1
|
Kong WJ, Wang WG, Chen QY, Wang GJ, Chen F. Porphyrin doped europium/black phosphorus nanoarchitectonics as the sensor of L-arginine and gram-negative bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126305. [PMID: 40315776 DOI: 10.1016/j.saa.2025.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
The L-arginine (L-Arg) in Escherichia coli (E. coli) is associated with the biofilm formation and drug resistance evolution. The detection of L-Arg and E. coli is meaningful to the control of pathogen infection. Herein, porphyrin modified europium black phosphorus (BP) nanoarchitectonics (labelled as BPEu@TAC) was synthesized and characterized by a variety of spectroscopic methods. The existence of Eu(II/III)-BP was confirmed by XPS data and Raman spectra. It was found that L-Arg can turn on the emission at 548 nm of BPEu@TAC with a visual color change, while other amino acids showed less effect. The detection limit of L-Arg is ca. 2.02 μM. In particular, the fluorescence response of BPEu@TAC to bacteria is related to the concentration of L-Arg. BPEu@TAC + L-Arg system was more sensitive to E. coli than S. aurus. The fluorescence emission change of BPEu@TAC + L-Arg system is affected by the concentration of E. coli. Therefore, BPEu@TAC can sense the level of L-Arg and the metabolism of L-Arg in E. coli.
Collapse
Affiliation(s)
- Wei-Jian Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei-Guo Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Gao-Ji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Zhou H, Zhang RW, Pan XY, Ai SY, Cui ZW, Wu P, Huang Q, Tian D. Functionalized Thorium-Based Metal-Organic Frameworks for the Photocatalytic Oxidation of 1, 5-Dihydroxynaphthalene. Chemistry 2025; 31:e202500065. [PMID: 40011222 DOI: 10.1002/chem.202500065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
It is still a challenging task to rationally design metal-organic framework (MOF) crystal catalysts with excellent light absorption and charge transfer for efficient photocatalytic reactions. In this work, the hexanuclear thorium clusters, porphyrin derivative ligands, and linear carboxylic acid ligands were assemed into Th-based metal-organic frameworks (Th6-TCPP, Th6-Co-TCPP, and Th6-Ni-TCPP) by the mixed ligand method. The three prepared MOF crystals were applied in the photocatalytic oxidation of 1, 5-dihydroxynaphthalene (1, 5-DHN) for the synthesis of juglone. Among them, Th6-TCPP exhibited optimum photodynamic activity for production of reactive oxygen species. Under lillumination, Th6-TCPP resulted in photochemical reaction conversion rate up to 95 % for 9, 10-diphenylanthracene (DPA) and 54.5 % for 1, 5-DHN. The good catalytic effect was attributed to the large conjugate system of porphyrin and the enhanced photosensitivity of bipyridine.
Collapse
Affiliation(s)
- Hui Zhou
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Ran-Wei Zhang
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Xiao-Yue Pan
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Shi-Yan Ai
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Zi-Wei Cui
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Pengfei Wu
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Qing Huang
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| | - Dan Tian
- College of Materials Science and Engineering Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China
| |
Collapse
|
3
|
Meng S, He X, Li B, Yang Y, Mao S, Li Z. A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection. Talanta 2025; 285:127420. [PMID: 39708568 DOI: 10.1016/j.talanta.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The excessive presence of the metal ions Cu2+ and Fe3+ in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu2+ and Fe3+ in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix. The synthesized hydrogel sensor ME-IPA@SA-TbZn exhibits remarkable capabilities in detecting and distinguishing between Cu2+ and Fe3+ with high selectivity and sensitivity. Specifically, it achieves limits of detection (LODs) of 1.275 μM for Cu2+ and 0.549 μM for Fe3+, respectively, both are below the maximum allowable concentrations set by the U.S. Environmental Protection Agency (EPA) for drinking water. Importantly, the hydrogel sensing platform delivers intuitive and visible results under simple operating conditions, and has been successfully applied to Cu2+ and Fe3+ detection in river samples. In addition, it was demonstrated that disruption of the "antenna" effect, absorption competition quenching (ACQ) effect, and ion exchange (IE) effect are the main mechanisms leading to fluorescence quenching. Based on these results, ME-IPA@SA-TbZn hold promise as a fluorescent sensor for detecting Cu2+ and Fe3+ ions.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Li S, Han Z, Wang Z, Feng Y, Lan Y, Zhao Y, Gao Y, Kang K, Du P, Lu X. Boron Ligands Boosting the Electrochemiluminescence Performance of Europium Metal-Organic Frameworks by Facilitating the Electronic Bridging. Anal Chem 2025; 97:6145-6154. [PMID: 40065674 DOI: 10.1021/acs.analchem.4c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
For optimal energy transfer in self-luminous lanthanide metal-organic frameworks (Ln-MOFs), the energy of the lowest triplet excited state must align with ideal energy levels. Failure to meet this condition can lead to reverse energy transfer, reducing luminous efficiency. In this study, we developed a mixed-ligand MOF, Eu-TCPP-BOP, which exists as an ECL self-enhancing luminophore. We used SPECM to study the role of boron ligands as a bridge for electron transport in improving the ECL performance of Eu-TCPP. The ligands H4TCPP and 5-BOP act as electron donor and shuttle, facilitating electron transport during the synthesis of Eu-TCPP-BOP and promoting energy transfer to the excited state of the acceptor Ln3+, thus enhancing overall energy transfer in Ln-MOF. The results indicate that the introduction of boron ligands enhances the ECL intensity of Eu-TCPP by a factor of 1.4 under voltage excitation. As an ECL sensing platform, it demonstrates high sensitivity and selectivity for the detection of catechol, with a concentration range of 1∼70 μM and a detection limit of 0.35 μM.
Collapse
Affiliation(s)
- Shuying Li
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhengang Han
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhilan Wang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yubao Lan
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuling Gao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Kainan Kang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peiyao Du
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
5
|
Xu Y, Li P, Liu Y, Man Y, Wang C, Li J, Sun G, Ju Q, Fang Z. Constructing Synergistically Catalytic Lewis Acidic-Basic Sites for Boosting Reactivity of a Flexible Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10710-10721. [PMID: 39912754 DOI: 10.1021/acsami.4c20744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Targeted construction of Lewis acidic-basic sites in the skeleton of coordination polymers (CPs) can greatly enhance their catalytic efficiency due to the synergistic effect of acidic and basic sites. However, research on validating the coexistence of Lewis acidic-basic sites for boosting the catalytic activity of CPs toward the Knoevenagel condensation (KC) reaction, widely applied in the synthesis of high-added-value intermediates and products under mild conditions, is missing so far. Based on the above consideration, we have artificially constructed Lewis acidic-basic sites and introduced vacancy in the framework of a new flexible cerium CP {Ce-CP: [Ce3+Ce4+(obb2-)3(OH)(H2O)(DMF)]∞} (DMF: N,N-dimethylformamide) via applying the functional ligand 4,4'-oxidibenzoate (obb2-) with the bridging O atom as the Lewis basic site and removing the coordinating solvent molecules and counterions to form cerium coordination unsaturated sites (Ce-CUSs) as Lewis acidic sites. Interestingly, Ce-CP exhibits reversible structural transformation associated with a desolvation and resolvation process. The Lewis acidic and basic sites in the resulting Ce-CP (LAB-Ce-CP) have been confirmed by CO2 temperature-programmed desorption (TPD) and NH3 combined with pyrrole-TPD (NH3-Py-TPD) for the first time. Benefiting from the coexistence of Lewis acidic and basic sites as well as the flexibility of the framework, LAB-Ce-CP shows high activity and excellent recyclability toward KC reactions. Moreover, we have found that (1) the activation temperature of Ce-CP plays a critical role in its porosity, exposure of Lewis acidic-basic sites, and thus reactivity; (2) the stronger electron-withdrawing ability of the substituent groups in benzaldehyde derivatives and the smaller size of the reactants lead to the higher yield of product and turnover number (TON) value when the disparity of electron-withdrawing and electron-donating abilities between the substituent groups in benzaldehyde derivatives is not significant. Hence, this work has exploited a new strategy for designing excellent heterogeneous catalysts with constructed active sites of synergistic catalysis capability toward KC reactions.
