1
|
Huang Z, Li T, Fang Y, Smith J, Li B, Brozena A, Dong Q, Zhang Q, Du Y, Mao SX, Wang G, Chi M, Hu L. Phase Changes of Multielemental Alloy Nanoparticles at Elevated Temperatures. ACS NANO 2025; 19:13457-13465. [PMID: 40138609 DOI: 10.1021/acsnano.5c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multielemental alloy (MEA) nanomaterials, such as medium and high entropy alloys, display promising catalytic performance in a range of chemical reactions due to their multicomponent structural configurations. These complex structural and chemical arrangements can be influenced by several factors, such as mechanical stress, irradiation, and high temperatures, which impact the performance of MEAs in various applications. Here, we investigated the effect of high temperatures on MEA nanoparticles composed of noble and transition metals (quaternary PtPdFeCo) at the atomic scale and found the material undergoes a series of phase transitions between solid solution and intermetallic phases at elevated temperatures ranging from room temperature to 1073 K. In contrast, the binary PtFe nanoalloy displays a one-way solid solution to intermetallic transition at these temperatures. Our findings, rationalized by density functional theory (DFT) studies, demonstrate how the varied migration energies of elements govern the solid solution to intermetallic transition and how differences in the bonding energies of elemental pairs influence the Gibbs free energy change (ΔG), which dictates the intermetallic to solid-solution transition. Overall, this work provides better guidance in the design, development, and usage of nano-MEAs for high-temperature-based applications.
Collapse
Affiliation(s)
- Zhennan Huang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Ying Fang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jacob Smith
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Qian Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Yiheng Du
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Scott X Mao
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Miaofang Chi
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department of Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Center for Materials Innovation, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Yuan Y, Fang H, Chen K, Huang J, Chen J, Lu Z, Wang H, Zhao Z, Chen W, Wen Z. Engineering High-Density Grain Boundaries in Ru 0.8Ir 0.2O x Solid-Solution Nanosheets for Efficient and Durable OER Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501607. [PMID: 40123248 DOI: 10.1002/adma.202501607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
The oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWE) has long stood as a formidable challenge for green hydrogen sustainable production, hindered by sluggish kinetics, high overpotentials, and poor durability. Here, these barriers are transcended through a novel material design: strategic engineering of high-density grain boundaries within solid-solution Ru0.8Ir0.2Ox ultrathin nanosheets. These carefully tailored grain boundaries and synergistic Ir─Ru interactions, reduce the coordination of Ru atoms and optimize the distribution of charge, thereby enhancing both the catalytic activity and stability of the nanosheets, as verified by merely requiring an overpotential of 189 mV to achieve 10 mA cm-2 in acidic electrolyte. In situ electrochemical techniques, complemented by theoretical calculations, reveal that the OER follows an adsorption evolution mechanism, demonstrating the pivotal role of grain boundary engineering and electronic modulation in accelerating reaction kinetics. Most notably, the Ru0.8Ir0.2Ox exhibits outstanding industrial-scale performance in PEMWE, reaching 4.0 A cm-2 at 2 V and maintaining stability for >1000 h at 500 mA cm-2. This efficiency reduces hydrogen production costs to $0.88 kg-1. This work marks a transformative step forward in designing efficient, durable OER catalysts, offering a promising pathway toward hydrogen production technologies and advancing the global transition to sustainable energy.
Collapse
Affiliation(s)
- Yalong Yuan
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Huiling Fang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Kai Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Junheng Huang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiwen Lu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Huibing Wang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixuan Zhao
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wenxing Chen
- Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
3
|
Zhang X, Wang H, Liu S, Feng M, Wang Y, Jiang M, Dong F. Unveiling the Overlooked Inhibitory Effects of Carbon Dioxide on Photochemical Nitrate Decomposition over Photoactive Mineral Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3143-3152. [PMID: 39909727 DOI: 10.1021/acs.est.4c11591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Carbon emissions lead to an increased greenhouse gas concentration, which, in turn, affects air quality by altering the global climate. Despite its importance, the direct relationship between carbon emissions and the atmospheric reactive nitrogen cycle has been poorly understood. This study provides an in-depth investigation of the effects of CO2 on the photochemical transformation of nitrates on mineral dust. The results show that CO2 inhibits the photochemical transformation of nitrate under simulated solar irradiation. Specifically, the NOx production rate from nitrate photolysis with CO2 was significantly reduced to 1.17 × 10-10 mol·s-1, representing a decrease of 57.8%, compared to that without CO2 (2.77 × 10-10 mol·s-1). This inhibition effect can be primarily ascribed to electron competition and the formation of carbonate/bicarbonate intermediates. Quenching experiments and electron paramagnetic resonance spectroscopy unveiled the crucial role of photogenerated electrons in nitrate photolysis, showing its significant competition with photochemical CO2 conversion. Additionally, carbonate/bicarbonate intermediates formed during photochemical CO2 conversion enhance the nitrate stability on mineral dust surfaces, thus, reducing their decomposition rate. This study unveils an overlooked atmospheric process of greenhouse gas participating in the reactive nitrogen cycle, highlighting the unignorable synergistic effects of carbon emissions and air pollution in photochemical reactions.
