1
|
Zhang X, Li H, Peng J, Guo W, Chen ZY, Yang S, Hu R, Jiang X. Boosting The Solid-State Luminescence of Phenazine Derivatives by Enhancing Intermolecular Hydrogen Bonds and π-π Interactions in Cocrystals. Chem Asian J 2025:e202500269. [PMID: 40229173 DOI: 10.1002/asia.202500269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Six monosubstituted phenazine derivatives were designed and synthesized for constructing cocrystals to investigate their structure-property relationship. It was found that 2-substituted phenazines could form cocrystals with 2,6-dimethylphenylboronic acid (DBA). These cocrystals exhibited red-shifted and enhanced luminescence relative to their individual components, especially 2NP-DBA whose luminescence efficiency was nearly 100 times higher than that of 2NP. By analyzing the single-crystal structures of the cocrystals and their components, enhanced hydrogen bonds and π-π interactions between molecules were detected in cocrystals, which suppressed the nonradiative transition pathways. Consequently, all three cocrystals demonstrated enhanced luminescence with strong continuous π-π interactions, which differed from the previously reported luminescence enhancement resulting from the destruction of π-π interactions. An in-depth investigation of these cocrystals can not only provide a better understanding of the structure-property relationship of organic luminescent materials, but also help develop organic luminescent materials with intense solid-state luminescence and strong π-π interactions. In addition, the optical response of these cocrystals to acidic vapors has been successfully applied in anti-counterfeiting.
Collapse
Affiliation(s)
- Xuejie Zhang
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Hui Li
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Jianfeng Peng
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Wenkang Guo
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Zi-Yi Chen
- College of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
| | - Shuaijun Yang
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Riming Hu
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Xuchuan Jiang
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
2
|
Liu RH, Li MT, Yang YJ, Ge SJ, Qu ZH, Feng ZQ, Wang Y, Yu ZH, Zhou DY, Zhong C, Liao LS, Jiang ZQ. Efficiency Boost in Through Space Charge Transfer Emitters: Insights from Spiro Lateral Rocking Confinement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415951. [PMID: 39668480 DOI: 10.1002/adma.202415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Intramolecular through-space charge-transfer (TSCT) excited states have emerged as promising candidates for thermally activated delayed fluorescence (TADF) emitters. This study addresses the challenges in tuning excited state dynamics through conformational engineering, which significantly impacts exciton utilization. An effective strategy is presented to enhance the performance of TSCT-TADF molecules by restricting the lateral rocking of the spiro unit via immobilizing groups, which indirectly adjusts the conformations of the donor and acceptor subunits. This approach is successfully illustrated with two TSCT-TADF emitters, 8PhDM-B and 8PyDM-B, featuring sterical aryl phenyl and pyridine substitutions at the C8 site of a rigid spiro-fluorene bridge. Organic light-emitting diodes (OLEDs) utilizing these emitters demonstrated impressive maximum external quantum efficiencies of 33.1% and 31.0%, respectively. The findings underscore the importance of the rocking confined strategy in refining excited state dynamics, thereby providing valuable insights for the design of highly efficient OLED emitters.
Collapse
Affiliation(s)
- Rui-Hong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng-Tian Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue-Jian Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shi-Jie Ge
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhi-Hao Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhe-Hong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Dong-Ying Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Pu Y, Jin Q, Zhang Y, Li C, Duan L, Wang Y. Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs. Nat Commun 2025; 16:332. [PMID: 39747239 PMCID: PMC11696159 DOI: 10.1038/s41467-024-55680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks. Endowed with the planar architectural feature of the MR mother core, the proof-of-concept S-embedded emitters S-BN and 2S-BN also exhibit considerable flatness, which proves critical in avoiding the direct establishment of potent charge transfer states and inhibiting the non-radiative decay process. The emission maxima of S-BN and 2S-BN are 594 nm and 671 nm, respectively, and both have a high photoluminescence quantum yield of ~100%, a rapid radiative decay rate of around 107 s-1, and a remarkably high reverse intersystem crossing rates of about 105 s-1. Notably, maximum external quantum efficiencies of 39.9% (S-BN, orange-red) and 29.3% (2S-BN, deep-red) were also achieved in typical planar OLED structures with ameliorated efficiency roll-offs.
Collapse
Affiliation(s)
- Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
- Applied Mechanics Lab, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
4
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
5
|
Wu C, Lu C, Yu S, Zhang M, Zhang H, Zhang M, Li F. Highly Efficient Near-Infrared Luminescent Radicals with Emission Peaks over 750 nm. Angew Chem Int Ed Engl 2024; 63:e202412483. [PMID: 39218804 DOI: 10.1002/anie.202412483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Purely organic molecules exhibiting near-infrared (NIR) emission possess considerable potential for applications in both biological and optoelectronic technological domains, owing to their inherent advantages such as cost-effectiveness, biocompatibility, and facile chemical modifiability. However, the repertoire of such molecules with emission peaks exceeding 750 nm and concurrently demonstrating high photoluminescence quantum efficiency (PLQE) remains relatively scarce due to the energy gap law. Herein, we report two open-shell NIR radical emitters, denoted as DMNA-Cz-BTM and DMNA-PyID-BTM, achieved through the strategic integration of a donor group (DMNA) onto the Cz-BTM and PyID-BTM frameworks, respectively. We found that the donor-acceptor molecular structure allows the two designed radical emitters to exhibit a charge-transfer excited state and spatially separated electron and hole levels with non-bonding characteristics. Thus, the high-frequency vibrations are effectively suppressed. Besides, the reduction of low-frequency vibrations is observed. Collectively, the non-radiative decay channel is significantly suppressed, leading to exceptional NIR PLQE values. Specifically, DMNA-Cz-BTM manifests an emission peak at 758 nm alongside a PLQE of 55 %, whereas DMNA-PyID-BTM exhibits an emission peak at 778 nm with a PLQE of 66 %. Notably, these represent the pinnacle of PLQE among metal-free organic NIR emitters with emission peaks surpassing 750 nm.
Collapse
Affiliation(s)
- Chunxiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Shilong Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Minzhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Chen WC, Liu XL, Liu Q, Zheng F, Xing L, Wu QE, Lian ZX, Zheng PY, Zhang Y, Ji S, Huo Y. A new dicyanophenanthrene-based thermally activated delayed fluorophore: Design, synthesis, photophysical study, and electroluminescence application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124808. [PMID: 39024786 DOI: 10.1016/j.saa.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
A novel thermally activated delayed fluorescence (TADF) emitter, DCNP-SCF, is developed based on a dicyanophenanthrene acceptor. DCNP-SCF is prepared by a simple C-N coupling reaction. Its thermal, theoretical, photophysical, and electroluminescent properties are investigated, emphasizing its potential in organic electroluminescence devices. DCNP-SCF demonstrates highly distorted donor-acceptor conformation, facilitating significant TADF for efficient triplet harvesting in electroluminescence devices. Additionally, due to the moderate electron push-pull effect, DCNP-SCF exhibits appropriate intramolecular charge transfer for considerable photoluminescence quantum yield for electroluminescence applications.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China.
