125‐NH
2
for Photocatalytic NADH Regeneration and Gas‐Liquid‐Solid Three‐Phase Enzymatic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Lin
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| | - Yutao Hua
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Changchao Jia
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Dianxing Ju
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Jian Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Shandong Energy Institute Qingdao 266101 P. R. China
| |
Collapse
|
17
|
Li JY, Wang DK, Lin YT, Wey MY, Tseng HH. Homogeneous sub-nanophase network tailoring of dual organosilica membrane for enhancing CO2 gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat Commun 2022; 13:305. [PMID: 35027566 PMCID: PMC8758787 DOI: 10.1038/s41467-022-27983-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
Biocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency. Encapsulating multi-enzymes with multi-shelled MOFs by epitaxial shell-by-shell overgrowth leads to 5.8~13.5-fold enhancements in catalytic efficiencies compared with free enzymes in solution. Importantly, multi-shelled MOFs can act as a multi-spatial-compartmental nanoreactor that allows physically compartmentalize multiple enzymes in a single MOF nanoparticle for operating incompatible tandem biocatalytic reaction in one pot. Additionally, we use nanoscale Fourier transform infrared (nano-FTIR) spectroscopy to resolve nanoscale heterogeneity of vibrational activity associated to enzymes encapsulated in multi-shelled MOFs. Furthermore, multi-shelled MOFs enable facile control of multi-enzyme positions according to specific tandem reaction routes, in which close positioning of enzyme-1-loaded and enzyme-2-loaded shells along the inner-to-outer shells could effectively facilitate mass transportation to promote efficient tandem biocatalytic reaction. This work is anticipated to shed new light on designing efficient multi-enzyme catalytic cascades to encourage applications in many chemical and pharmaceutical industrial processes. Mimicking multi-enzyme catalytic cascades in natural systems with spatial organization in confined structures is gaining increasing attention in the emerging field of systems chemistry. Here, the authors demonstrate that multi-shelled metal-organic frameworks can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency.
Collapse
|
19
|
Chang F, Wang C, Chen Q, Zhang Y, Liu G. A Chemoenzymatic Cascade Combining a Hydration Catalyst with an Amine Dehydrogenase: Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengwei Chang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Chengyi Wang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Qipeng Chen
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Yongjin Zhang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| |
Collapse
|
20
|
Liu G, Chang F, Wang C, Chen Q, Zhang Y. A Chemoenzymatic Cascade Combining a Hydration Catalyst with an Amine Dehydrogenase: Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2021; 61:e202114809. [PMID: 34935242 DOI: 10.1002/anie.202114809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/07/2022]
Abstract
An encapsulated gold carbene complex was combined with a free amine dehydrogenase (GkAmDH) as a co-catalyst, enabling a cascade synthetic route to directly access chiral amines from propargylethers. This process, combining an initial gold carbene catalyzed hydration of propargylethers to ketones followed by a subsequent reductive amination, produces a wide range of chiral amines in high yields and excellent enantioselectivities.An encapsulated gold carbene complex was combined with a free amine dehydrogenase (GkAmDH) as a co-catalyst, enabling a cascade synthetic route to directly access chiral amines from propargylethers. This process, combining an initial gold carbene catalyzed hydration of propargylethers to ketones followed by a subsequent reductive amination, produces a wide range of chiral amines in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Guohua Liu
- Shanghai Normal University, Department of Chemistry, No.100 Guilin Rd, 200234, Shanghai, CHINA
| | - Fengwei Chang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Chengyi Wang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Qipeng Chen
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Yongjin Zhang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| |
Collapse
|
21
|
Liang Y. Recent advanced development of metal-loaded mesoporous organosilicas as catalytic nanoreactors. NANOSCALE ADVANCES 2021; 3:6827-6868. [PMID: 36132354 PMCID: PMC9417426 DOI: 10.1039/d1na00488c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 05/10/2023]
Abstract
Ordered periodic mesoporous organosilicas have been widely applied in adsorption/separation/sensor technologies and the fields of biomedicine/biotechnology as well as catalysis. Crucially, surface modification with functional groups and metal complexes or nanoparticle loading has ensured high efficacy and efficiency. This review will highlight the current state of design and catalytic application of transition metal-loaded mesoporous organosilica nanoreactors. It will outline prominent synthesis approaches for the grafting of metal complexes, metal salt adsorption and in situ preparation of metal nanoparticles, and summarize the catalytic performance of the resulting mesoporous organosilica hybrid materials. Finally, the potential prospects and challenges of metal-loaded mesoporous organosilica nanoreactors are addressed.