Collapse
Affiliation(s)
- Yixiu Xu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Peiyuan Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuanyuan Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yi Man
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd, Beijing 100013, China
| | - Chan Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Jia Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Gengzhi Sun
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Qiang Ju
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Zhenlan Fang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
6
|
Yang W, Liu M, Qin Y, Xiao R, Tan R, Qiu Y, Jiang W, Chen Y, Li W, Gu W, Hu L, Zhu C. Reducing Intrinsic Carrier Recombination in Au/CuTCPP(Fe) Schottky Junction Through Spin Polarization Manipulation for Sensitive Photoelectrochemical Biosensing. Anal Chem 2025; 97:3756-3764. [PMID: 39921629 DOI: 10.1021/acs.analchem.4c07022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Schottky junctions have been widely applied to facilitate charge carrier separation through the formation of an internal electric field (IEF). However, the notably restricted spatial distribution of the IEF weakens the promotion of intrinsic carrier separation. In this study, we unveil that Au nanoparticles (NPs) in the Au/CuTCPP(Fe) Schottky junction can manipulate the spin polarization of CuTCPP(Fe) to inhibit inner carrier recombination. Experimental investigations and theoretical calculations reveal that the introduction of Au NPs leads to an increased population of spin-polarized electrons, effectively suppressing inner charge carrier recombination in CuTCPP(Fe) by employing the spin mismatch between spin-polarized photoexcited carriers. Moreover, as a typical active site for the oxygen reduction reaction, the oxygen adsorption configuration on spin-polarized Fe single-atom sites in Au/CuTCPP(Fe) is further optimized, resulting in boosted interfacial reactions. Leveraging the thiocholine-induced poisoning of the active sites and the magnetic-enhanced photoelectric response, Au/CuTCPP(Fe) is harnessed to develop a photoelectrochemical biosensing platform for organophosphorus pesticides. This work offers a promising method for manipulating the spin polarization of semiconductors in heterojunctions to mitigate intrinsic charge carrier recombination.
Collapse
Affiliation(s)
- Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yuanxing Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wen Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
7
|
Li YL, Lan HF, Wang HL, Zhu ZH, Cheng L, Zou HH. Lanthanide Molecular Clusters and Metal-Organic Layers Constructed by Manipulation of Substituents. Inorg Chem 2025; 64:2829-2836. [PMID: 39907031 DOI: 10.1021/acs.inorgchem.4c04885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Usually, complexes with different connections and shapes are constructed by regulating the substituents. However, it is extremely challenging to construct two lanthanide complexes with different dimensions by only fine-tuning the substituents of the ligands, especially the substituents (-CH3 and -CH2CH3) with almost similar physical and chemical properties. Herein, by only regulating the substituents of the multidentate chelating ligands, two lanthanide complexes with different dimensions and connection modes were successfully constructed using a multicomponent "one-pot method" under the guidance of the multidentate chelating coordination method (MCC). They are the 11-nuclear lanthanide molecular cluster (Dy11) and the metal-organic layer (2D-Dy). Specifically, when the selected ligand is an imidazole-2-carboxaldehyde derivative and its substituent is -CH3, a layered 2D-Dy is obtained. The linker [Dy(HL1)3] with a propeller configuration is formed by chelating the Dy(III) ion with an acylhydrazone ligand (HL1) formed by the condensation of three salicylhydrazides and 1-methyl-1H-imidazole-2-carboxaldehyde. The above linkers were further linked alternately with propeller-shaped [Dy(NO3)3] as a secondary building unit (SBU) to form 2D-Dy. In addition, by changing the -CH3 on the ligand to -CH2CH3, we obtained an example of Dy11 formed by epitaxial assembly of two Dy(III) ions with an hourglass-shaped Dy9 as the core, and its molecular formula is [Dy11(HL2)8(μ3-OH)8(μ4-O)2(CH3O)4(NO3)4](NO3)5 18CH3OH. The cluster Dy11 was bombarded using high-resolution electrospray ionization mass spectrometry (HRESI-MS) and the molecular ion peaks of various fragments formed were captured. Based on the above molecular ion peaks, the possible fragmentation mechanisms of Dy11 were inferred to be Dy11 → Dy4(HL2)4 → Dy3(HL2)2 → Dy2(HL2)2 → Dy(HL2)2 and Dy11 → Dy(HL2)2/Dy2(HL2)2/Dy3(HL2)2/Dy4(HL2)4. This work is one of the rare examples where fine-tuning of ligand substituents leads to the formation of complexes of different dimensions, which promotes the progress of crystal engineering of lanthanide complexes.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Fang Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, PR China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, PR China
| | - Lei Cheng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| |
Collapse
|
8
|
Duan L, Cheng T, Zhu Y, Wang Y, Gao Y, Bi J. Lanthanide-Porphyrin MOF as a Multifunctional Platform for Detection and Integrated Elimination of Cr(VI) and Ciprofloxacin. Inorg Chem 2025; 64:1983-1993. [PMID: 39838743 DOI: 10.1021/acs.inorgchem.4c04753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement. The variation in color intensity of Tb-MOF on 3D EEM spectra enabled simultaneous detection of both contaminants. Additionally, Tb-MOF demonstrated a synergistic removal effect, achieving over 95% removal rates of Cr(VI) and CIP within 90 min, with consistent sensing and catalytic performance across four cycles. Mechanistic investigations revealed that (i) strong coordination between Tb3+ and CIP altered the surface potential of Tb-MOF, enhancing Cr(VI) adsorption; (ii) as an efficient electron acceptor, Cr(VI) promoted electron transfer and its reduction to Cr(III); and (iii) superoxide radicals generated via a type I mechanism played a key role in CIP degradation. This research underscores the potential of Tb-MOF as a multifunctional platform for simultaneous detection and synergistic remediation of mixed pollutants.
Collapse
Affiliation(s)
- Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Ting Cheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Yanyue Zhu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Yuping Wang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, China
| |
Collapse
|
9
|
Chen H, Wang Z, Zhao Y, Song ZL, Fan GC, Luo X. Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode. ACS Sens 2025; 10:507-516. [PMID: 39761446 DOI: 10.1021/acssensors.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay. The vinyl-functionalized COF (COF-V) was modified with meso-tetra(4-carboxyphenyl)-porphine (TCPP) and polydopamine (PDA) to fabricate a PDA/TCPP/COF-V photocathode, which served as the photocurrent signal transducer. Toward the unconventional recognition element, a hairpin DNA probe (hDNA) was efficiently linked with a linear zwitterionic peptide (LZP) to form the LZP-hDNA bioconjugate, which was then grafted onto the COF-based photocathode. The grafting of the LZP generated a sturdy anti-interference interface on the signal transducer. For tDNA probing, AgInS2 (AIS) quantum dots acted as signal quenchers, marked on signaling DNA (sDNA) to obtain AIS-sDNA labeling, and a striking drop in the photocurrent signal was achieved through λ-exonuclease (λ-Exo)-aided target recycling. This novel peptide-conjugated hairpin DNA probe endowed the PEC DNA bioassay with an impressive anti-interference property without requiring tedious steps. By combining the excellent photoelectric properties of the COF-based photocathode with an effective signaling strategy, accurate and sensitive results for tDNA probing were achieved.