| | - Xiao-Long Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Qiang Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Fan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Longjiang Xing
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Qiao-Er Wu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Zi-Xian Lian
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Pei-Yan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Yuzhen Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, PR China
| | - Shaomin Ji
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Yanping Huo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Analytical & Testing Center, Guangdong University of Technology, Guangzhou, PR China.
| |
Collapse
|
7
|
Ge L, Zhang W, Hao YH, Li M, Liu Y, Zhou M, Cui LS. Efficient and Stable Narrowband Pure-Red Light-Emitting Diodes with Electroluminescence Efficiencies Exceeding 43. J Am Chem Soc 2024; 146:32826-32836. [PMID: 39535967 DOI: 10.1021/jacs.4c13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advanced multiresonance-induced thermally activated delayed fluorescence (MR-TADF) materials exhibit exceptional promise for applications in state-of-the-art organic light-emitting diodes (OLEDs) owing to their unique narrowband emissions and high luminescent efficiencies. Despite substantial progress with blue and green MR-TADF materials, the development of pure-red MR-TADF emitters has lagged behind, thereby hindering the advancement toward high-performance ultrahigh-definition OLED displays. Here, we propose an effective approach for designing pure-red MR-TADF molecules based on the integration of secondary electron-donating units and π-skeleton extension into MR cores, which enables not only a redshift of narrowband emission but also an acceleration of reverse intersystem crossing (RISC) rate. The proof-of-the-concept emitter BNTPA showcases a bright and saturated red emission centered at 613 nm with a full-width at half-maximum of 0.14 eV, together with a more than twofold increase in the RISC rate. As a result, TADF OLEDs based on BNTPA achieved a record maximum external quantum efficiency (EQEmax) of up to 35.2% with Commission Internationale de l'Eclairage (CIE) coordinates of (0.657, 0.343), approaching the coordinates of the National Television Standards Committee (NTSC) red standard. Moreover, phosphor-assisted fluorescence devices exploiting BNTPA as a terminal emitter exhibit an exceptional EQEmax of 43.3%, accompanied by improved operational stability.
Collapse
Affiliation(s)
- Lishuang Ge
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Hong Hao
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science & Technology University, Beijing 100192, China
| | - Ming Li
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Liu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science & Technology University, Beijing 100192, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Chen WC, Su Y, Wu X, Wang R, Jin JM, Zheng F, Liu XL, Zhang Y, He N, Sun Y, Zeng Q, Huo Y. An Azaryl-Ketone-Based Thermally Activated Delayed Fluorophore with Aggregation-Induced Emission for Efficient Organic Light-Emitting Diodes with Slow Efficiency Roll-Offs. Chem Asian J 2024; 19:e202400741. [PMID: 39058306 DOI: 10.1002/asia.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Achieving the concurrent manifestation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) within a single molecular system is highly sought after for organic light-emitting diodes (OLEDs), yet remains rare. In this study, we present a novel TADF-AIE dye, named PQMO-PXZ, which has been designed, synthesized, and systematically characterized. Our comprehensive investigation, which includes structural analysis, theoretical calculations, and optical studies, evaluates the potential of PQMO-PXZ for integration into OLEDs. Unlike existing azaryl-ketone-based emitters, PQMO-PXZ exhibits red-shifted emission and enhanced luminescence efficiency, due to its rigid structure and strong intramolecular charge transfer characteristics. Significantly, PQMO-PXZ demonstrates pronounced AIE properties and TADF with a short delayed lifetime. When utilized as the emissive core, OLED devices based on PQMO-PXZ achieve a respectable external quantum efficiency of up to 11.8 % with minimal efficiency roll-off, underscoring PQMO-PXZ's promise as a highly efficient candidate for OLED applications.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yaozu Su
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaohui Wu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ruicheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jia-Ming Jin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiao-Long Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yuzhen Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, People's Republic of China
| | - Nian He
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Yuxi Sun
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Qingming Zeng
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Yanping Huo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
9
|
Zhu C, Liu L, Yang X, Zhou G, Sun Y. The Molecular Design and Electroluminescent Performance of Near-Infrared (NIR) Iridium(III) Complexes Bearing Isoquinoline-, Phthalazine- and Phenazine-Based Ligands. Chemphyschem 2024; 25:e202400232. [PMID: 39031895 DOI: 10.1002/cphc.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Near-infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials. To date, NIR luminescent materials are roughly divided into inorganic materials and organic materials. Compared with inorganic materials, organic NIR luminescent materials have become a hot research topic in recent years due to their rich sources, easy control of structure, simple preparation process, low cost, and good film-forming properties. Among them, iridium(III) [Ir(III)] complexes exhibit excellent properties such as thermal stability, simple synthesis, easy color modulation, short excited state lifetimes, and high brightness, thus becoming one of the ideal luminescent material systems for preparing high-quality organic light-emitting diodes. Therefore, how to obtain Ir(III) complexes with NIR emission and high efficiency through molecular design is a necessary and promising research topic. This work reviews the research progress of representative NIR Ir(III) complexes bearing isoquinoline-, phenazine-, and phthalazine-based ligands reported in recent years and introduces the design strategies and electroluminescent performances of NIR Ir(III) complexes.