Collapse
Affiliation(s)
- Xin Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shujun Liu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 611731, China
| | - Yanxia Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Meijia Jiang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Luo J, Li X, Ye Y, Zhou T, Wu W, Li H, Yang Q, Yan H, Zeng J. Progressive Fabrication of a Pt-Based High-Entropy-Alloy Catalyst toward Highly Efficient Propane Dehydrogenation. Angew Chem Int Ed Engl 2025; 64:e202419093. [PMID: 39499624 DOI: 10.1002/anie.202419093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
High-entropy alloys (HEAs) have emerged as burgeoning heterogeneous catalysts due to their vast material space, unique structure, and superior stability. However, the dominant trial-and-error approaches hamper the exploration of efficient catalysts, necessitating the development of rational design strategies. Here, we report a progressive approach to the design and fabrication of HEA catalysts guided by alloying effects toward propane dehydrogenation. Cu, Sn, Au, and Pd are selected and demonstrated to induce dilution, encapsulation, surface enrichment, and inhomogeneity effects on Pt. The fabricated HEA, PtCuSnAuPd/SiO2, exhibits excellent activity, selectivity, and stability. The propylene formation rates reach 256 and 390 molC3H6 gPt -1 h-1 at 550 and 600 °C, respectively. Systematic characterizations reveal that the random elemental mixing, structural stability, and high Pt exposure promote the exposure of abundant stable isolated Pt sites. This work comprehensively explores the rational design and fabrication of HEA catalysts from a unique perspective, offering opportunities for developing advanced catalysts.
Collapse
Affiliation(s)
- Jun Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xu Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongjie Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenlong Wu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qing Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
5
|
Mo Y, Guan X, Wang S, Duan X. Oriented catalysis through chaos: high-entropy spinels in heterogeneous reactions. Chem Sci 2025; 16:1652-1676. [PMID: 39802694 PMCID: PMC11718512 DOI: 10.1039/d4sc05539j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (i.e., activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships. Therefore, this review aims to provide a comprehensive overview of the development of HESs in catalysis, including definition, structural features, synthesis, characterization, and catalytic regimes. The relationships between the unique structure, favorable properties, and improved performance of HES-driven catalysis are highlighted. Finally, an outlook is presented which provides guidance for unveiling the complexities of HESs and advancing the field toward the rational design of efficient energy and environmental materials.
Collapse
Affiliation(s)
- Yalan Mo
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaohong Guan
- School of Ecological and Environmental Science, East China Normal University Shanghai 200241 China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
6
|
Yang L, He R, Chai J, Qi X, Xue Q, Bi X, Yu J, Sun Z, Xia L, Wang K, Kapuria N, Li J, Ostovari Moghaddam A, Cabot A. Synthesis Strategies for High Entropy Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412337. [PMID: 39473325 DOI: 10.1002/adma.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Indexed: 01/11/2025]
Abstract
Nanoparticles (NPs) of high entropy materials (HEMs) have attracted significant attention due to their versatility and wide range of applications. HEM NPs can be synthesized by fragmenting bulk HEMs or disintegrating and recrystallizing them. Alternatively, directly producing HEMs in NP form from atomic/ionic/molecular precursors presents a significant challenge. A widely adopted strategy involves thermodynamically driving HEM NP formation by leveraging the entropic contribution but incorporating strategies to limit NP growth at the elevated temperatures used for maximizing entropy. A second approach is to kinetically drive HEM NP formation by promoting rapid reactions of homogeneous reactant mixtures or using highly diluted precursor dissolutions. Additionally, experimental evidence suggests that enthalpy plays a significant role in driving HEM NP formation processes at moderate temperatures, with the high energy cost of generating additional surfaces and interfaces at the nanoscale stabilizing the HEM phase. This review critically assesses the various synthesis strategies developed for HEM NP preparation, highlighting key illustrative examples and offering insights into the underlying formation mechanisms. Such insights are critical for fine-tuning experimental conditions to achieve specific outcomes, ultimately enabling the effective synthesis of optimized generations of these advanced materials for both current and emerging applications across various scientific and technological fields.