Collapse
Affiliation(s)
- Huimin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Zhang X, Liu Z, Shao B, Liang Q, Wu T, Pan Y, He Q, He M, Ge L, Huang J. Porphyrin-Based Metal-Organic Framework Photocatalysts: Structure, Mechanism and Applications. SMALL METHODS 2025:e2402096. [PMID: 39757519 DOI: 10.1002/smtd.202402096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In recent years, porphyrins have been frequently reported as photocatalysts due to their fascinating photochemical properties. However, porphyrins have the same shortcomings as other homogeneous photocatalysts, such as poor stability and difficulty in recovering. To solve this problem, it is a good strategy to form a porphyrin-based metal-organic framework (PMOF) by modifying porphyrin functional groups and adding metals as nodes to connect and control the arrangement of porphyrins. The metal nodes control the rigidity and connectivity of the porphyrin modules to order them in the MOF, which improves the stability of the porphyrins, avoids porphyrin aggregation and folding, and increases the active sites for photocatalytic reactions. This review summarized the research progress of PMOF photocatalysts in the last ten years and analyzed the effects of the spatial structure, porphyrin ligands, porphyrin central metals, and metal nodes of PMOF on the photocatalytic performance. The applications of PMOF-based photocatalysts in H2 production, CO2 reduction, pollutant degradation, and sterilization are reviewed. In addition, the mechanism of these processes is described in detail. Finally, some suggestions on the development of PMOF photocatalysts are put forward.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
11
|
Li M, Wang Z, Tang H, Yang J, Luo X, Tian Y, Yang M, Jiang J, Wang M, Zheng L, Ma C, Xing G, Wang H, Li J. A bionic palladium metal-organic framework based on a fluorescence sensing enhancement mechanism for sensitive detection of phorate. NANOSCALE 2025; 17:934-946. [PMID: 39584801 DOI: 10.1039/d4nr03779k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We have developed a biomimetic fluorescent nanoprobe (Pd-MOF) that can accurately identify phorate at a fixed wavelength for rapid, sensitive and selective detection. Pd-MOF was a nanoparticle (260.00 ± 27.83 nm) based on the linkage of Pd metal and a TCPP organic framework. It could detect phorate according to the fluorescence principles similar to that of the bioluminescence of Chrysaora pacifica (substance interaction and chromophore fluorescence enhancement). When phorate molecules enter the pores of Pd-MOF and interact with each other, the energy transfer process is stimulated, and the fluorescence signal is significantly enhanced, thereby improving the detection sensitivity. According to shift of the white line in the XANES energy spectrum and the DFT results, phorate increased the energy gap of Pd-MOF from 0.025 eV to 0.046 eV, enhanced the stability of the system, and thus achieved fluorescence enhancement. The sensitivity of Pd-MOF was due to its much smaller energy gap (<80 times) than other metal MOFs and thus it was easier to get excited. The linear detection range for the phorate of the nanoprobe in the water system was 0.01-100 ppb, and the detection limit was 0.0017 ppb. The response time of the Pd-MOF nanoprobe to phorate was 45 seconds. The detection of phorate in tap water, pear and cabbage samples showed that the recovery rates were in the range of 87.69-106.12%, and the relative standard deviation (RSD) was less than 11.16%, which verified the possibility of Pd-MOF nanoprobe in practical application. The sensitive and specific recognition of phorate by Pd-MOF nanoprobe and the development of a phorate test strip (Pd-MOF@paper) confirmed its potential application in pesticide residue detection.
Collapse
Affiliation(s)
- Mengyao Li
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Jingru Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Youjia Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Mingxin Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Jinhong Jiang
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310063, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Chenyan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hongbin Wang
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
12
|
Hu C, Jiang D, Zhang Y, Gao H, Zeng Y, Khaorapapong N, Liu Z, Yamauchi Y, Pan M. Porphyrins-based multidimensional nanomaterials: Structural design, modification and applications. Coord Chem Rev 2025; 523:216264. [DOI: 10.1016/j.ccr.2024.216264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Quon AS, Manriquez D, Nguyen A, Papazyan EK, Wijeratne P, An L, Qi L, Tang MJ, Ready AD, Farha OK, Liu Y. Metalloporphyrinic metal-organic frameworks for enhanced photocatalytic degradation of a mustard gas simulant. Chem Commun (Camb) 2024; 61:77-80. [PMID: 39498895 DOI: 10.1039/d4cc03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Four metalloporphyrinic metal-organic frameworks (MOFs) were successfully synthesized and exhibited enhanced activities for the photooxidation of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). Among them, a Sn-porphyrin functionalized 2D MOF, namely CSLA-21-NH2(Sn), showed a half-life of 1.5 min for CEES oxidation under blue LED, featuring as one of the fastest photocatalysts for CEES degradation.
Collapse
Affiliation(s)
- Alisa S Quon
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Doroteo Manriquez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Anna Nguyen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Edgar K Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Pavithra Wijeratne
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Lun An
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Long Qi
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew J Tang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| | - Austin D Ready
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN) and Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
| |
Collapse
|
14
|
Wang Z, Jia Y, Wang X, Liu Y, Liu Q. Fe(II) Induced Porphyrin Nanoaggregates Assembled in the Liquid-Liquid Interface with Dual Enzyme-like Activity for Colorimetric Determination of Methimazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23825-23836. [PMID: 39467156 DOI: 10.1021/acs.langmuir.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The liquid-liquid interface offers a confined space to control the growth of nanomaterials. In this study, Fe(II) (water phase) induced Meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) (CHCl3, organic phase) into nanoaggregates (Fe-TCPP) in the liquid-liquid interface. By tuning the ratio of DMF in organic solvents, Fe(II) induced H2TCPP into two nanoaggregates (Fe-TCPP-1 and Fe-TCPP-2) with different morphologies via coordination interaction occurring at the water-CHCl3 interface. Interestingly, the Fe-TCPP nanoaggregates possess dual enzyme-like activity (peroxidase-like and oxidase-like activity). In particular, both Fe-TCPP-1 and Fe-TCPP-2 demonstrate a peroxidase-/oxidase-like activity under visible light irradiation that is higher than that in the dark. Comparatively, Fe-TCPP-2 exhibits enhanced peroxide-like (POD) activity together with oxidase-like (OXD) activity compared with that of Fe-TCPP-1 under the corresponding similar conditions. The excellent enzyme mimic activity of Fe-TCPP nanozymes is ascribed to the generated hydroxyl radicals (·OH) and superoxide anions (O2•-). Remarkably, the catalytic activity of Fe-TCPP-2 remains more than 90% even in the higher temperature range of 35-40 °C, which is significant for biological detection under physiological conditions. Based on the outstanding dual enzyme-like activity of Fe-TCPP-2, a colorimetric sensing platform for methimazole (an antithyroid medicine) has been developed, demonstrating a linear detection range of 10-100 μM and a detection limit of 4.44 μM.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yuqi Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Xiajuan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P R China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| |
Collapse
|
15
|
Li Z, Jia J, Sang Z, Liu W, Nie J, Yin L, Hou F, Liu J, Liang J. A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202408500. [PMID: 39115946 DOI: 10.1002/anie.202408500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90 %/85 % H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.