Collapse
Affiliation(s)
- Chengyun Zhu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lina Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaolong Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guijiang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuanhui Sun
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Huang PF, Fu JL, Peng Y, Tang KW, Liu Y. Electrochemical Oxidative (4 + 2) Cyclization of Anilines and o-Phenylenediamines for the Synthesis of Phenazines. Org Lett 2024; 26:3756-3761. [PMID: 38678581 DOI: 10.1021/acs.orglett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Phenazines, crucial constituents of nitrogen-containing heterocycles, widely exist in functional compounds. Herein, we report an anodic oxidative (4 + 2) cyclization between anilines and o-phenylenediamines for the uniform construction of phenazines in a simple undivided cell. Dual C-H amination followed by oxidation represents an outstanding step and atom efficiency. A sequence of phenazines is produced with excellent functional group tolerance at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
11
|
Zhao P, Lu D, Li L, Wu X, Yan L. Molecular Engineering to Achieve AIE-active Fluorophore with Near-infrared (NIR) Emission and Temperature-sensitive Property. J Fluoresc 2024; 34:1109-1117. [PMID: 37470966 DOI: 10.1007/s10895-023-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Near-infrared organic small molecule luminescent materials have the advantages of easy modification, high quantum efficiency, good biological affinity, and color adjustability; thus, have promising application prospects in the fields of photoelectric devices, sensitive detection, photodynamic therapy, and biomedical imaging. However, traditional organic luminescent molecules have the problems of short emission wavelength, aggregation-causing emission quenching, and low quantum yield. Herein, we successfully synthesized four D-π-A-D light-emitting molecules based on electron-withdrawing malonitrile group and different electron-donating arylamine groups. These compounds showed satisfactory solvatochromism, aggregation-induced emission, red and near-infrared fluorescence, high photoluminescence quantum efficiency and temperature response properties. This successful example of molecular engineering provides a valuable reference for the development of advanced NIR materials with AIE and temperature-sensitive properties.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Dongqing Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| |
Collapse
|
12
|
Siddiqui I, Gautam P, Blazevicius D, Jayakumar J, Lenka S, Tavgeniene D, Zaleckas E, Grigalevicius S, Jou JH. Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs. Molecules 2024; 29:1672. [PMID: 38611951 PMCID: PMC11013760 DOI: 10.3390/molecules29071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3'-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9'-{2-ethylhexyl}-[3,3']-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Jayachandran Jayakumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Sushanta Lenka
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Daiva Tavgeniene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Ernestas Zaleckas
- Department of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, Akademija, LT-53361 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| |
Collapse
|
13
|
Zeng XY, Tang YQ, Zhou JX, Zhang K, Wang HY, Zhu YY, Li YQ, Tang JX. Extended Conjugation Strategy Enabling Red-Shifted and Efficient Emission of Orange-Red Thermally Activated Delayed Fluorescence Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16563-16572. [PMID: 38507218 DOI: 10.1021/acsami.3c18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In account of the energy gap law, the development of efficient narrow-band gap thermally activated delayed fluorescence (TADF) materials remains a major challenge for the application of organic light-emitting diodes (OLEDs). The orange-red TADF materials are commonly designed with either large π-conjugated systems or strong intramolecular donor-acceptor (D-A) interactions for red-shift emission and small singlet-triplet energy gap (ΔEST). There are rare reports on the simultaneous incorporation of these two strategies on the same material systems. Herein, two orange-red emitters named 1P2D-BP and 2P2D-DQ have been designed by extending the conjugation degree of the center acceptor DQ and increasing the number distribution of the peripheral donor PXZ units, respectively. The emission peak of 1P2D-BP is red-shifted to 615 nm compared to 580 nm for 2P2D-DQ, revealing the pronounced effect of the conjugation extension on the emission band gap. In addition, the distorted molecular structure yields a small ΔEST of 0.02 eV, favoring the acquisition of a high exciton utilization through an efficient reverse intersystem crossing process. As a result, orange-red OLEDs with both 1P2D-BP and 2P2D-DQ have achieved an external quantum efficiency (EQE) of more than 17%. In addition, the efficient white OLED based on 1P2D-BP is realized through precise exciton assignment and energy transport modulation, showing an EQE of 23.6% and a color rendering index of 82. The present work provides an important reference for the design of high-efficiency narrow-band gap materials in the field of solid-state lighting.
Collapse
Affiliation(s)
- Xin-Yi Zeng
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Yan-Qing Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jing-Xiong Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Han-Yang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuan-Ye Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Zhang K, Cai L, Fan J, Song Y, Lin L, Wang CK, Li J. Conformational Isomerization Effect on Singlet/Triplet Energy Consumption Process of Thermally Activated Delayed Fluorescence Molecules with Aggregation Induced Emission: A QM/MM Study. J Phys Chem Lett 2024; 15:2436-2446. [PMID: 38394771 DOI: 10.1021/acs.jpclett.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties hold tremendous potential in biomedical sensing/imaging and telecommunications. In this study, a multiscale method combined with thermal vibration correlation function (TVCF) theory is used to investigate the photophysical properties of the novel TADF molecule CNPy-SPAC in toluene and crystal and amorphous states. In the crystal state, an increase in radiative rates and a decrease in nonradiative rates lead to AIE. Additionally, conformational isomerization effects result in significantly different luminescent efficiencies between the two crystal structures. Furthermore, the isomerization effect allows for the coexistence of three configurations in the amorphous state. Among them, the non-TADF quasi-axial (Qa) configuration may facilitate energy transfer to the TADF-characteristic quasi-equal/quasi-equal-H (Qe/Qe-H) configurations, enhancing AIE. Moreover, the Qa configuration enables rapid electron transport, offering the potential for self-doped devices. Our work elucidates a new mechanism for the isomerization effect in AIE-TADF molecules.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
15
|
Zhao X, Liu H, Mu Q, Fan J, Xu Y, Cai L. Modulating excited state properties of thermally activated delayed fluorescence molecules by hybrid long-range and short-range charge transfer strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123684. [PMID: 38039645 DOI: 10.1016/j.saa.2023.123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Balancing the rapid radiative decay process and the fast reverse intersystem crossing (RISC) process of thermally activated delayed fluorescence (TADF) molecule remains a great challenge and efficient molecular design strategies are highly desired. Herein, from a theoretical perspective, excited state properties of three reported TADF molecules (1TICz, 1BOICz and 2BOICz) are investigated based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method. Results indicate that, by introducing the multi-resonance (MR) acceptor, 1BOICz possesses hybrid long-range and short-range charge transfer features, balanced small energy gap (ΔEST) and large oscillator strength (f) is obtained. Furthermore, by incorporating double equivalent MR acceptors in 2BOICz, largely enhanced f with slightly changed ΔEST is achieved, inner mechanism for remarkable photophysical property is illustrated. Keep this strategy, seven new TADF molecules (2pDBA-bICz-1, 2pDBA-bICz-2, 2OSBA-bICz, 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz) are theoretically designed, detailed physical parameters are analyzed and excited state energy consumption process is studied. Strong electrophilicity on acceptor is determined and the strength of nucleophilic sites on the bridge-phenyl of 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz is increased, this promotes the short-range charge transfer property. In addition, the excitation processes for all studied molecules are dominated by long-range charge transfer from donor to acceptors, and supplemented by the short-range charge transfer on the bridge-phenyl with MR effect. Compromise energy gap and oscillator strength as well as large spin orbit coupling (SOC) constant are obtained for designed molecules. Thus, by regulating the long-range and short-range charge transfer ratios, excited state properties are successfully modulated and new efficient TADF molecules are proposed. Our research aims to provide deeper insight into long-range and short-range charge transfer features in balancing small ΔEST and large f, which could facilitate the development of novel efficient TADF molecules.
Collapse
Affiliation(s)
- Xin Zhao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
16
|
Diesing S, Zhang L, Zysman-Colman E, Samuel IDW. A figure of merit for efficiency roll-off in TADF-based organic LEDs. Nature 2024; 627:747-753. [PMID: 38538942 PMCID: PMC10972759 DOI: 10.1038/s41586-024-07149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024]
Abstract
Organic light-emitting diodes (OLEDs) are a revolutionary light-emitting display technology that has been successfully commercialized in mobile phones and televisions1,2. The injected charges form both singlet and triplet excitons, and for high efficiency it is important to enable triplets as well as singlets to emit light. At present, materials that harvest triplets by thermally activated delayed fluorescence (TADF) are a very active field of research as an alternative to phosphorescent emitters that usually use heavy metal atoms3,4. Although excellent progress has been made, in most TADF OLEDs there is a severe decrease of efficiency as the drive current is increased, known as efficiency roll-off. So far, much of the literature suggests that efficiency roll-off should be reduced by minimizing the energy difference between singlet and triplet excited states (ΔEST) to maximize the rate of conversion of triplets to singlets by means of reverse intersystem crossing (kRISC)5-20. We analyse the efficiency roll-off in a wide range of TADF OLEDs and find that neither of these parameters fully accounts for the reported efficiency roll-off. By considering the dynamic equilibrium between singlets and triplets in TADF materials, we propose a figure of merit for materials design to reduce efficiency roll-off and discuss its correlation with reported data of TADF OLEDs. Our new figure of merit will guide the design and development of TADF materials that can reduce efficiency roll-off. It will help improve the efficiency of TADF OLEDs at realistic display operating conditions and expand the use of TADF materials to applications that require high brightness, such as lighting, augmented reality and lasing.