Collapse
Affiliation(s)
- Linlin Yang
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Ren He
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Jiali Chai
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaoyu Bi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, 08193, Spain
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Kaiwen Wang
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Nilotpal Kapuria
- Indiana University, 800 E. Kirkwood, Bloomington, IN, 47405-7102, USA
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Ahmad Ostovari Moghaddam
- HSE University, Moscow, 101000, Russia
- Department of Materials Science, Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk, 454080, Russia
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Catalonia, Spain
| |
Collapse
|
7
|
Cechanaviciute IA, Kumari B, Alfes LM, Andronescu C, Schuhmann W. Gas Diffusion Electrodes for Electrocatalytic Oxidation of Gaseous Ammonia: Stepping Over the Nitrogen Energy Canyon. Angew Chem Int Ed Engl 2024; 63:e202404348. [PMID: 38923429 DOI: 10.1002/anie.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
As ammonia continues to gain more and more interest as a promising hydrogen carrier compound, so does the electrochemical ammonia oxidation reaction (AmOR). To avoid the liberation of H2 in a reverse Haber-Bosch reaction under release of the energetically more favorable N2, we propose the oxidation of ammonia to value-added nitrite (NO2 -), which is usually obtained during the Ostwald process. We investigated the anodic oxidation of gaseous ammonia directly supplied to a gas diffusion electrode (GDE) using a variety of compositionally different multi-metal catalysts coated on Ni foam under the simultaneous formation of H2 at the cathode. This will double the amount of H2 per ammonia molecule while applying a lower overpotential than that required for water electrolysis (1.4-1.8 V vs. RHE at 50 mA ⋅ cm-2). A selectivity study demonstrated that some of the catalyst compositions were able to produce significant amounts of NO2 -, and further investigations using the most promising catalyst composition Nif_AlCoCrCuFe integrated within a GDE demonstrated up to 88 % Faradaic efficiency for NO2 - at the anode coupled to close to 100 % Faradaic efficiency for the cathodic H2 production.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Bhawana Kumari
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Lars M Alfes
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
8
|
Tetteh EB, Krysiak OA, Savan A, Kim M, Zerdoumi R, Chung TD, Ludwig A, Schuhmann W. Long-Range SECCM Enables High-Throughput Electrochemical Screening of High Entropy Alloy Electrocatalysts at Up-To-Industrial Current Densities. SMALL METHODS 2024; 8:e2301284. [PMID: 38155148 DOI: 10.1002/smtd.202301284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Indexed: 12/30/2023]
Abstract
High-entropy alloys (HEAs), especially in the form of compositional complex solid solutions (CCSS), have gained attention in the field of electrocatalysis. However, exploring their vast composition space concerning their electrocatalytic properties imposes significant challenges. Scanning electrochemical cell microscopy (SECCM) offers high-speed electrochemical analysis on surface areas with a lateral resolution down to tens of nm. However, high-precision piezo positioners often used for the motion of the tip limit the area of SECCM scans to the motion range of the piezo positioners which is typically a few tens of microns. To bridge this experimental gap, the study proposes a long-range SECCM system with a rapid gas-exchange environmental cell for high-throughput electrochemical characterization of 100 mm diameter HEA thin-film material libraries (ML) obtained by combinatorial co-sputtering. Due to the gas-liquid interface at the positioned SECCM droplet on the sample, high-throughput evaluation under industrial current density conditions becomes feasible. This allows the direct correlation between electrocatalytic activity and material composition with high statistical reliability. The multidimensional data obtained accelerates materials discovery, development, and optimization.
Collapse
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Moonjoo Kim
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ridha Zerdoumi
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Center for Interface-Dominated High-Performance Materials, ZGH; Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
9
|
Liang J, Cao G, Zeng M, Fu L. Controllable synthesis of high-entropy alloys. Chem Soc Rev 2024; 53:6021-6041. [PMID: 38738520 DOI: 10.1039/d4cs00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Xu W, Diesen E, He T, Reuter K, Margraf JT. Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization. J Am Chem Soc 2024; 146:7698-7707. [PMID: 38466356 PMCID: PMC10958507 DOI: 10.1021/jacs.3c14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
High entropy alloys (HEAs) are a highly promising class of materials for electrocatalysis as their unique active site distributions break the scaling relations that limit the activity of conventional transition metal catalysts. Existing Bayesian optimization (BO)-based virtual screening approaches focus on catalytic activity as the sole objective and correspondingly tend to identify promising materials that are unlikely to be entropically stabilized. Here, we overcome this limitation with a multiobjective BO framework for HEAs that simultaneously targets activity, cost-effectiveness, and entropic stabilization. With diversity-guided batch selection further boosting its data efficiency, the framework readily identifies numerous promising candidates for the oxygen reduction reaction that strike the balance between all three objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.
Collapse
Affiliation(s)
- Wenbin Xu
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin D-14195, Germany
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elias Diesen
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin D-14195, Germany
| | - Tianwei He
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, National
Center for International Research on Photoelectric and Energy Materials,
School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Karsten Reuter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin D-14195, Germany
| | - Johannes T. Margraf
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin D-14195, Germany
- Bavarian
Center for Battery Technology (BayBatt), University of Bayreuth, Bayreuth D-95447, Germany
| |
Collapse
|
11
|
Zhao X, Cheng H, Chen X, Zhang Q, Li C, Xie J, Marinkovic N, Ma L, Zheng JC, Sasaki K. Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. J Am Chem Soc 2024; 146:3010-3022. [PMID: 38278519 PMCID: PMC10859931 DOI: 10.1021/jacs.3c08177] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hao Cheng
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaobo Chen
- Department
of Mechanical Engineering & Materials Science and Engineering
Program, State University of New York at
Binghamton, Binghamton, New York 13902, United States
| | - Qi Zhang
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chenzhao Li
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jian Xie
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jin-Cheng Zheng
- Department
of Physics and Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, Xiamen University, Xiamen 361005, China
- Department
of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Kotaro Sasaki
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
12
|
Cheng W, Sun C, Liu W, Wang Z. High-Entropy Alloy PtCuNiCoMn Nanoparticles on rGO for Electrooxidation of Methanol and Formic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2343-2351. [PMID: 38230630 DOI: 10.1021/acs.langmuir.3c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
High-entropy alloy (HEA) nanoparticles have attracted great attention due to their excellent electrocatalytic properties. Herein, PtCuNiCoMn HEA nanoparticles supported on reduced graphene oxide (rGO) are synthesized via a solvothermal co-reduction method and are used as an electrocatalyst for the electrooxidation of methanol and formic acid. Owing to the synergistic effect between the component metals, the high-entropy effect, and the sluggish diffusion effect, the PtCuNiCoMn HEA nanoparticles possess significantly improved electrocatalytic activity and stability compared to PtCuNiCo, PtCuNi, PtCu, Pt nanoparticles, and the commercial Pt/C catalyst. The results reveal the unique advantages of HEA nanoparticles in the field of electrocatalysis. The synthesis method is simple and effective, which may be valuable for the preparation of other HEA electrocatalysts.