Collapse
Affiliation(s)
- Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingjing Jia
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiahuan Nie
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiachen Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal-Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem 2024; 96:16170-16178. [PMID: 39358945 DOI: 10.1021/acs.analchem.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A luminescent nanoprobe capable of orthogonal sensing of two independent events is highly significant for unbiased disease-related detection such as the detection of senescent cells. Moreover, it is invaluable that the nanoprobe possesses a two-photon excitable characteristic that is highly suitable for imaging living cells and tissues. Herein, we present a two-photon-excitable multiluminescent orthogonal-sensing nanoprobe (OS nanoprobe) capable of detecting both pH elevation and β-galactosidase (β-gal) overexpression in senescent cells. In the design, Zr-based dual-emissive metal-organic frameworks prepared from two mixed amino linkers, referred to as NH2-MU, were used as the component for the ratiometric sensing of pH; additionally, fluorogenic resorufin-β-d-galactopyranoside, linked to the NH2-MU framework, enables β-gal detection. In the OS nanoprobe, the signals for pH and β-gal sensing remain independent while maintaining high colocalization. The two-photon excitable organic linkers of NH2-MU impart the OS nanoprobe with a bioimaging capability, allowing for the differentiation of senescent human foreskin fibroblast (HFF) cells from younger HFF cells or LacZ positive cells with the 800 nm laser excitation. This study marks the first instance of achieving the multiplexed orthogonal fluorescent sensing of cellular senescence using a two-photon excitation strategy, suggesting the potential of using versatile metal-organic framework (MOFs)-based fluorophores to realize the orthogonal multiplexing of disease-related biomarkers through multiphoton excitation.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Bai M, Wan H, Zhang Y, Chen S, Lu C, Liu X, Chen G, Zhang N, Ma R. Two-dimensional nanomaterials based on rare earth elements for biomedical applications. Chem Sci 2024; 15:d4sc02625j. [PMID: 39360014 PMCID: PMC11441461 DOI: 10.1039/d4sc02625j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
As a kind of star materials, two-dimensional (2D) nanomaterials have attracted tremendous attention for their unique structures, excellent performance and wide applications. In recent years, layered rare earth-based or doped nanomaterials have become a new important member of the 2D nanomaterial family and have attracted significant interest, especially layered rare earth hydroxides (LREHs) and layered rare earth-doped perovskites with anion-exchangeability and exfoliative properties. In this review, we systematically summarize the synthesis, exfoliation, fabrication and biomedical applications of 2D rare earth nanomaterials. Upon exfoliation, the LREHs and layered rare earth-doped perovskites can be dimensionally reduced to ultrathin nanosheets which feature high anisotropy and flexibility. Subsequent fabrication, especially superlattice assembly, enables rare earth nanomaterials with diverse compositions and structures, which further optimizes or even creates new properties and thus expands the application fields. The latest progress in biomedical applications of the 2D rare earth-based or doped nanomaterials and composites is also reviewed in detail, especially drug delivery and magnetic resonance imaging (MRI). Moreover, at the end of this review, we provide an outlook on the opportunities and challenges of the 2D rare earth-based or doped nanomaterials. We believe this review will promote increasing interest in 2D rare earth materials and provide more insight into the artificial design of other nanomaterials based on rare earth elements for functional applications.
Collapse
Affiliation(s)
- Mingjun Bai
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Siqi Chen
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Chunyin Lu
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
18
|
Li J, Liang Y, Tian C, Zou H, Zhan L, Wang L, Huang C, Li C. Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer. Molecules 2024; 29:4259. [PMID: 39275107 PMCID: PMC11397212 DOI: 10.3390/molecules29174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that is rapid, sensitive, and selective. Here, we created Eu(III)-coordination polymers (Eu-CPs) with surfaces that have abundant carboxyl and hydroxyl groups. This was achieved by using citric acid and europium nitrate hexahydrate as precursors in a straightforward one-pot hydrothermal process. These Eu-CPs were then successfully utilized for highly sensitive DPA determination. The fluorescence (FL) emission of Eu-CPs, which is typically weak due to the coordination of Eu(III) with water molecules, was significantly enhanced in the presence of DPA. This enhancement is attributed to the competitive binding between DPA's carboxyl or hydroxyl groups and water molecules. As a result, the absorbed energy of DPA, when excited by 280 nm ultraviolet light, is transferred to Eu-CPs through an antenna effect. This leads to the emission of the characteristic red fluorescence of Eu3+ at 618 nm. A strong linear relationship was observed between the enhanced FL intensity and DPA concentration in the range of 0.5-80 μM. This relationship allowed for a limit of detection (LOD) of 15.23 nM. Furthermore, the Eu-CPs we constructed can effectively monitor the release of DPA from Bacillus subtilis spores, thereby further demonstrating the potential significance of this strategy in the monitoring and management of anthrax risk. This highlights the novelty of this approach in practical applications, provides a valuable determination technique for Bacillus anthracis, and offers insights into the development cycle of microorganisms.
Collapse
Affiliation(s)
- Jing Li
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yu Liang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Environment and Quality Test Department, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Chun Tian
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongyan Zou
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China
| | - Chengzhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Liu S, Meng S, Li Y, Dong N, Wei Y, Li Y, Liu D, You T. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection. ACS Sens 2024; 9:3377-3386. [PMID: 38783424 DOI: 10.1021/acssensors.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.
Collapse
Affiliation(s)
- Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuqing Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
20
|
Bao J, Mi J, Xia Y, Gui H, Jia H, Wang D, Luo H, Su L, Zhang J, Liu J, Liu J. Heme-Mimetic Photosensitizer with Iron-Targeting and Internalizing Properties for Enhancing PDT Activity and Promoting Infected Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:4116-4132. [PMID: 38772009 DOI: 10.1021/acsabm.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The management of multibacterial infections remains clinically challenging in the care and treatment of chronic diabetic wounds. Photodynamic therapy (PDT) offers a promising approach to addressing bacterial infections. However, the limited target specificity and internalization properties of traditional photosensitizers (PSs) toward Gram-negative bacteria pose significant challenges to their antibacterial efficacy. In this study, we designed an iron heme-mimetic PS (MnO2@Fe-TCPP(Zn)) based on the iron dependence of bacteria that can be assimilated by bacteria and retained in different bacteria strains (Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and which shows high PDT antibacterial efficacy. For accelerated wound healing after antibacterial treatment, MnO2@Fe-TCPP(Zn) was loaded into a zwitterionic hydrogel with biocompatibility and antifouling properties to form a nanocomposite antibacterial hydrogel (PSB-MnO2@Fe-TCPP(Zn)). In the multibacterial infectious diabetic mouse wound model, the PSB-MnO2@Fe-TCPP(Zn) hydrogel dressing rapidly promoted skin regeneration by effectively inhibiting bacterial infections, eliminating inflammation, and promoting angiogenesis. This study provides an avenue for developing broad-spectrum antibacterial nanomaterials for combating the antibiotic resistance crisis and promoting the healing of complex bacterially infected wounds.
Collapse
Affiliation(s)
- Jiawei Bao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiayu Mi
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yi Xia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Han Gui
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
21
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
22
|
Yin L, Huang JB, Yue TC, Wang LL, Wang DZ. Two 2D Metal-Organic Frameworks Based on Purine Carboxylic Acid Ligands for Photocatalytic Oxidation of Sulfides and CO 2 Chemical Fixation. Inorg Chem 2024; 63:9109-9118. [PMID: 38711379 DOI: 10.1021/acs.inorgchem.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Two two-dimensional (2D) layered metal-organic frameworks (MOFs), namely, {[Yb(L)(H2O)2NO3]·2H2O}n (Yb-MOF) and [Er(L)(H2O)3Cl]n (Er-MOF) (H2L = 5-((6H-purin-6-yl)amino)isophthalic acid), were constructed by a solvothermal method and characterized. The catalytic performance study showed that the Yb-MOF could efficiently catalyze the oxidation of sulfides to sulfoxides under 15 W light-emitting diode (LED) blue light irradiation. Electron paramagnetic resonance spectroscopy and free-radical trapping experiments demonstrated that the photocatalytic reaction process involved •O2-, and the corresponding mechanism was proposed. Moreover, Er-MOF exhibited good catalytic efficiency and excellent substrate tolerance in the cycloaddition reaction of CO2, and the reaction conditions were mild. After 5 cycles, the catalytic activities of two MOFs did not significantly decrease, and the framework structures remained unchanged. Therefore, the Yb-MOF and Er-MOF were considered efficient and stable heterogeneous catalysts.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jian-Bo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Tian-Cai Yue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lu-Lu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Duo-Zhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
23
|
Cao XM, Cheng YQ, Chen MM, Yao SY, Ying AK, Wang XZ, Guo DS, Li Y. Sulfonated Azocalix[4]arene-Modified Metal-Organic Framework Nanosheets for Doxorubicin Removal from Serum. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:864. [PMID: 38786820 PMCID: PMC11124067 DOI: 10.3390/nano14100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Chemotherapy is one of the most commonly used methods for treating cancer, but its side effects severely limit its application and impair treatment effectiveness. Removing off-target chemotherapy drugs from the serum promptly through adsorption is the most direct approach to minimize their side effects. In this study, we synthesized a series of adsorption materials to remove the chemotherapy drug doxorubicin by modifying MOF nanosheets with sulfonated azocalix[4]arenes. The strong affinity of sulfonated azocalix[4]arenes for doxorubicin results in high adsorption strength (Langmuir adsorption constant = 2.45-5.73 L mg-1) and more complete removal of the drug. The extensive external surface area of the 2D nanosheets facilitates the exposure of a large number of accessible adsorption sites, which capture DOX molecules without internal diffusion, leading to a high adsorption rate (pseudo-second-order rate constant = 0.0058-0.0065 g mg-1 min-1). These adsorbents perform effectively in physiological environments and exhibit low cytotoxicity and good hemocompatibility. These features make them suitable for removing doxorubicin from serum during "drug capture" procedures. The optimal adsorbent can remove 91% of the clinical concentration of doxorubicin within 5 min.