Collapse
Affiliation(s)
- S Diesing
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK
| | - L Zhang
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK
| | - E Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK.
| | - I D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
17
|
Li X, Wang X, Wu Z, Zhang K, Li R, Song Y, Fan J, Wang CK, Lin L. Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer. Phys Chem Chem Phys 2024; 26:7706-7717. [PMID: 38372336 DOI: 10.1039/d3cp05670h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (ΔEST) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the ΔEST. In addition, PXZ or PTZ can also favor the realization of smaller ΔEST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters.
Collapse
Affiliation(s)
- Xiaofang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Xiaofei Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Zhimin Wu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Kai Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Rui Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Yuzhi Song
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Jianzhong Fan
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Chuan-Kui Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Lili Lin
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
18
|
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:356. [PMID: 38392729 PMCID: PMC10892487 DOI: 10.3390/nano14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.
Collapse
Affiliation(s)
- Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
19
|
Wang H, Chen JX, Shi YZ, Zhang X, Zhou L, Hao XY, Yu J, Wang K, Zhang XH. An A-D-A-Type Thermally Activated Delayed Fluorescence Emitter with Intrinsic Yellow Emission Realizing Record-High Red/NIR OLEDs upon Modulating Intermolecular Aggregations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307725. [PMID: 37792472 DOI: 10.1002/adma.202307725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Realizing efficient red/near-infrared (NIR) electroluminescence (EL) by precisely modulating molecular aggregations of thermally activated delayed fluorescence (TADF) emitters is an attractive pathway, yet the molecular designs are elusive. Here, a new approach is proposed to manage molecular aggregation via a mild-twist acceptor-donor-acceptor (A-D-A)-type molecular design. A proof-of-concept TADF molecule, QCN-PhSAC-QCN, is developed that furnishes a fast radiative rate and obvious aggregation-induced emission feature. Its emission bands can be facilely shifted from intrinsic yellow to the red/NIR region via fine-tuning doping levels and molecular aggregates while maintaining elegant photoluminescence quantum yields benefiting from suppressed exciton annihilation processes. As a result, a QCN-PhSAC-QCN-based organic light-emitting diode (OLED) exhibits a record-setting external quantum efficiency (EQE) of 39.1% at a doping ratio of 10 wt.%, peaking at 620 nm. Moreover, its nondoped NIR OLED affords a champion EQE of 14.3% at 711 nm and retains outstanding EQEs of 5.40% and 2.35% at current densities of 10 and 100 mA cm-2 , respectively, which are the highest values among all NIR-TADF OLEDs at similar density levels. This work validates the feasibility of such mild-twist A-D-A-type molecular design for precisely controlling molecular aggregation while maintaining high efficiency, thus providing a promising pathway for high-performance red/NIR TADF OLEDs.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Yao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
20
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Fan X, Hao X, Huang F, Yu J, Wang K, Zhang X. RGB Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes toward Realizing the BT.2020 Standard. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303504. [PMID: 37587784 PMCID: PMC10558656 DOI: 10.1002/advs.202303504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Indexed: 08/18/2023]
Abstract
With the surging demand for ultra-high-resolution displays, the International Telecommunication Union (ITU) announce the next-generation color gamut standard, named ITU-R Recommendation BT.2020, which not only sets a seductive but challenging milestone for display technologies but also urges researchers to recognize the importance of color coordinates. Organic light-emitting diodes (OLEDs) are an important display technology in current daily life, but they face challenges in approaching the BT.2020 standard. Thermally activated delayed fluorescence (TADF) emitters have bright prospects in OLEDs because they possess 100% theoretical exciton utilization. Thus, the development of TADF emitters emitting primary red (R), green (R), and blue (B) emission is of great significance. Here, a comprehensive overview of the latest advancements in TADF emitters that exhibit Commission Internationale de l'Éclairage (CIE) coordinates surpassing the National Television System Committee (NTSC) and approaching BT.2020 standards is presented. Rational strategies for molecular designs, as well as the resulting photophysical properties and OLED performances, are discussed to elucidate the underlying mechanisms for shifting the CIE coordinates of both donor-acceptor and multiple resonance (MR) typed TADF emitters toward the BT.2020 standard. Finally, the challenges in realization of the wide-color-gamut BT.2020 standard and the prospects for this research area are provided.
Collapse
Affiliation(s)
- Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaoyao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| |
Collapse
|
22
|
Zhang T, Xiao Y, Wang H, Kong S, Huang R, Ka-Man Au V, Yu T, Huang W. Highly Twisted Thermally Activated Delayed Fluorescence (TADF) Molecules and Their Applications in Organic Light-Emitting Diodes (OLEDs). Angew Chem Int Ed Engl 2023; 62:e202301896. [PMID: 37288654 DOI: 10.1002/anie.202301896] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.