Collapse
Affiliation(s)
- Yucang Liang
- Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 Tübingen 72076 Germany +49 7071 292436
| |
Collapse
|
22
|
Cao Y, Ge J. Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63798-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Motokura K, Ding S, Usui K, Kong Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Siming Ding
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kei Usui
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuanyuan Kong
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
24
|
Lee YS, Gerulskis R, Minteer SD. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Curr Opin Biotechnol 2021; 73:14-21. [PMID: 34246871 DOI: 10.1016/j.copbio.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide(NAD(P)H) is a metabolically interconnected redox cofactor serving as a hydride source for the majority of oxidoreductases, and consequently constituting a significant cost factor for bioprocessing. Much research has been devoted to the development of efficient, affordable, and sustainable methods for the regeneration of these cofactors through chemical, electrochemical, and photochemical approaches. However, the enzymatic approach using formate dehydrogenase is still the most abundantly employed in industrial applications, even though it suffers from system complexity and product purity issues. In this review, we summarize non-enzymatic and enzymatic electrochemical approaches for cofactor regeneration, then discuss recent developments to solve major issues. Issues discussed include Rh-catalyst mediated enzyme mutual inactivation, electron-transfer rates, catalyst sustainability, product selectivity and simplifying product purification. Recently reported remedies are discussed, such as heterogeneous metal catalysts generating H+ as the sole byproduct or high activity and stability redox-polymer immobilized enzymatic systems for sustainable organic synthesis.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Rokas Gerulskis
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Cao Y, Li X, Ge J. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends Biotechnol 2021; 39:1173-1183. [PMID: 33551176 DOI: 10.1016/j.tibtech.2021.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Enzymatic catalysis, which has been driving biological processes in a green, mild, and efficient manner for billions of years, is increasingly being used in industrial processes to manufacture chemicals, pharmaceuticals, and materials for human society. Since enzymes were discovered, strategies to adapt enzymes for use as catalysts for industrial processes, such as chemical modification, immobilization, site-directed mutagenesis, directed evolution of enzymes, artificial metalloenzymes, and computational design, have been continuously pursued. In contrast to these strategies, editing enzymes to easily integrate biocatalysis with chemocatalysis is a potential way to apply enzymes in industry. Enzyme catalyst editing focuses on fine-tuning the microenvironment surrounding the enzyme or achieving a new catalytic function to construct better biocatalysis under non-natural conditions for the enzyme.