Collapse
Affiliation(s)
- Xiao-Min Cao
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
| | - Yuan-Qiu Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Meng-Meng Chen
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shun-Yu Yao
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - An-Kang Ying
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiu-Zhen Wang
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry, and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yue Li
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Wu D, Zhou H, Lai X, Liu X, Sang K, Chen Y, Chen M, Wei J, Wu S, Pang Q, Zhou L, Chen P. Eu-Based Porphyrin MOF Enables High-Performance Carbon-Based Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308783. [PMID: 38105423 DOI: 10.1002/smll.202308783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Indexed: 12/19/2023]
Abstract
The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).
Collapse
Affiliation(s)
- Dongqi Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Huanyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xiaoxia Lai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xinxin Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Kaihang Sang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Mianhong Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Shan Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| |
Collapse
|
25
|
Li S, Chen Q, Xu Q, Wei Z, Shen Y, Wang H, Cai H, Gu M, Xiao Y. Hierarchical Self-Assembly Molecular Building Blocks as Intelligent Nanoplatforms for Ovarian Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309547. [PMID: 38408141 PMCID: PMC11077652 DOI: 10.1002/advs.202309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Hierarchical self-assembly from simple building blocks to complex polymers is a feasible approach to constructing multi-functional smart materials. However, the polymerization process of polymers often involves challenges such as the design of building blocks and the drive of external energy. Here, a hierarchical self-assembly with self-driven and energy conversion capabilities based on p-aminophenol and diethylenetriamine building blocks is reported. Through β-galactosidase (β-Gal) specific activation to the self-assembly, the intelligent assemblies (oligomer and superpolymer) with excellent photothermal and fluorescent properties are dynamically formed in situ, and thus the sensitive multi-mode detection of β-Gal activity is realized. Based on the overexpression of β-Gal in ovarian cancer cells, the self-assembly superpolymer is specifically generated in SKOV-3 cells to achieve fluorescence imaging. The photothermal therapeutic ability of the self-assembly oligomer (synthesized in vitro) is evaluated by a subcutaneous ovarian cancer model, showing satisfactory anti-tumor effects. This work expands the construction of intelligent assemblies through the self-driven cascade assembly of small molecules and provides new methods for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangsu Institute of HematologyNational Clinical Research Center for Hematologic DiseasesNHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital and Collaborative Innovation Center of HematologySoochow UniversitySuzhou215006China
| | - Qingrong Chen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Qi Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Zhongyu Wei
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yongjin Shen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Hua Wang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Hongbing Cai
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Meijia Gu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuxiu Xiao
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| |
Collapse
|
26
|
Zhang X, Tan Y, Zhao J, Cai Z, Zhang J, Madhusudan P. NiFeB-assisted adsorption and activation of nitrogen to improve the photooxidation activity of zinc porphyrin. Chem Commun (Camb) 2024; 60:4298-4301. [PMID: 38530709 DOI: 10.1039/d4cc00249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This study effectively addresses the challenge of nitrogen adsorption and activation in photocatalytic nitrogen fixation by introducing an oxidizing co-catalyst, NiFeB hydroxides. The NiFeB hydroxides could provide reactive active sites and significantly enhance the nitrogen oxidation activity, offering a novel pathway for co-catalysts in nitrogen fixation reactions.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Yawen Tan
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Juntao Zhao
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Zixuan Cai
- Wuhan Jingkai Foreign Language School, Wuhan 430056, PR China
| | - Jun Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Puttaswamy Madhusudan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
27
|
Ji Z, Yuan M, He Z, Wei H, Wang X, Song J, Jiang L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules 2024; 29:708. [PMID: 38338452 PMCID: PMC10856655 DOI: 10.3390/molecules29030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.
Collapse
Affiliation(s)
- Zhiqiang Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Mengnan Yuan
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Zhaoqin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Hao Wei
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Xuemin Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Jianxin Song
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Lisha Jiang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| |
Collapse
|
28
|
Tang C, Li X, Hu Y, Du X, Wang S, Chen B, Wang S. Porphyrin-Based Metal-Organic Framework Materials: Design, Construction, and Application in the Field of Photocatalysis. Molecules 2024; 29:467. [PMID: 38257379 PMCID: PMC10819500 DOI: 10.3390/molecules29020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Metal-organic frameworks (MOFs) are a novel category of porous crystalline materials with an exceptionally high surface area and adjustable pore structure. They possess a designable composition and can be easily functionalized with different units. Porphyrins with conjugated tetrapyrrole macrocyclic structures can absorb light from ultraviolet to visible light regions, and their structures and properties can be facilely regulated by altering their peripheral groups or central metal ions. Porphyrin-based MOFs constructed from porphyrin ligands and metal nodes combine the unique features of porphyrins and MOFs as well as overcoming their respective limitations. This paper reviewed the design and construction, light absorption and charge transfer pathways, and strategy for improving the photocatalytic performance of porphyrin-based MOFs, and highlighted the recent progress in the field of CO2 reduction, hydrogen evolution, organic synthesis, organic pollutant removal, and nitrogen fixation. The intrinsic relationships between the structure and the property of porphyrin-based MOFs received special attention, especially the relationships between the arrangements of porphyrin ligands and metal nods and the charge transfer mechanism. We attempted to provide more valuable information for the design and construction of advanced photocatalysts in the future. Finally, the challenges and future perspectives of the porphyrin-based MOFs are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (C.T.); (X.L.); (Y.H.); (X.D.); (S.W.); (B.C.)
| |
Collapse
|
29
|
Lin H, Yang Y, Diamond BG, Yan TH, Bakhmutov VI, Festus KW, Cai P, Xiao Z, Leng M, Afolabi I, Day GS, Fang L, Hendon CH, Zhou HC. Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal-Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer. J Am Chem Soc 2024; 146:1491-1500. [PMID: 38170908 PMCID: PMC10863068 DOI: 10.1021/jacs.3c10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian G. Diamond
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Vladimir I. Bakhmutov
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kelechi W. Festus
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mingwan Leng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ibukun Afolabi
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory S. Day
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
30
|
Herrera F, Caraballo RM, Soler Illia GJAA, Gomez GE, Hamer M. Sunlight-Driven Photocatalysis for a Set of 3D Metal-Porphyrin Frameworks Based on a Planar Tetracarboxylic Ligand and Lanthanide Ions. ACS OMEGA 2023; 8:46777-46785. [PMID: 38107943 PMCID: PMC10720276 DOI: 10.1021/acsomega.3c06153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
Metal-porphyrin frameworks (MPFs) with trivalent lanthanide ions are the most sought-after materials in the past decade. Their porosities are usually complemented by optical properties imparted by the metal nodes, making them attractive multifunctional materials. Here, we report a novel family of 3D MPFs obtained through solvothermal reactions between tetrakis(4-carboxyphenyl) porphyrin (H4TCPP) and different lanthanide sources, yielding an isostructural family of compounds along the lanthanide series: [Ln2(DMF)(TCPP)1.5] for Ln = La, Ce, Nd, Pr, Er, Y, Tb, Dy, Sm, Eu, Gd, and Tm. Photoluminescent properties of selected phases were explored at room temperature. Also, the photocatalytic performance exhibited by these compounds under sunlight exposure is promising for its implementation in organic pollutant degradation. In order to study the photocatalytic activity of Ln-TCPPs in an aqueous medium, methylene blue (MB) was used as a contaminant model. The efficiency for MB degradation was Sm > Y > Yb > Gd > Er > Eu > either no catalyst or no light, obtaining more than 70% degradation at 120 min with Sm-TCPP. These results open the possibility of using these compounds in optical and optoelectronic devices for water remediation and sensing.