Collapse
Affiliation(s)
- Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, 315103, Ningbo, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- State Key Laboratory of Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China
| |
Collapse
|
23
|
Li X, Tu L, Gao M, Li A, Chen Y, Chi W, Zhang D, Duan L, Xie Y, Tang BZ, Li Z. Highly Efficient Blue Organic Light Emitting Diodes Based on Cyclohexane-Fused Quinoxaline Acceptor. J Phys Chem Lett 2023; 14:6982-6989. [PMID: 37523259 DOI: 10.1021/acs.jpclett.3c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exploring blue organic light emitting diodes (OLED) is an important but challenging issue. Herein, to achieve blue-shifted emission, cyclohexane is fused to quinoxaline to weaken the electron-withdrawing ability and conjugation degree of the acceptor. As a result, blue to cyan fluorescent emitters of Me-DPA-TTPZ, tBu-DPA-TTPZ, and TPA-TTPZ were designed and synthesized with donors of diphenylamine and triphenylamine, which exhibit high photoluminescence quantum yields and good thermal stability. In OLEDs with emitters of TPA-TTPZ, the sensitized and nonsensitized devices demonstrate deep-blue (449 nm) and blue (468 nm) emission with maximum external quantum efficiency and CIE coordinates of 6.1%, (0.15, 0.10) and 5.1%, (0.17, 0.22), respectively, validating their potential as blue emitters in OLEDs.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Wang H, Chen JX, Zhou L, Zhang X, Yu J, Wang K, Zhang XH. A dual-locked triarylamine donor enables high-performance deep-red/NIR thermally activated delayed fluorescence organic light-emitting diodes. MATERIALS HORIZONS 2023; 10:2997-3004. [PMID: 37194342 DOI: 10.1039/d3mh00445g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Deep-red/near-infrared (DR/NIR) organic light-emitting diodes (OLEDs) have attracted a great deal of attention due to their widespread application fields, such as night-vision devices, optical communication, and information-secured displays. However, most DR/NIR OLEDs show low electroluminescence efficiencies, hampering their applications. Herein, we constructed a high-performance DR/NIR thermally activated delayed fluorescence (TADF) emitter based on an advanced dual-locked triarylamine donor (D) unit. Promisingly, such a novel D segment brings numerous advantages: a larger stereoscopic architecture, an enhanced electron-donating ability, and a stiffer molecular structure. In view of these features, the newly developed emitter DCN-DSP shows redshifted emission, a narrowed ΔEST, an enhanced PLQY value and aggregation-induced emission (AIE) properties, which allows for effectively alleviating concentration quenching compared to the control compound using a conventional triarylamine derivative as D units. The DCN-DSP-based OLEDs with modulated doping concentrations exhibit champion EQEs of 36.2% at 660 nm, 26.1% at 676 nm and 21.3% at 716 nm, which are record-high efficiencies among all TADF OLEDs in the similar emission ranges. This work realizes the efficiency breakthrough of DR/NIR TADF OLEDs, and such a promising molecular design approach may inspire even better DR/NIR TADF emitters in the future.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
25
|
Zhao T, Jiang S, Wang Y, Hu J, Lin FL, Meng L, Gao P, Chen XL, Lu CZ. Realizing High-Efficiency Orange-Red Thermally Activated Delayed Fluorescence Materials through the Construction of Intramolecular Noncovalent Interactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37315213 DOI: 10.1021/acsami.3c04117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of highly efficient orange and red thermally activated delayed fluorescence (TADF) materials for constructing full-color and white organic light-emitting diodes (OLEDs) remains insufficient because of the formidable challenges in molecular design, such as the severe radiationless decay and the intrinsic trade-off between the efficiencies of radiative decay and reverse intersystem crossing (RISC). Herein, we design two high-efficiency orange and orange-red TADF molecules by constructing intermolecular noncovalent interactions. This strategy could not only ensure high emission efficiency via suppression of the nonradiative relaxation and enhancement of the radiative transition but also create intermediate triplet excited states to ensure the RISC process. Both emitters exhibit typical TADF characteristics, with a fast radiative rate and a low nonradiative rate. Photoluminescence quantum yields (PLQYs) of the orange (TPA-PT) and orange-red (DMAC-PT) materials reach up to 94 and 87%, respectively. Benefiting from the excellent photophysical properties and stability, OLEDs based on these TADF emitters realize orange to orange-red electroluminescence with high external quantum efficiencies reaching 26.2%. The current study demonstrates that the introduction of intermolecular noncovalent interactions is a feasible strategy for designing highly efficient orange to red TADF materials.
Collapse
Affiliation(s)
- Tianxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Yashu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Jiaxuan Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Fu-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Peng Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Abstract
We disclose herein electro-oxidative synthesis as the general protocol for procuring phenazines under mild reaction conditions. Using aerial oxygen as an oxidant, inexpensive electrolyte, and electrodes, a diverse range of phenazines have been accessed in good yields via the ring contraction of 10,11-dihydro-5H-dibenzo[b,e][1,4]diazepines. In addition, the syntheses of phenazines and diamino phenazines via direct electro-oxidation of dihydrophenazines and electro-dimerization of o-phenylenediamines, respectively, have also been accomplished.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| | - Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| |
Collapse
|
27
|
Pei R, Xu Y, Miao J, Peng H, Chen Z, Zhou C, Liu H, Yang C. A Tetrahedral Bisacridine Donor Enables Fast Radiative Decay in Thermally Activated Delayed Fluorescence Emitter. Angew Chem Int Ed Engl 2023; 62:e202217080. [PMID: 36722386 DOI: 10.1002/anie.202217080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Achieving high efficiency and low efficiency roll-off simultaneously is of great significance for further application of thermally activated delayed fluorescent (TADF) emitters. A balance between radiative decay and reversed intersystem crossing must be carefully established. Herein, we propose a qunolino-acridine (QAc) donor composing two acridine with both planar (pAc) and bended (bAc) geometries. Combining with triazine, a TADF emitter QAc-TRZ is assembled. The pAc provides a well interaction with triazine which ensures a decent TADF behavior, while the bAc offers a delocalization of highest occupied molecular orbital (HOMO) which guarantees an enhancement of radiative decay. Remarkably, QAc-TRZ enables a highly efficient organic light emitting diode (OLED) with maximum external quantum efficiency (EQE) of 37.3 %. More importantly, the efficiencies under 100/1000 cd m-2 stay 36.3 % and 31.7 %, respectively, and remain 21.5 % even under 10 000 cd m-2 .
Collapse
Affiliation(s)
- Ranran Pei
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Hao Peng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
28
|
Primrose WL, Mayder DM, Hojo R, Hudson ZM. Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep-Red Emission and Thermally Activated Delayed Fluorescence. J Org Chem 2023; 88:4224-4233. [PMID: 36920272 DOI: 10.1021/acs.joc.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.
Collapse
Affiliation(s)
- William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
29
|
Wang XJ, Liu H, Zhang K, Yang D, Pan ZH, Wang CK, Fung MK, Ma D, Fan J. Using azaacene as an acceptor unit to construct an ultraefficient red fluorophore with an EQE over 40. MATERIALS HORIZONS 2023; 10:938-944. [PMID: 36598032 DOI: 10.1039/d2mh01322c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Azaacenes, which have been known for a long time, are of scientific and practical importance in organic electronics. Azaacenes once shone as the luminophore in organic light-emitting diodes (OLEDs). However, due to the low exciton utilization efficiency and/or the aggregation induced quenching (ACQ) effect, N-heteroacene based OLEDs generally showed inferior device performance. In this work, azaacene has been revisited and applied as an acceptor for a red fluorophore (AZA-TPA), where the judicious connection pattern between donor and acceptor maximized the harvest of singlet and triplet excitons, resulting in a high photoluminescence efficiency of 94.6% in doped films (3 wt%). In addition, the linearly-fused polycyclic structure contributed to a high horizontal emitting dipole ratio (Θ‖ = 90%). As a result, an AZA-TPA-based OLED achieved an unprecedented external quantum efficiency of 41.30% at 610 nm. This work will pave a new path for the development of efficient N-heteroacene-based fluorophores.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Han Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Ze-Hui Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Man-Keung Fung
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, China
| |
Collapse
|
30
|
Derkowski W, Kumar D, Gryber T, Wagner J, Morawiak M, Kochman MA, Kubas A, Data P, Lindner M. V-shaped donor-acceptor organic emitters. A new approach towards efficient TADF OLED devices. Chem Commun (Camb) 2023; 59:2815-2818. [PMID: 36790367 DOI: 10.1039/d2cc06978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report the synthesis and characterization of a series of donor-acceptor TADF emitters with a new architecture, where the donor moiety and the dibenzazepine-based acceptor moiety are separated by a phenylene linker in a V-shaped spatial arrangement. Such spatial separation and electronic decoupling between the donor and the acceptor moieties leads to low singlet-triplet energy gaps and favors efficient exciton up-conversion.