Collapse
Affiliation(s)
- Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
26
|
Lin XT, Matsumoto K, Maegawa Y, Takeuchi K, Fukaya N, Sato K, Inagaki S, Choi JC. Immobilized Zn(OAc) 2 on bipyridine-based periodic mesoporous organosilica for N-formylation of amines with CO 2 and hydrosilanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01204e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zn(OAc)2 immobilized on bipyridine-based periodic mesoporous organosilica is a good catalyst for N-formylation of amines with CO2 and PhSiH3.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| |
Collapse
|
27
|
Oligo(p-phenylenevinylene)-rhodium complex as intracellular catalyst for enhancing biosynthesis of polyhydroxybutyrate biomaterials. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zhang S, Zhang Y, Chen Y, Yang D, Li S, Wu Y, Sun Y, Cheng Y, Shi J, Jiang Z. Metal Hydride-Embedded Titania Coating to Coordinate Electron Transfer and Enzyme Protection in Photo-enzymatic Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yishan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yu Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Dong Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shihao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yizhou Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yuqing Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10090, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
29
|
Novel and efficient multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liquids for reusable synthesis of 2,4,5-trisubstituted imidazoles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Du Z, Liu C, Song H, Scott P, Liu Z, Ren J, Qu X. Neutrophil-Membrane-Directed Bioorthogonal Synthesis of Inflammation-Targeting Chiral Drugs. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Moaser AG, Ahadi A, Rouhani S, Mamba BB, Msagati TAM, Rostamnia S, Kavetskyy T, Dugheri S, Khaksar S, Hasanzadeh A, Shokouhimehr M. Curbed of molybdenum oxido-diperoxido complex on ionic liquid body of mesoporous Bipy-PMO-IL as a promising catalyst for selective sulfide oxidation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
33
|
Integrating biocatalysis with chemocatalysis for selective transformations. Curr Opin Chem Biol 2020; 55:161-170. [PMID: 32179434 DOI: 10.1016/j.cbpa.2020.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/14/2023]
Abstract
The integration of biocatalysis with chemocatalysis combines the excellent selectivity of the former with the robust reactivity of the latter and offers many advantages, such as lower cost, higher yield, enhanced selectivity, as well as less waste generation. In spite of the challenge of incompatibilities between different classes of catalysts, recent advances in synthetic chemistry and biology provide ample opportunities for multistep cascade transformations that combine biocatalysis and chemocatalysis. Herein, we review recent progress in merging biocatalysis with chemocatalysis, highlighting selected examples of photo-/electricity-driven biotransformations and recently developed strategies for addressing the catalyst incompatibility issue.
Collapse
|
34
|
Deng Y, Odziomek M, Sanchez C, Back O, Mougel V, Fontecave M. A Heterogeneous Recyclable Rhodium‐based Catalyst for the Reduction of Pyridine Dinucleotides and Flavins. ChemCatChem 2020. [DOI: 10.1002/cctc.201901726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifan Deng
- Laboratoire de Chimie des Processus Biologiques, Collège de France Sorbonne Université CNRS UMR 8229PSL Research University 11 place Marcelin Berthelot 75005 Paris France
| | - Mateusz Odziomek
- Sorbonne Université CNRS, Collège de FrancePSL Research University Laboratoire Chimie de la Matière Condensée de Paris, LCMCP 4 Place Jussieu 75005 Paris France
| | - Clement Sanchez
- Sorbonne Université CNRS, Collège de FrancePSL Research University Laboratoire Chimie de la Matière Condensée de Paris, LCMCP 4 Place Jussieu 75005 Paris France
| | - Olivier Back
- Solvay, Research & Innovation Center of Lyon 85 avenue des frères Perret 69190 Saint-Fons France
| | - Victor Mougel
- Laboratoire de Chimie des Processus Biologiques, Collège de France Sorbonne Université CNRS UMR 8229PSL Research University 11 place Marcelin Berthelot 75005 Paris France
- Department of Chemistry and Applied Biosciences Laboratory of Inorganic ChemistrySwiss Federal Institute of Technology Zürich Switzerland
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France Sorbonne Université CNRS UMR 8229PSL Research University 11 place Marcelin Berthelot 75005 Paris France
| |
Collapse
|
35
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2020; 59:746-751. [DOI: 10.1002/anie.201912404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|
36
|
Grabner B, Schweiger AK, Gavric K, Kourist R, Gruber-Woelfler H. A chemo-enzymatic tandem reaction in a mixture of deep eutectic solvent and water in continuous flow. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00467j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep eutectic solvent (DES) enables drastic increase in substrate solubility and solvent compatibility of a chemo-enzymatic two-step flow process combining enzymatic decarboxylation and Pd-catalyzed Heck coupling.
Collapse
Affiliation(s)
- Bianca Grabner
- Institute of Process and Particle Engineering
- Graz University of Technology
- 8010 Graz
- Austria
| | - Anna K. Schweiger
- Institute for Molecular Biotechnology
- Graz University of Technology
- 8010 Graz
- Austria
| | - Kristian Gavric
- Institute of Process and Particle Engineering
- Graz University of Technology
- 8010 Graz
- Austria
| | - Robert Kourist
- Institute for Molecular Biotechnology
- Graz University of Technology
- 8010 Graz
- Austria
| | | |
Collapse
|
37
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|