Collapse
Affiliation(s)
- Facundo
C. Herrera
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín
(INS-UNSAM)-CONICET, 1650 San Martín, Argentina
- Laboratorio
Argentino Haces de Neutrones-Comisión Nacional de Energía
Atómica, Av. Gral.
Paz, 1499 Villa
Maipú, Argentina
| | - Rolando M. Caraballo
- Instituto
de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu-CONICET), Av. Constitución y Ruta Nac.
N °5, 6700 Luján, Argentina
| | - Galo J. A. A. Soler Illia
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín
(INS-UNSAM)-CONICET, 1650 San Martín, Argentina
| | - Germán E. Gomez
- Instituto
de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, Área de Química
General e Inorgánica, Facultad de Química, Bioquímica
y Farmacia (UNSL-FQByF), Almirante Brown, 1455 San Luis, Argentina
| | - Mariana Hamer
- Instituto
de Ciencias, Universidad Nacional de General
Sarmiento-CONICET, Juan
María Gutiérrez 1150, CP1613 Los Polvorines, Argentina
| |
Collapse
|
31
|
Cheng M, Yan P, Zheng X, Gao B, Yan X, Zhang G, Cui X, Xu Q. Porphyrin-based Bi-MOFs with Enriched Surface Bi Active Sites for Boosting Photocatalytic CO 2 Reduction. Chemistry 2023; 29:e202302395. [PMID: 37706350 DOI: 10.1002/chem.202302395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
The inherent challenges in using metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are the combination of wide-range light harvesting, efficient charge separation and transfer as well as highly exposed catalytic active sites for CO2 activation and reduction. We present here a promising solution to satisfy these requirements together by modulating the crystal facet and surface atomic structure of a porphyrin-based bismuth-MOF (Bi-PMOF). The series of structural and photo-electronic characterizations together with photocatalytic CO2 reduction experiment collectively establish that the enriched Bi active sites on the (010) surface prefer to promote efficient charge separation and transfer as well as the activation and reduction of CO2 . Specifically, the Bi-PMOFs-120-F with enriched surface Bi active sites exhibits optimal photocatalytic CO2 reduction performance to CO (28.61 μmol h-1 g-1 ) and CH4 (8.81 μmol h-1 g-1 ). This work provides new insights to synthesize highly efficient main group p-block metal Bi-MOF photocatalysts for CO2 reduction through a facet-regulation strategy and sheds light on the surface structure-activity relationships of the MOFs.
Collapse
Affiliation(s)
- Mingjie Cheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Pengfei Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xinying Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Gaoxiang Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaomin Cui
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
32
|
Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z. An Overview of Metal-organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions. CHEM REC 2023:e202300317. [PMID: 38054611 DOI: 10.1002/tcr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- S Iniyan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Swapnil Deshmukh
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
- DKTE Society's Textile and Engineering an Autonomous Institute, Ichalkaranji, 416115, India
| | - K Rajeswaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - G Jegan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Vembu Suryanarayanan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Vignesh Murugadoss
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
33
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
34
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
35
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
36
|
Wang W, Zhang J, Lin K, Wang J, Zhang X, Hu B, Dong Y, Xia D, Yang Y. Lanthanide 3D Supramolecular Framework Boosts Stable Perovskite Solar Cells with High UV Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306140. [PMID: 37830784 DOI: 10.1002/adma.202306140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In this work, the ligand-to-metal charge transition and Förster resonance energy transfer process is exploited to derive lanthanide-organic framework (Tb-cpon) modified perovskite solar cells (PSCs) with enhanced performance under UV irradiation. Tb-cpon-modified PSCs exhibit rapid response and reduced degradation due to energy downconversion facilitated by effective coupling of UV-sensitive chromophores to lanthanide luminescent centers, enhancing the spectral response range of the composite films. Furthermore, the characteristic changes of precursor particle sizes suggest formation of Tb-cpon adducts as intermediate products, leading to enhanced crystallinity and reduced defect concentrations in the Tb-cpon-perovskite hybrid film. Accordingly, the Tb-cpon-modified PSC devices obtain a champion efficiency up to 23.72% as well as a sensitive photovoltaic conversion even under pure UV irradiation. Moreover, the unencapsulated devices maintain more than 80% of the initial efficiency after continuous irradiation under a 310 nm UV lamp for 24 h (from the Au electrode side), compared to 21% for the control devices.
Collapse
Affiliation(s)
- Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jiaqi Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xingrui Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Boyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
37
|
Wang J, Chen F, Chen QY, Wang GJ. Europium- and Black Phosphorus-Functionalized Porphyrin as an l-Arginine Sensor and l-Arginine-Activated PDT/PTT Agent for Bacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41861-41869. [PMID: 37610772 DOI: 10.1021/acsami.3c07354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The attenuation of bacterial metabolism provides an adjunct to the treatment of bacterial infections. To develop a bacterial eradication agent, a bioactivatable material (BP@Eu-TCPP) was designed and synthesized by coordination and reduction of europium(III) with thin-layer black phosphorus (BP) and tetrakis (4-carboxyphenyl) porphyrin (TCPP). The existence of the P-Eu bond and Eu2+ 3d5/2 in X-ray photoelectron spectroscopy confirmed the successful synthesis of BP@Eu-TCPP. This material showed high fluorescence sensitivity to l-Arginine (l-Arg) and the main binding ratio of BP@Eu-TCPP to l-Arg was ca. 1:2 or 1:3, with the limit of detection of 4.0 μM. The material also showed good photothermal properties and stability, with a photothermal conversion efficiency of 37.3%. Although metal coordination has blocked the generation of 1O2, the addition of l-Arg to BP@Eu-TCPP can restore 1O2 generation upon red light-emitting diode (LED) light irradiation due to the formation of water-soluble Arg-TCPP species. Additionally, BP@Eu-TCPP was enabled to change the bacterial membrane and interfered with the bacterial iron absorption that effectively contributes to bacterial eradication. Such BP@Eu-TCPP is promised to be a novel material for the detection of l-Arg and l-Arg-activated photodynamic therapy.