Collapse
Affiliation(s)
- Wojciech Derkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dharmandra Kumar
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Tomasz Gryber
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Jakub Wagner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Maja Morawiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Przemysław Data
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
31
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
32
|
Liu Y, Yang J, Mao Z, Wang Y, Zhao J, Su SJ, Chi Z. Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Chem Sci 2023; 14:1551-1556. [PMID: 36794188 PMCID: PMC9906651 DOI: 10.1039/d2sc06335b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 01/13/2023] Open
Abstract
The isomeric strategy is an important design concept in molecular design that has a non-negligible influence on molecular properties. Herein, two isomeric thermally activated delayed fluorescence (TADF) emitters (NTPZ and TNPZ) are constructed with the same skeleton consisting of an electron donor and electron acceptor but different connection sites. Systematic investigations show that NTPZ exhibits a small energy gap, large up-conversion efficiency, low non-radiative decay, and high photoluminescence quantum yield. Further theoretical simulations reveal that the excited molecular vibrations play a key role in regulating the non-radiative decays of the isomers. Therefore, an NTPZ based OLED achieves better electroluminescence performances, such as a higher external quantum efficiency of 27.5% compared to a TNPZ based OLED (18.3%). This isomeric strategy not only provides an opportunity to deeply understand the relationship between substituent locations and molecular properties, but also affords a simple and effective strategy to enrich TADF materials.
Collapse
Affiliation(s)
- Yanyan Liu
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Jiaji Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yuyuan Wang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
33
|
Wang H, Chen JX, Fan XC, Cheng YC, Zhou L, Zhang X, Yu J, Wang K, Zhang XH. A TADF Emitter with Dual Para-Positioned Donors Enables OLEDs with Improved Efficiency and CIE Coordinates Close to the Rec. 2020 Red Standard. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1685-1692. [PMID: 36579770 DOI: 10.1021/acsami.2c18219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing red thermally activated delayed fluorescence (TADF) emitters concurrently with high efficiency and emission color close to the BT.2020 red standard is an ongoing challenge. Herein, we developed a new red TADF emitter BCN-TPA, in which two identical donors are attached at the para-positions of one fused phenyl ring in the acceptor framework. Such an arrangement mode can lead the donors with an obvious superimposed effect comparing the conventional arrangement with edge-capped donors on the acceptor. Thus, BCN-TPA yields enhanced overall donor strength with numerous superiorities, such as high oscillator strength and narrow singlet-triplet energy difference, thus giving rise to red-shifted emission with improved overall exciton utilization. In an organic light-emitting diode, BCN-TPA presents efficient deep-red electroluminescence with a maximum external quantum efficiency of 27.6% and a peak at 656 nm, corresponding to CIE coordinates of (0.686, 0.304), which are very close to the red primary in the BT.2020 standard. To the best of our knowledge, this is one of the topmost efficiencies in the field of deep-red TADF OLEDs. This work exemplifies an easy design principle for constructing high-performance deep-red TADF emitters, providing unique molecular-level insights toward improving color quality and elevating efficiency based on conventional D-A type molecular frameworks.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong510006, P. R. China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Ying-Chun Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
34
|
Ali U, Han G, Yi Y. Switching the Luminescence between TADF and RTP for Organic D‐A‐D Emitters: The Role of D‐A Connection Modes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Usman Ali
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Tan JH, Jin JM, Chen WC, Cao C, Wang R, Zhu ZL, Huo Y, Lee CS. The Role of Balancing Carrier Transport in Realizing an Efficient Orange-Red Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53120-53128. [PMID: 36379027 DOI: 10.1021/acsami.2c17492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Simultaneously realizing improved carrier mobility and good photoluminescence (PL) efficiency in red thermally activated delayed-fluorescence (TADF) emitters remains challenging but important. Herein, two isomeric orange-red TADF emitters, oPDM and pPDM, with the same basic donor-acceptor backbone but a pyrimidine (Pm) attachment at different positions are designed and synthesized. The two emitters show similarly good PL properties, including narrow singlet-triplet energy offsets (0.11 and 0.15 eV) and high photoluminescence quantum yields (ca. 100 and 88%) in doped films. An orange-red organic light-emitting diode (OLED) employing oPDM as an emitter achieves an almost twice as high maximum external quantum efficiency (28.2%) compared with that of a pPDM-based OLED. More balanced carrier-transporting properties are responsible for their contrasting device performances, and the position effect of the Pm substituent leads to significantly distinct molecular packing behaviors in the aggregate states and different carrier mobilities.
Collapse
Affiliation(s)
- Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong000000, SAR, People's Republic of China
| | - Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong000000, SAR, People's Republic of China
| | - Ruifang Wang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong000000, SAR, People's Republic of China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong000000, SAR, People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong000000, SAR, People's Republic of China
| |
Collapse
|
36
|
Mayder DM, Christopherson CJ, Primrose WL, Lin ASM, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022; 10:6496-6506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence imaging of living cells is key to better understanding cellular morphology and biological processes. Water-dispersible nanoparticles exhibiting thermally activated delayed fluorescence (TADF) have recently emerged as useful probes for time-resolved fluorescence imaging (TRFI), circumventing interference from biological autofluorescence. Many existing approaches, however, require TADF dyes with specific structural features, precluding many high-performance TADF materials from being used in this application. Here, we describe the synthesis of two TADF emitters based on the rigid and strongly electron-withdrawing dibenzo[a,c]dipyrido[3,2-h:2'-3'-j]phenazine-12-yl (BPPZ) motif, and demonstrate two parallel approaches for the encapsulation of these fluorophores to yield water-dispersible nanoparticles suitable for TRFI. First, fluorescent polymer dots (Pdots) were formed by dye encapsulation within cell-penetrating amphiphilic copolymers. Glassy organic nanoparticles (g-Odots) were also prepared, giving nanoparticles with higher photoluminescence quantum yields and improved colour purity. Both approaches yielded nanoparticles suitable for imaging, with reasonable uptake and cytotoxicity on the timescale of standard imaging experiments using human cervical (HeLa) and liver (HepG2) cancer cell lines. This work demonstrates two flexible strategies for preparing water-dispersible TADF nanoparticles for TRFI, both of which should be readily adaptable to nearly any existing hydrophobic TADF dye.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Angela S-M Lin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
37
|
Zhang HY, Yang HY, Zhang M, Lin H, Tao SL, Zheng CJ, Zhang XH. A novel orange-red thermally activated delayed fluorescence emitter with high molecular rigidity and planarity realizing 32.5% external quantum efficiency in organic light-emitting diodes. MATERIALS HORIZONS 2022; 9:2425-2432. [PMID: 35839078 DOI: 10.1039/d2mh00639a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneous optimization of photoluminescence quantum yield (ΦPL) and horizontally oriented dipoles (Θ‖) is considerably challenging for orange and red thermally activated delayed fluorescence (TADF) emitters, due to the conflicts between enhancing molecular rigidity and improving molecular planarity. Herein, a novel orange-red TADF emitter 10-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)-10H-spiro[acridine-9,9'-fluorene] (SAF-2NP) was constructed with a donor-acceptor structure. The highly rigid donor and acceptor segments ensure the overall rigidity of the emitter. More importantly, the quasi-coplanar structure between the acceptor and the fluorene moiety in the donor unit enlarges the molecular plane without weakening rigidity. Consequently, SAF-2NP exhibited extremely high ΦPL and Θ‖ of 99% and 85%, respectively. The optimal organic light-emitting diode using SAF-2NP as the emitter and 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl (CBP) as the host demonstrated an unparalleled external quantum efficiency of 32.5% and a power efficiency of 85.2 lm W-1 without any extra light extraction structure. This work provides a feasible strategy to establish efficient orange and red TADF emitters with both high rigidity and planarity.