Collapse
Affiliation(s)
- Wenting Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Chengrui Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Wen Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
13
|
Huang Z, Li T, Li B, Dong Q, Smith J, Li S, Xu L, Wang G, Chi M, Hu L. Tailoring Local Chemical Ordering via Elemental Tuning in High-Entropy Alloys. J Am Chem Soc 2024; 146:2167-2173. [PMID: 38214166 DOI: 10.1021/jacs.3c12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.
Collapse
Affiliation(s)
- Zhennan Huang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Smith
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Miaofang Chi
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Xiao L, Wang Z, Guan J. Optimization strategies of high-entropy alloys for electrocatalytic applications. Chem Sci 2023; 14:12850-12868. [PMID: 38023509 PMCID: PMC10664458 DOI: 10.1039/d3sc04962k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
High-entropy alloys (HEAs) are expected to become one of the most promising functional materials in the field of electrocatalysis due to their site-occupancy disorder and lattice order. The chemical complexity and component tunability make it possible for them to obtain a nearly continuous distribution of adsorption energy curve, which means that the optimal adsorption strength and maximum activity can be obtained by a multi-alloying strategy. In the last decade, a great deal of research has been performed on the synthesis, element selection and catalytic applications of HEAs. In this review, we focus on the analysis and summary of the advantages, design ideas and optimization strategies of HEAs in electrocatalysis. Combined with experiments and theories, the advantages of high activity and high stability of HEAs are explored in depth. According to the classification of catalytic reactions, how to design high-performance HEA catalysts is proposed. More importantly, efficient strategies for optimizing HEA catalysts are provided, including element regulation, defect regulation and strain engineering. Finally, we point out the challenges that HEAs will face in the future, and put forward some personal proposals. This work provides a deep understanding and important reference for electrocatalytic applications of HEAs.
Collapse
Affiliation(s)
- Liyuan Xiao
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
16
|
Chen S, Liu D, Zhou P, Qiao L, An K, Zhuo Y, Lu J, Liu Q, Ip WF, Wang Z, Pan H. Multi-metal electrocatalyst with crystalline/amorphous structure for enhanced alkaline water/seawater hydrogen evolution. J Colloid Interface Sci 2023; 650:807-815. [PMID: 37450969 DOI: 10.1016/j.jcis.2023.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The development of well-defined nanomaterials as non-noble metal electrocatalysts has broad application prospect for hydrogen generation technology. Recently, multi-metal electrocatalysts for hydrogen evolution reaction (HER) have attracted extensive attention due to their high catalytic performance arising from the synergistic effect of multi-metal interaction. However, most multi-metal catalysts suffer from the limited synergistic effect because of poor interfacial compatibility between different components. Here, a novel multi-metal catalyst (Ni/MoO2@CoFeOx) nanosheet with a crystalline/amorphous structure is demonstrated, which shows high HER activity. Ni/MoO2@CoFeOx exhibits an ultra-low overpotential of 18, 39, and 93 mV at 10 mA cm-2 in alkaline water, alkaline seawater and natural seawater, respectively, which outperformances most of the state-of-the-art non-noble metal compounds. In addition, the catalyst shows exceptional stability under 500 mA cm-2 in alkaline solution. In-situ Raman and other advanced structural characterization confirms the excellent catalytic activity is mainly contributed by: (1) the strong synergistic effect of multi-metal components provides multiple active sites in the catalytic process; (2) the crystalline/amorphous interface in Ni/MoO2@CoFeOx boosts the catalytically active sites and structure stability; (3) the crystalline phase enhances the intrinsic conductivity greatly; and (4) the amorphous phase provides abundant unsaturated sites for improved intrinsic catalytic activity. This work provides a feasible way to design electrocatalyst with high activity and stability for practical applications.
Collapse
Affiliation(s)
- Songbo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dong Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China.
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Keyu An
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yuling Zhuo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China; Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Jianxi Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Qizhen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China.
| | - Zhenbo Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China.
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China; Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China.
| |
Collapse
|
17
|
Pittkowski RK, Clausen CM, Chen Q, Stoian D, van Beek W, Bucher J, Welten RL, Schlegel N, Mathiesen JK, Nielsen TM, Du J, Rosenkranz AW, Bøjesen ED, Rossmeisl J, Jensen KMØ, Arenz M. The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction. EES CATALYSIS 2023; 1:950-960. [PMID: 38013789 PMCID: PMC10621632 DOI: 10.1039/d3ey00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, i.e., nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining in situ X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.