Collapse
Affiliation(s)
- Jun Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Feng Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Qiu-Yun Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Gao-Ji Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
38
|
Wu K, Liu XY, Cheng PW, Huang YL, Zheng J, Xie M, Lu W, Li D. Linker Engineering for Reactive Oxygen Species Generation Efficiency in Ultra-Stable Nickel-Based Metal-Organic Frameworks. J Am Chem Soc 2023; 145:18931-18938. [PMID: 37590883 DOI: 10.1021/jacs.3c05585] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pei-Wen Cheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
39
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
40
|
Qi Y, Zheng C, Cai Z, Cheng Z, Yu T, Li XX, Fan S, Feng YS. 3D Lanthanide Neodymium Porphyrin Metal-Organic Framework for Photocatalytic Oxidation of Styrene. Inorg Chem 2023; 62:8315-8325. [PMID: 37192403 DOI: 10.1021/acs.inorgchem.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel three-dimensional lanthanide porphyrin-based MOF (Nd-PMOFs) was synthesized by using tetracarboxyphenyl porphyrin as the ligand and the lanthanide Nd as the coordination metal. Its specific crystal structure information was obtained by single-crystal diffraction with the space group C2/c and the empirical formula C72H45N6Nd2O15.25. This new Nd porphyrin-based MOF with an organic framework formed by a unique coordination method enables the effective separation of photogenerated electrons and holes under photoluminescence, giving it excellent photocatalytic property which could be verified by the characterization data. The photocatalytic performance was examined by taking tert-butyl hydroperoxide as the oxidant and Nd-PMOFs as the catalyst for photocatalytic oxidation of styrene to benzaldehyde with 91.4% conversion and 81.2% benzaldehyde selectivity under optimal reactions, which surpasses most of the results reported in the literature. Several styrenes with other substituents were screened to explore the general applicability of Nd-PMOF for photocatalysis of styrene, among which Nd-PMOFs also exhibited excellent photocatalytic performance. This work offers the possibility to apply lanthanide organometallic frameworks, which are widely used in fluorescent materials, to photocatalysis. In addition, it also provides a new method for the catalytic generation of benzaldehyde from styrene that is consistent with the needs of modern green development.
Collapse
Affiliation(s)
- Yuxuan Qi
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Chenglong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhiquan Cai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhifei Cheng
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Tinghao Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
41
|
Su Z, Yang C, Deng Q, Zhou Y, Mao C, Fu Z, Zhu C, Zhang Y. Synthesis of a Novel Spherical-Shell-Structure Polymerized Ionic Liquid Microsphere PILM/Au/Al(OH) 3 Catalyst for Benzyl Alcohol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16631-16639. [PMID: 36943938 DOI: 10.1021/acsami.2c20967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In order to selectively oxidize benzyl alcohol, a novel noble metal catalyst based on polymer ionic liquids with a core-shell structure was created. First, polymer ionic liquid microspheres (PILMs) were prepared by free radical polymerization. Second, the in situ adsorption of Au nanoparticles on the surface of PILMs was accomplished, thanks to the strong electrostatic interaction between N atoms and metal ions on the diazole ring of PILMs. Additionally, the introduction of Al(OH)3 prevented the aggregation of Au nanoparticles and promoted the catalytic reaction. Finally, the PILM/Au/Al(OH)3 catalyst with a core-shell structure was formed. The effectiveness of the PILM/Au/Al(OH)3 catalyst was assessed by varying the catalyst's type, quantity, amount of Au, amount of H2O2, temperature, and reaction time. After five cycles of experiments, the catalyst was effective and reusable. In addition, the potential catalytic mechanism of the catalyst in the oxidation of benzyl alcohol was proposed.
Collapse
Affiliation(s)
- Ziyi Su
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Chunfeng Mao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Zhiwei Fu
- Xuzhou B&C Chemical Co. Ltd, Xuzhou 221300, P. R. China
| | - Chenzi Zhu
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
42
|
Wang L, Zhao J, Chen J, Jiang T, Zhang Q, Zhong S, Dmytro S. Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Phys Chem Chem Phys 2023; 25:8050-8063. [PMID: 36876636 DOI: 10.1039/d3cp00007a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this study, phenediamine bridging phthalocyanine-based covalent organic framework materials (CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA) with increasingly-widening pore sizes are prepared by reacting cobalt octacarboxylate phthalocyanine with p-phenylenediamine (PDA), benzidine (BDA) and 4,4''-diamino-p-terphenyl (TDA), respectively. The effects of frame size on the morphology structure and its electrochemical properties were explored. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) images show that the pore sizes of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are about 1.7 nm, 2.0 nm and 2.3 nm, respectively, which are close to the simulated results after geometric conformation optimization using Material Studio software. In addition, the specific surface areas of CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are 62, 81 and 137 m2 g-1, respectively. With increase in the frame size, the specific surface area of the corresponding material increases, which is bound to produce different electrochemical behaviors. Consequently, the initial capacities of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes in lithium-ion batteries (LIBs) are 204, 251 and 382 mA h g-1, respectively. As the charge and discharge processes continue, the active points in the electrode material are continuously activated, leading to a continuous increase in charge and discharge capacities. After 300 cycles, the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes exhibit capacities of 519, 680 and 826 mA h g-1, respectively, and after 600 cycles, the capacities are maintained at 602, 701 and 865 mA h g-1, respectively, with a stable capacity retention rate at a current density of 100 mA g-1. The results show that the large-size frame structure materials have a larger specific surface area and more favorable lithium ion transmission channels, which produce greater active point utilization and smaller charge transmission impedance, thus showing larger charge and discharge capacity and superior rate capability. This study fully confirms that frame size is a key factor affecting the properties of organic frame electrodes, providing design ideas for the development of high-performance organic frame electrode materials.
Collapse
Affiliation(s)
- Luyi Wang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tingting Jiang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| |
Collapse
|
43
|
Liang J, Yu H, Shi J, Li B, Wu L, Wang M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO 2 to CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209814. [PMID: 36588326 DOI: 10.1002/adma.202209814] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The highly selective photoreduction of CO2 into valuable small-molecule chemical feedstocks such as CO is an effective strategy for addressing the energy crisis and environmental problems. However, it remains a challenge because the complex CO2 photoreduction process usually generates multiple possible products and requires a subsequent separation step. In this paper, 2D monolayer and bilayer porphyrin-based metal-organic frameworks (MOFs) are successfully constructed by adjusting the reaction temperature and solvent polarity with 5,10,15,20-tetrakis(4-pyridyl)porphyrin as the light-harvesting ligand. The bilayer MOF is a low-dimensional MOF with a special structure in which the upper and lower layers are arranged in dislocation and are bridged by halogen ions. This bilayer MOF exhibits 100% ultra-high selectivity for the reduction of CO2 to CO under simulated sunlight without any cocatalyst or photosensitizer and can be recycled at least three times. The intrinsic mechanism of this photocatalytic CO2 reduction process is explored through experimental characterization and density functional theory (DFT) calculations. This work shows that the rational design of the number of layers in 2D MOF structures can tune the stability of these structures and opens a new avenue for the design of highly selective MOF photocatalysts.
Collapse
Affiliation(s)
- Jinxia Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
44
|
Wang S, Li S, Feng H, Yang W, Feng YS. Visible-Light-Driven Porphyrin-Based Bimetallic Metal-Organic Frameworks for Selective Photoreduction of Nitro Compounds under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4845-4856. [PMID: 36629327 DOI: 10.1021/acsami.2c22686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selective reduction of nitroaromatics to the corresponding amines generally requires complex conditions, involving pressurized hydrogen, higher temperatures, or organic acids. In this work, we successfully prepared a series of porphyrin-based MOF photocatalysts (Pd-PMOFs, In-PMOFs, and In/Pd-PMOFs) via a facile solvothermal method for the efficient selective reduction of nitroaromatics to corresponding anilines with deionized water as the hydrogen donor. Being a new structured material (monoclinic, C52H40InN6O8Pd), on account of the abundant pore channels, strong light absorption capability, well-matched bandgap, as well as the coordination of indium ions and palladium ions, In/Pd-MOFs have excellent migration efficiency of photo-induced electrons and holes. Specifically, the In/Pd-PMOF photocatalyst manifested superior conversion (100%) and selectivity (≥80%) toward the screened nitro compounds under mild conditions. This work avoids the use of strong reductants, organic acids, and pressurized hydrogen gas as hydrogen sources, providing a promising concept for developing green catalytic systems.