Collapse
Affiliation(s)
- Heng-Yuan Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | - Hao-Yu Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | - Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Hui Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | - Si-Lu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | - Cai-Jun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
38
|
Zhao M, Li M, Li W, Du S, Chen Z, Luo M, Qiu Y, Lu X, Yang S, Wang Z, Zhang J, Su S, Ge Z. Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022; 61:e202210687. [DOI: 10.1002/anie.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyu Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Yi Qiu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Xumin Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shengyi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Jiashen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| |
Collapse
|
39
|
Guo S, Liu W, Wu Y, Sun J, Li J, Jiang H, Zhang M, Wang S, Liu Z, Wang L, Wang H, Fu H, Yao J. Distinctive Excited State Symmetry Breaking Dynamics in Typical Donor-Acceptor-Donor Fluorophore: Strong Photoluminescence and Ultrafast Charge Separation from a Partial Charge Transfer State. J Phys Chem Lett 2022; 13:7547-7552. [PMID: 35948107 DOI: 10.1021/acs.jpclett.2c02342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the structure-property relationships in organic semiconductors is crucial for controlling their photophysical properties and developing new optoelectronic materials. Quadrupolar molecules, donor-acceptor-donor (DAD), have attracted extensive attention in various optoelectronic applications. However, the systematic studies on the differences on photophysical properties between DAD and simple donor-acceptor (DA) chromophores are rarely reported. Herein we present a comparative study on the excited state dynamics of DA and DAD fluorescence systems using theoretical calculation and transient absorption spectroscopy. Results show that DA and DAD molecules exhibit similar excited state dynamics, which are attributed to the distinctive excited-state symmetry breaking (ESSB) phenomenon observed in a DAD system. The strong photoluminescence (PL) and ultrafast charge separation (CS) from an ESSB-induced partial charge transfer (CT) state were clearly detected in different solvent environments. These results not only offer insight into the excited state dynamics of the DAD fluorescence system but also provide some basic guidelines for designing new optoelectronic materials.
Collapse
Affiliation(s)
- Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuling Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jing Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongyu Jiang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Mengfan Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Senhao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zuyuan Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Xiao Y, Wang H, Xie Z, Shen M, Huang R, Miao Y, Liu G, Yu T, Huang W. NIR TADF emitters and OLEDs: challenges, progress, and perspectives. Chem Sci 2022; 13:8906-8923. [PMID: 36091200 PMCID: PMC9365097 DOI: 10.1039/d2sc02201j] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Near-infrared (NIR) light-emitting materials show excellent potential applications in the fields of military technology, bioimaging, optical communication, organic light-emitting diodes (OLEDs), etc. Recently, thermally activated delayed fluorescence (TADF) emitters have made historic developments in the field of OLEDs. These metal-free materials are more attractive because of efficient reverse intersystem crossing processes which result in promising high efficiencies in OLEDs. However, the development of NIR TADF emitters has progressed at a relatively slower pace which could be ascribed to the difficult promotion of external quantum efficiencies. Thus, increasing attention has been paid to NIR TADF emitters. In this review, the recent progress of NIR TADF emitters has been summarized along with their molecular design strategies and photophysical properties, as well as electroluminescence performance data of their OLEDs, respectively.
Collapse
Affiliation(s)
- Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Zongliang Xie
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yuchen Miao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Guanyu Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts and Telecommunications Nanjing 210023 China
| |
Collapse
|
41
|
Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Zhang D, Zhang Y, Guo Y, Hou S, Wang B, Liu J, Fu G, Lü X. Construction of Cr(III)-Ln(III)-Salen (Ln = Nd, Yb, Er or Gd) hetero-binuclear complexes with high-purity near-infrared (NIR) luminescence. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Mori T, Sekine K, Kawashima K, Mori T, Kuninobu Y. Near‐Infrared and Dual Emissions of Diphenylamino Group‐Substituted Malachite Green Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toshiaki Mori
- Kyushu University: Kyushu Daigaku Interdisciplinary Graduate School of Engineering Sciences JAPAN
| | - Kohei Sekine
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Kyohei Kawashima
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Toshifumi Mori
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Yoichiro Kuninobu
- Kyushu University Institute for Materials Chemistry and Engineering 6-1 Kasugakoen, Kasuga-shi 816-8580 Fukuoka JAPAN
| |
Collapse
|
44
|
Liu Y, Yang J, Mao Z, Chen X, Yang Z, Ge X, Peng X, Zhao J, Su SJ, Chi Z. Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33606-33613. [PMID: 35819262 DOI: 10.1021/acsami.2c07617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing highly efficient red/near-infrared thermally activated delayed fluorescence (TADF) materials is of great importance for organic light-emitting diodes (OLEDs). Here, we reported an asymmetric TADF emitter (TCPQ), which exhibits a high reverse intersystem crossing rate as well as a low non-radiative rate due to molecular symmetry breaking through multiple donor substitution. The coexistence of multiple donors endows TCPQ with not only near-infrared emission but also excellent device performances. As for the TCPQ-based OLEDs, the 10 and 20 wt % doped devices exhibit outstanding external quantum efficiencies (EQEs) of 21.9 and 19.2% with red emission peaks at 612 and 642 nm, respectively. Meanwhile, the non-doped device achieves an EQE of 5.4% with an emission peak at 718 nm, showing near-infrared emission. These device efficiencies are among the best performances of red/near-infrared TADF-OLEDs, demonstrating that the asymmetry design is a potential strategy for constructing long wavelength TADF materials with high efficiency.