Collapse
Affiliation(s)
- Rebecca K Pittkowski
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Christian M Clausen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Qinyi Chen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Dragos Stoian
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Wouter van Beek
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Jan Bucher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Rahel L Welten
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Nicolas Schlegel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Jette K Mathiesen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
- Department of Physics, Technical University of Denmark Kgs. Lyngby Denmark
| | - Tobias M Nielsen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Jia Du
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | | | - Espen D Bøjesen
- Aarhus University, Interdisciplinary Nanoscience Center Aarhus Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Kirsten M Ø Jensen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| |
Collapse
|
18
|
Chen C, Guo J, Liu J, Li W, Wei Y, Wang H, Zhao X, Wei L. Quinary RuRhPdPtAu high-entropy alloy as an efficient electrocatalyst for the hydrogen evolution reaction. Chem Commun (Camb) 2023; 59:12863-12866. [PMID: 37815878 DOI: 10.1039/d3cc04162j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Quinary RuRhPdPtAu high-entropy alloy nanoparticles (HEA-NPs) were prepared for the first time from a deep eutectic solvent by an electrochemical method. Owing to the benefits of high entropy and abundant surface active sites, the RuRhPdPtAu HEA-NPs exhibit outstanding electrocatalytic performance for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Cheng Chen
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jiayin Guo
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jianhong Liu
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Weiwei Li
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yongsheng Wei
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Honghui Wang
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China.
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lu Wei
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
19
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
20
|
Cechanaviciute IA, Antony RP, Krysiak OA, Quast T, Dieckhöfer S, Saddeler S, Telaar P, Chen YT, Muhler M, Schuhmann W. Scalable Synthesis of Multi-Metal Electrocatalyst Powders and Electrodes and their Application for Oxygen Evolution and Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202218493. [PMID: 36640442 DOI: 10.1002/anie.202218493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm-2 , and 24 h measurements demonstrated no loss of current density of 1 A cm-2 .
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Rajini P Antony
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Pascal Telaar
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Yen-Ting Chen
- The Center for Solvation Science ZEMOS, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
21
|
Xu H, Jin Z, Zhang Y, Lin X, Xie G, Liu X, Qiu HJ. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts. Chem Sci 2023; 14:771-790. [PMID: 36755717 PMCID: PMC9890551 DOI: 10.1039/d2sc06403k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
High-entropy materials (HEMs) are new-fashioned functional materials in the field of catalysis owing to their large designing space, tunable electronic structure, interesting "cocktail effect", and entropy stabilization effect. Many effective strategies have been developed to design advanced catalysts for various important reactions. Herein, we firstly review effective strategies developed so far for optimizing HEM-based catalysts and the underlying mechanism revealed by both theoretical simulations and experimental aspects. In light of this overview, we subsequently present some perspectives about the development of HEM-based catalysts and provide some serviceable guidelines and/or inspiration for further studying multicomponent catalysts.
Collapse
Affiliation(s)
- Haitao Xu
- School of Materials Science and Engineering, Dongguan University of TechnologyDongguan 523808China
| | - Zeyu Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yinghe Zhang
- School of Science, Harbin Institute of Technology (Shenzhen)Shenzhen 518055China
| | - Xi Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
22
|
Strotkötter V, Krysiak OA, Zhang J, Wang X, Suhr E, Schuhmann W, Ludwig A. Discovery of High-Entropy Oxide Electrocatalysts: From Thin-Film Material Libraries to Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10291-10303. [PMID: 36530940 PMCID: PMC9753560 DOI: 10.1021/acs.chemmater.2c01455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Discovery of new high-entropy electrocatalysts requires testing of hundreds to thousands of possible compositions, which can be addressed most efficiently by high-throughput experimentation on thin-film material libraries. Since the conditions for high-throughput measurements ("screening") differ from more standardized methods, it is frequently a concern whether the findings from screening can be transferred to the commonly used particulate catalysts. We demonstrate the successful transfer of results from thin-film material libraries to particles of Cantor alloy oxide (Co-Cr-Fe-Mn-Ni)3O4. The chemical compositions of the libraries, all single-phase spinels, cover a wide compositional range of (Cr8.1-28.0Mn11.6-28.4Fe10.6-39.0Co11.4-36.7Ni13.5-31.4)37.7±0.6O62.3±0.6, with composition-dependent lattice constant values ranging from 0.826 to 0.851 nm. Electrochemical screening of the libraries for the oxygen evolution reaction (OER) identifies (Cr24.6±1.4Mn15.7±2.0Fe16.9±1.8Co26.1±1.9Ni16.6±1.7)37.8±0.8O62.2±1.2 as the most active composition, exhibiting an overpotential of 0.36 V at a current density of 1 mA cm-2. This "hit" in the library was subsequently synthesized in the form of particles with the same composition and crystal structure using an aerosol-based synthesis strategy. The similar OER activity of the most active thin-film composition and the derived catalyst particles validates the proposed approach of accelerated discovery of novel catalysts by screening of thin-film libraries.
Collapse
Affiliation(s)
- Valerie Strotkötter
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Olga A. Krysiak
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Jian Zhang
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Xiao Wang
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Ellen Suhr
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Alfred Ludwig
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
- Centre
for Interface-Dominated High Performance Materials (ZGH), Ruhr University, BochumD-44801, Germany
| |
Collapse
|
23
|
Recent Progress in High Entropy Alloys for Electrocatalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Márquez V, Feredooni M, Santos JS, Praserthdam S, Praserthdam P. Effect of the annealing temperature of multi-elemental oxides (FeCoNiCuZn)yOx on the electrocatalytic hydrogenation of nitrobenzene at room temperature. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Pedersen JK, Clausen CM, Skjegstad LEJ, Rossmeisl J. A Mean Field‐Model for Oxygen Reduction Electrocatalytic Activity on High‐Entropy Alloys. ChemCatChem 2022. [DOI: 10.1002/cctc.202200699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jack K. Pedersen
- University of Copenhagen: Kobenhavns Universitet Department of Chemistry Universitetsparken 5 2100 Copenhagen DENMARK
| | - Christian M. Clausen
- University of Copenhagen: Kobenhavns Universitet Department of Chemistry DENMARK
| | | | - Jan Rossmeisl
- University of Copenhagen Chemistry Universitetsparken 5 2100 københavn ø DENMARK
| |
Collapse
|
26
|
Yao Y, Dong Q, Brozena A, Luo J, Miao J, Chi M, Wang C, Kevrekidis IG, Ren ZJ, Greeley J, Wang G, Anapolsky A, Hu L. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science 2022; 376:eabn3103. [PMID: 35389801 DOI: 10.1126/science.abn3103] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.