Collapse
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei230009, P. R. China
| |
Collapse
|
45
|
Li S, Wei Z, Xiong L, Xu Q, Yu L, Xiao Y. In Situ Formation of o-Phenylenediamine Cascade Polymers Mediated by Metal-Organic Framework Nanozymes for Fluorescent and Photothermal Dual-Mode Assay of Acetylcholinesterase Activity. Anal Chem 2022; 94:17263-17271. [PMID: 36463539 DOI: 10.1021/acs.analchem.2c04218] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A fluorescent and photothermal dual-mode assay method was established for the detection of acetylcholinesterase (AChE) activity based on in situ formation of o-phenylenediamine (oPD) cascade polymers. First, copper metal-organic frameworks of benzenetricarboxylic acid (Cu-BTC) were screened out as nanozymes with excellent oxidase-like activity and confinement catalysis effect. Then, an ingenious oPD cascade polymerization strategy was proposed. That is, oPD was oxidized by Cu-BTC to oPD oligomers with strong yellow fluorescence, and oPD oligomers were further catalyzed to generate J-aggregation, which promotes the formation of oPD polymer nanoparticles with a high photothermal effect. By utilizing thiocholine (enzymolysis product of acetylthiocholine) to inhibit the Cu-BTC catalytic effect, AChE activity was detected through the fluorescence-photothermal dual-signal change of oPD oligomers and polymer nanoparticles. Both assay modes have low detection limitation (0.03 U L-1 for fluorescence and 0.05 U L-1 for photothermal) and can accurately detect the AChE activity of human serum (recovery 85.0-111.3%). The detection results of real serum samples by fluorescent and photothermal dual modes are consistent with each other (relative error ≤ 5.2%). It is worth emphasizing that this is the first time to report the high photothermal effect of oPD polymers and the fluorescence-photothermal dual-mode assay of enzyme activity.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
46
|
Zheng Z, Jiang X, Yang X, Ma M, Ji S, Jiang F. Microwave- and ultrasonic-assisted synthesis of 2D La-based MOF nanosheets by coordinative unsaturation degree to boost phosphate adsorption. RSC Adv 2022; 12:35517-35530. [PMID: 36540399 PMCID: PMC9743790 DOI: 10.1039/d2ra05506f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 08/29/2023] Open
Abstract
The metal or metal clusters and organic ligands are relevant to the selectivity and performance of phosphate removal in MOFs, and the electron structure, chemical characteristics, and preparation method also affect efficiency and commercial promotion. However, few reports focus on the above, especially for 2D MOF nanomaterials. In this work, two 2D Ln-TDA (Ln = La, Ce) nanosheets assembled via microwave- and ultrasonic-assisted methods are employed as adsorbents for phosphate (H2PO4 -, HPO4 2-) removal for the first time. Their microstructure and performance were characterized using XRD, TEM, SEM, AFM, FTIR, zeta potential, and DFT calculations. The prepared 2D Ln-TDA (Ln = La, Ce) nanosheets exposed more adsorption sites and effectively reduced the restrictions of mass transfer. Based on this, the Langmuir model was employed to estimate the maximum adsorption capacities of the two kinds of nanosheets, which reached 253.5 mg g-1 and 259.5 mg g-1, which are 553 times and 3054 times larger than those for bulk Ln-TDA (Ln = La, Ce), respectively. Additionally, the kinetic data showed that the adsorption equilibrium time is fast, approximately 15 min by the pseudo-second-order model. In addition, the prepared products not only have a wide application range (pH = 3-9) but also offer eco-safety in terms of residuals (no Ln leak out). Based on the XPS spectra, FTIR spectra and DFT calculations, the main adsorption mechanisms included ligand exchange and electrostatic interactions. This new insight provides a novel strategy to prepare 2D MOF adsorbents, achieving a more eco-friendly method (microwave- and ultrasonic-assisted synthesis) for preparing 2D Ln-based MOF nanosheets by coordinative unsaturation to boost phosphate adsorption.
Collapse
Affiliation(s)
- Ziguang Zheng
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Workstation of Academician Chen Jing of Yunnan Province Kunming 650091 P. R. China
| | - Xiaomei Jiang
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Workstation of Academician Chen Jing of Yunnan Province Kunming 650091 P. R. China
| | - Xiaowei Yang
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Workstation of Academician Chen Jing of Yunnan Province Kunming 650091 P. R. China
| | - Min Ma
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Workstation of Academician Chen Jing of Yunnan Province Kunming 650091 P. R. China
| | - Siping Ji
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Fengzhi Jiang
- School of Chemical Science and Technology, Yunnan University No. 2 Cuihu North Road Kunming 650091 China
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Workstation of Academician Chen Jing of Yunnan Province Kunming 650091 P. R. China
| |
Collapse
|
47
|
Dong J, Wang Y, Lu YL, Zhang L. Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Zheng X, Zhong J, Dong MY, Wen Y, Chen AZ. Synthesis of porphyrin-based 2D ytterbium metal organic frameworks for efficient photodynamic therapy. RSC Adv 2022; 12:34318-34324. [PMID: 36545594 PMCID: PMC9707347 DOI: 10.1039/d2ra06655f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Photodynamic therapy (PDT), which relies on the photo-induced reactive oxygen species (ROS) to trigger tumor cells apoptosis, has attracted intense focus over the decades due to the minimum invasion, high-precision and controllable therapeutic processes. Tetra(4-carboxyphenyl) porphin (TCPP), as an effective PDT photosensitizer, can harness photons and generate singlet oxygen species (1O2) upon illumination; however, poor solubility and low loading rate greatly limit its further use. Although TCPP-based metal-organic-frameworks (MOFs) has been proposed to address these concerns, the relatively large size still limits their biomedical applications. Therefore, in this study, TCPP molecules are coordinated with Yb3+, growing into 2D Yb-TCPP MOFs by a wet chemical method; the as-prepared Yb-TCPP MOFs are around 200 nm in size and possess high 1O2 generation efficiency with low cytotoxicity. Due to TCPP is appeared as the organic frameworks of Yb-TCPP MOFs, the low loading rate problem is largely addressed; in addition, the absorbance of Yb-TCPP MOFs has been greatly expanded compared with free TCPP molecules due to the coordination with Yb3+, allowing the illumination at longer wavelength range, e.g. 655 nm, that possesses high penetration depth and low phototoxicity. Overall, we have prepared 2D Yb-TCPP MOFs suitable for the in vitro anticancer effect, revealing the potential of Yb-TCPP MOFs as the future anticancer agent.
Collapse
Affiliation(s)
- Xiang Zheng
- College of Chemical Engineering, Huaqiao UniversityXiamen 361021P. R. China+86-592-616-2326,Institute of Biomaterials and Tissue Engineering, Huaqiao UniversityXiamen 361021P. R. China,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University)Xiamen 361021P. R. China
| | - Jun Zhong
- College of Chemical Engineering, Huaqiao UniversityXiamen 361021P. R. China+86-592-616-2326,Institute of Biomaterials and Tissue Engineering, Huaqiao UniversityXiamen 361021P. R. China,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University)Xiamen 361021P. R. China
| | - Meng-Yuan Dong
- College of Chemical Engineering, Huaqiao UniversityXiamen 361021P. R. China+86-592-616-2326
| | - Yuan Wen
- College of Chemical Engineering, Huaqiao UniversityXiamen 361021P. R. China+86-592-616-2326,Institute of Biomaterials and Tissue Engineering, Huaqiao UniversityXiamen 361021P. R. China,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University)Xiamen 361021P. R. China
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao UniversityXiamen 361021P. R. China+86-592-616-2326,Institute of Biomaterials and Tissue Engineering, Huaqiao UniversityXiamen 361021P. R. China,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University)Xiamen 361021P. R. China
| |
Collapse
|
49
|
Wang Y, Xue Y, Zhao Q, Wang S, Sun J, Yang X. Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Anal Chem 2022; 94:16345-16352. [DOI: 10.1021/acs.analchem.2c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
50
|
Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|