Collapse
Affiliation(s)
- Yanyan Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaji Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Yang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Ge
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaomei Peng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Juan Zhao
- State Key Laboratory of OEMT, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of OEMT, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
45
|
Jiang C, Miao J, Zhang D, Wen Z, Yang C, Li K. Acceptor-Donor-Acceptor π-Stacking Boosts Intramolecular Through-Space Charge Transfer towards Efficient Red TADF and High-Performance OLEDs. Research (Wash D C) 2022; 2022:9892802. [PMID: 35935129 PMCID: PMC9275096 DOI: 10.34133/2022/9892802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Organic push-pull systems featuring through-space charge transfer (TSCT) excited states have been disclosed to be capable of exhibiting thermally activated delayed fluorescence (TADF), but to realize high-efficiency long-wavelength emission still remains a challenge. Herein, we report a series of strongly emissive orange-red and red TSCT-TADF emitters having (quasi)planar and rigid donor and acceptor segments which are placed in close proximity and orientated in a cofacial manner. Emission maxima (λem) of 594−599 nm with photoluminescence quantum yields (PLQYs) of up to 91% and delayed fluorescence lifetimes of down to 4.9 μs have been achieved for new acceptor-donor-acceptor (A-D-A) molecules in doped thin films. The presence of multiple acceptors and the strong intramolecular π-stacking interactions have been unveiled to be crucial for the efficient low-energy TSCT-TADF emissions. Organic light-emitting diodes (OLEDs) based on the new A-D-A emitters demonstrated electroluminescence with maximum external quantum efficiencies (EQEs) of up to 23.2% for the red TSCT-TADF emitters. An EQE of 18.9% at the brightness of 1000 cd m−2 represents one of the highest values for red TADF OLEDs. This work demonstrates a modular approach for developing high-performance red TADF emitters through engineering through-space interactions, and it may also provide implications to the design of TADF emitter with other colours.
Collapse
Affiliation(s)
- Chenglin Jiang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Danwen Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhenhua Wen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
46
|
Dai J, Yao L, Wang C, Wang Y, Liu F, Yan X, Sun P, Zhang H, Wang Y, Zhou J, Lu G. Molecular Conformation Engineering To Achieve Longer and Brighter Deep Red/Near-Infrared Emission in Crystalline State. J Phys Chem Lett 2022; 13:4754-4761. [PMID: 35612820 DOI: 10.1021/acs.jpclett.2c01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of molecules 1-5 containing the same fluorophore and different alkyl chains are synthesized to reveal the significant effect of molecular conformations on the emission properties. In crystalline state, molecules 1-3 exhibit strong orange emissions with maxima (λem) of about 600 nm and quantum yields (ΦF) of around 60%, while molecules 4 and 5 display much longer emissions to the deep red/near-infrared (NIR) region as well as even higher efficiencies (λem = 693 nm, ΦF = 73% for 4; λem = 654 nm, ΦF = 93% for 5). The largely red-shifted emissions of 4 and 5 as well as the significantly improved ΦF are very unusual. Furthermore, the ΦF of 4 and 5 represent the highest values among organic solids with similar deep red/NIR emission wavelengths. On the basis of the experimental measurements and theoretical calculations, the new molecular design of conformation engineering, the impressive emission properties, and the potential NIR fluorescence sensing and lasing applications are comprehensively investigated.
Collapse
Affiliation(s)
- Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Lianfei Yao
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Yinghui Wang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ji Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
- State Kay Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
47
|
Locally twisted donor-π-acceptor fluorophore based on phenanthroimidazole-phenoxazine hybrid for electroluminescence. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sun D, Duda E, Fan X, Saxena R, Zhang M, Bagnich S, Zhang X, Köhler A, Zysman-Colman E. Thermally Activated Delayed Fluorescent Dendrimers that Underpin High-Efficiency Host-Free Solution-Processed Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110344. [PMID: 35364621 DOI: 10.1002/adma.202110344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The development of high-performance solution-processed organic light-emitting diodes (OLEDs) remains a challenge. An effective solution, highlighted in this work, is to use highly efficient thermally activated delayed fluorescence (TADF) dendrimers as emitters. Here, the design, synthesis, density functional theory (DFT) modeling, and photophysics of three triazine-based dendrimers, tBuCz2pTRZ, tBuCz2mTRZ, and tBuCz2m2pTRZ, is reported, which resolve the conflicting requirements of achieving simultaneously a small ΔEST and a large oscillator strength by incorporating both meta- and para-connected donor dendrons about a central triazine acceptor. The solution-processed OLED containing a host-free emitting layer exhibits an excellent maximum external quantum efficiency (EQEmax ) of 28.7%, a current efficiency of 98.8 cd A-1 , and a power efficiency of 91.3 lm W-1 . The device emits with an electroluminescence maximum, λEL , of 540 nm and Commission International de l'Éclairage (CIE) color coordinates of (0.37, 0.57). This represents the most efficient host-free solution-processed OLED reported to date. Further optimization directed at improving the charge balance within the device results in an emissive layer containing 30 wt% OXD-7, which leads to an OLED with the similar EQEmax of 28.4% but showing a significantly improved efficiency rolloff where the EQE remains high at 22.7% at a luminance of 500 cd m-2 .
Collapse
Affiliation(s)
- Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Eimantas Duda
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rishabh Saxena
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Sergey Bagnich
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Anna Köhler
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
49
|
Woon K, Nikishau PA, Sini G. Fast and Accurate Determination of the Singlet–Triplet Gap in Donor–Acceptor and Multiresonance TADF Molecules by Using Hole–Hole Tamm–Dancoff Approximated Density Functional Theory. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Lin Woon
- Institute of Advanced Studies CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
- Low Dimensional Materials, Department of Physics University of Malaya Kuala Lumpur 50603 Malaysia
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University 14 Leningradskaya st. Minsk 220006 Belarus
| | - Gjergji Sini
- Institute of Advanced Studies CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
- Laboratoire de Physico‐Chimie des Polymères et des Interfaces (LPPI) CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
| |
Collapse
|
50
|
Chen JX, Wang H, Xiao YF, Wang K, Zheng MH, Chen WC, Zhou L, Hu D, Huo Y, Lee CS, Zhang XH. Optimizing Intermolecular Interactions and Energy Level Alignments of Red TADF Emitters for High-Performance Organic Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201548. [PMID: 35491513 DOI: 10.1002/smll.202201548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Adequately harvesting all excitons in a single molecule and inhibiting exciton losses caused by intermolecular interactions are two important factors for achieving high efficiencies thermally activated delayed fluorescence (TADF). One potential approach for optimizing these is to tune alignment of various excited state energy levels by using different doping concentrations. Unfortunately, emission efficiencies of most TADF emitters decrease rapidly with concentrations which limits the window for energy level tunning. In this work, by introducing a spiro group to increase steric hindrance of a TADF emitter (BPPXZ) with a phenoxazine and a dibenzo[a,c]phenazine, emission efficiency of the resulting molecule (BPSPXZ) is much less affected by concentration increase. This enables exploitation of the concentration effects to tune energy levels of its excited states for obtaining simultaneously small singlet-triplet energy offset and large spin-orbital coupling, leading to high-efficiency reverse intersystem crossing. With these merits, organic light-emitting diodes (OLEDs) using the BPSPXZ emitter from 5 to 60 wt% doping can all deliver EQE of over 20%. More importantly, record-high EQEs of 33.4% and 15.8% are respectively achieved in the optimized and nondoped conditions. This work proposes a strategy for developing red TADF emitters by optimizing the intermolecular interaction and energy level alignments to facilitate exciton utilization over wide doping concentrations.
Collapse
Affiliation(s)
- Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Ming-Hui Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|