Collapse
Affiliation(s)
- Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jian Luo
- Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37932, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Greeley
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.,Center for Materials Innovation, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
27
|
Simple, controllable and environmentally friendly synthesis of FeCoNiCuZn-based high-entropy alloy (HEA) catalysts, and their surface dynamics during nitrobenzene hydrogenation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
29
|
Wu D, Kusada K, Nanba Y, Koyama M, Yamamoto T, Toriyama T, Matsumura S, Seo O, Gueye I, Kim J, Rosantha Kumara LS, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. Noble-Metal High-Entropy-Alloy Nanoparticles: Atomic-Level Insight into the Electronic Structure. J Am Chem Soc 2022; 144:3365-3369. [PMID: 35166532 DOI: 10.1021/jacs.1c13616] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The compositional space of high-entropy-alloy nanoparticles (HEA NPs) significantly expands the diversity of the materials library. Every atom in HEA NPs has a different elemental coordination environment, which requires knowledge of the local electronic structure at an atomic level. However, such structure has not been disclosed experimentally or theoretically. We synthesized HEA NPs composed of all eight noble-metal-group elements (NM-HEA) for the first time. Their electronic structure was revealed by hard X-ray photoelectron spectroscopy and density function theory calculations with NP models. The NM-HEA NPs have a lower degeneracy in energy level compared with the monometallic NPs, which is a common feature of HEA NPs. The local density of states (LDOS) of every surface atom was first revealed. Some atoms of the same constituent element in HEA NPs have different LDOS profiles, whereas atoms of other elements have similar LDOS profiles. In other words, one atom in HEA loses its elemental identity and it may be possible to create an ideal LDOS by adjusting the neighboring atoms. The tendency of the electronic structure change was shown by supervised learning. The NM-HEA NPs showed 10.8-times higher intrinsic activity for hydrogen evolution reaction than commercial Pt/C, which is one of the best catalysts.
Collapse
Affiliation(s)
- Dongshuang Wu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012 Japan
| | - Yusuke Nanba
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Michihisa Koyama
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.,Open Innovation Institute, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu Uiversity, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu Uiversity, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Syo Matsumura
- The Ultramicroscopy Research Center, Kyushu Uiversity, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Okkyun Seo
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.,Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ibrahima Gueye
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jaemyung Kim
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Loku Singgapulige Rosantha Kumara
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.,Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Osami Sakata
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.,Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shogo Kawaguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Dong Q, Hong M, Gao J, Li T, Cui M, Li S, Qiao H, Brozena AH, Yao Y, Wang X, Chen G, Luo J, Hu L. Rapid Synthesis of High-Entropy Oxide Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104761. [PMID: 35049145 DOI: 10.1002/smll.202104761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
High-entropy nanoparticles have received notable attention due to their tunable properties and broad material space. However, these nanoparticles are not suitable for certain applications (e.g., battery electrodes), where their microparticle (submicron to micron) counterparts are more preferred. Conventional methods used for synthesizing high-entropy nanoparticles often involve various ultrafast shock processes. To increase the size thereby achieving high-entropy microparticles, longer reaction time (e.g., heating duration) is usually used, which may also lead to undesired particle overgrowth or even densified microstructures. In this work, an approach based on Joule heating for synthesizing high-entropy oxide (HEO) microparticles with uniform elemental distribution is reported. In particular, two key synthesis conditions are identified to achieve high-quality HEO microparticles: 1) the precursors need to be loosely packed to avoid densification; 2) the heating time needs to be accurately controlled to tens of seconds instead of using milliseconds (thermal shock) that leads to nanoparticles or longer heating duration that forms bulk structures. The utility of the synthesized HEO microparticles for a range of applications, including high-performance Li-ion battery anode and water oxidation catalyst. This study opens up a new door toward synthesizing high-entropy microparticles with high quality and broad material space.
Collapse
Affiliation(s)
- Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Min Hong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jinlong Gao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Mingjin Cui
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haiyu Qiao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Alexandra H Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jian Luo
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
31
|
Kusada K, Kitagawa H. Continuous-flow syntheses of alloy nanoparticles. MATERIALS HORIZONS 2022; 9:547-558. [PMID: 34812460 DOI: 10.1039/d1mh01413g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloy nanoparticles (NPs), including core-shell, segregated and solid-solution types, show a variety of attractive properties such as catalytic and optical properties and are used in a wide range of applications. Precise control and good reproducibility in the syntheses of alloy NPs are highly demanded because these properties are tunable by controlling alloy structures, compositions, particle sizes, and so on. To improve the efficiency and reproducibility of their syntheses, continuous-flow syntheses with various types of reactors have recently been developed instead of the current mainstream approach, batch syntheses. In this review, we focus on the continuous-flow syntheses of alloy NPs and first overview the flow syntheses of NPs, especially of alloy NPs. Subsequently, the details of flow reactors and their chemistry to synthesize core-shell, segregated, solid-solution types of alloy NPs, and high-entropy alloy NPs are introduced. Finally, the challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- The Hakubi Centre for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
32
|
Löffler T, Ludwig A, Rossmeisl J, Schuhmann W. Was macht Hochentropie‐Legierungen zu außergewöhnlichen Elektrokatalysateuren? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tobias Löffler
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Lehrstuhl Materials Discovery and Interfaces Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH) Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Alfred Ludwig
- Lehrstuhl Materials Discovery and Interfaces Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH) Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Dänemark
| | - Wolfgang Schuhmann
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
33
|
Pedersen JK, Clausen CM, Krysiak OA, Xiao B, Batchelor TAA, Löffler T, Mints VA, Banko L, Arenz M, Savan A, Schuhmann W, Ludwig A, Rossmeisl J. Bayesian Optimization of High‐Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jack K. Pedersen
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Christian M. Clausen
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Olga A. Krysiak
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Thomas A. A. Batchelor
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Tobias Löffler
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Vladislav A. Mints
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Matthias Arenz
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
34
|
Pedersen JK, Clausen CM, Krysiak OA, Xiao B, Batchelor TAA, Löffler T, Mints VA, Banko L, Arenz M, Savan A, Schuhmann W, Ludwig A, Rossmeisl J. Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction*. Angew Chem Int Ed Engl 2021; 60:24144-24152. [PMID: 34506069 PMCID: PMC8596574 DOI: 10.1002/anie.202108116] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High‐entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag‐Ir‐Pd‐Pt‐Ru and Ir‐Pd‐Pt‐Rh‐Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag–Pd, Ir–Pt, and Pd–Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.
Collapse
Affiliation(s)
- Jack K Pedersen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Christian M Clausen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Olga A Krysiak
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Thomas A A Batchelor
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Tobias Löffler
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,ZGH, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Vladislav A Mints
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Matthias Arenz
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark.,Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,ZGH, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
35
|
Löffler T, Ludwig A, Rossmeisl J, Schuhmann W. What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angew Chem Int Ed Engl 2021; 60:26894-26903. [PMID: 34436810 PMCID: PMC9292432 DOI: 10.1002/anie.202109212] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/17/2022]
Abstract
The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high‐entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure–activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.
Collapse
Affiliation(s)
- Tobias Löffler
- Analytical Chemistry - Center For Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Center for Interface-Dominated High-Performance Materials (ZGH), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Center for Interface-Dominated High-Performance Materials (ZGH), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København, Denmark
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center For Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
36
|
Tetteh EB, Banko L, Krysiak OA, Löffler T, Xiao B, Varhade S, Schumacher S, Savan A, Andronescu C, Ludwig A, Schuhmann W. Zooming‐in – Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Olga A. Krysiak
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Tobias Löffler
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Swapnil Varhade
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Simon Schumacher
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Corina Andronescu
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| |
Collapse
|
37
|
Ipadeola AK, Haruna AB, Gaolatlhe L, Lebechi AK, Meng J, Pang Q, Eid K, Abdullah AM, Ozoemena KI. Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Aderemi B. Haruna
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Lesego Gaolatlhe
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Augustus K. Lebechi
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Jiashen Meng
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Quanquan Pang
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Kamel Eid
- Gas Processing Centre, College of Engineering Qatar University Doha 2713 Qatar
| | - Aboubakr M. Abdullah
- Centre for Advanced Materials, College of Engineering Qatar University Doha 2713 Qatar
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
38
|
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. SCIENCE ADVANCES 2021; 7:eabg1600. [PMID: 33980494 PMCID: PMC8115918 DOI: 10.1126/sciadv.abg1600] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
Entropy plays a pivotal role in catalysis, and extensive research efforts have been directed to understanding the enthalpy-entropy relationship that defines the reaction pathways of molecular species. On the other side, surface of the catalysts, entropic effects have been rarely investigated because of the difficulty in deciphering the increased complexities in multicomponent systems. Recent advances in high-entropy materials (HEMs) have triggered broad interests in exploring entropy-stabilized systems for catalysis, where the enhanced configurational entropy affords a virtually unlimited scope for tailoring the structures and properties of HEMs. In this review, we summarize recent progress in the discovery and design of HEMs for catalysis. The correlation between compositional and structural engineering and optimization of the catalytic behaviors is highlighted for high-entropy alloys, oxides, and beyond. Tuning composition and configuration of HEMs introduces untapped opportunities for accessing better catalysts and resolving issues that are considered challenging in conventional, simple systems.
Collapse
Affiliation(s)
- Yifan Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
39
|
Batchelor TAA, Löffler T, Xiao B, Krysiak OA, Strotkötter V, Pedersen JK, Clausen CM, Savan A, Li Y, Schuhmann W, Rossmeisl J, Ludwig A. Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation*. Angew Chem Int Ed Engl 2021; 60:6932-6937. [PMID: 33372334 PMCID: PMC8048820 DOI: 10.1002/anie.202014374] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Complex solid solutions ("high entropy alloys"), comprising five or more principal elements, promise a paradigm change in electrocatalysis due to the availability of millions of different active sites with unique arrangements of multiple elements directly neighbouring a binding site. Thus, strong electronic and geometric effects are induced, which are known as effective tools to tune activity. With the example of the oxygen reduction reaction, we show that by utilising a data-driven discovery cycle, the multidimensionality challenge raised by this catalyst class can be mastered. Iteratively refined computational models predict activity trends around which continuous composition-spread thin-film libraries are synthesised. High-throughput characterisation datasets are then used as input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru. The method can identify optimal complex-solid-solution materials for electrocatalytic reactions in an unprecedented manner.
Collapse
Affiliation(s)
- Thomas A. A. Batchelor
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC)Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen, KbhDenmark
| | - Tobias Löffler
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Bin Xiao
- Chair for Materials Discovery and InterfacesInstitute for MaterialsFaculty of Mechanical EngineeringRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Olga A. Krysiak
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Valerie Strotkötter
- Chair for Materials Discovery and InterfacesInstitute for MaterialsFaculty of Mechanical EngineeringRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Jack K. Pedersen
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC)Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen, KbhDenmark
| | - Christian M. Clausen
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC)Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen, KbhDenmark
| | - Alan Savan
- Chair for Materials Discovery and InterfacesInstitute for MaterialsFaculty of Mechanical EngineeringRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Yujiao Li
- ZGHRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Jan Rossmeisl
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC)Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen, KbhDenmark
| | - Alfred Ludwig
- Chair for Materials Discovery and InterfacesInstitute for MaterialsFaculty of Mechanical EngineeringRuhr University BochumUniversitätsstr. 15044780BochumGermany
- ZGHRuhr University BochumUniversitätsstr. 15044780BochumGermany
| |
Collapse
|
40
|
Abstract
High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.
Collapse
Affiliation(s)
- Maosen Fu
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xiao Ma
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kangning Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
41
|
Chen Y, Zhan X, Bueno SLA, Shafei IH, Ashberry HM, Chatterjee K, Xu L, Tang Y, Skrabalak SE. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. NANOSCALE HORIZONS 2021; 6:231-237. [PMID: 33480921 DOI: 10.1039/d0nh00656d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Batchelor TAA, Löffler T, Xiao B, Krysiak OA, Strotkötter V, Pedersen JK, Clausen CM, Savan A, Li Y, Schuhmann W, Rossmeisl J, Ludwig A. Complex‐Solid‐Solution Electrocatalyst Discovery by Computational Prediction and High‐Throughput Experimentation**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas A. A. Batchelor
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen, Kbh Denmark
| | - Tobias Löffler
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Olga A. Krysiak
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Valerie Strotkötter
- Chair for Materials Discovery and Interfaces Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Jack K. Pedersen
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen, Kbh Denmark
| | - Christian M. Clausen
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen, Kbh Denmark
| | - Alan Savan
- Chair for Materials Discovery and Interfaces Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Yujiao Li
- ZGH Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Jan Rossmeisl
- Theoretical Catalysis—Center for High Entropy Alloy Catalysis (CHEAC) Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen, Kbh Denmark
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| |
Collapse
|
43
|
Löffler T, Waag F, Gökce B, Ludwig A, Barcikowski S, Schuhmann W. Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of Voltammetric Activity Curves as Activity Descriptors. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tobias Löffler
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Friedrich Waag
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg Essen, Universitätsstr. 7, D 45141 Essen, Germany
| | - Bilal Gökce
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg Essen, Universitätsstr. 7, D 45141 Essen, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg Essen, Universitätsstr. 7, D 45141 Essen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
44
|
Manjón AG, Löffler T, Meischein M, Meyer H, Lim J, Strotkötter V, Schuhmann W, Ludwig A, Scheu C. Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: effect of structure and composition on oxygen reduction activity. NANOSCALE 2020; 12:23570-23577. [PMID: 33196718 DOI: 10.1039/d0nr07632e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Complex solid solution electrocatalysts (often called high-entropy alloys) present a new catalyst class with highly promising features due to the interplay of multi-element active sites. One hurdle is the limited knowledge about structure-activity correlations needed for targeted catalyst design. We prepared Cr-Mn-Fe-Co-Ni nanoparticles by magnetron sputtering a high entropy Cantor alloy target simultaneously into an ionic liquid library. The synthesized nanoparticles have a narrow size distribution but different sizes (from 1.3 ± 0.1 nm up to 2.6 ± 0.3 nm), different crystallinity (amorphous, face-centered cubic or body-centered cubic) and composition (i.e. high Mn versus low Mn content). The Cr-Mn-Fe-Co-Ni complex solid solution nanoparticles possess an unprecedented intrinsic electrocatalytic activity for the oxygen reduction reaction in alkaline media, some of them even surpassing that of Pt. The highest intrinsic activity was obtained for body-centered cubic nanoparticles with a low Mn and Fe content which were synthesized using the ionic liquid 1-etyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Emimi][(Tf)2N].
Collapse
Affiliation(s)
- Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Masa J, Andronescu C, Schuhmann W. Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angew Chem Int Ed Engl 2020; 59:15298-15312. [PMID: 32608122 PMCID: PMC7496542 DOI: 10.1002/anie.202007672] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/11/2023]
Abstract
The use of renewable energy by means of electrochemical techniques by converting H2 O, CO2 and N2 into chemical energy sources and raw materials, is the basis for securing a future sustainable "green" energy supply. Some weaknesses and inconsistencies in the practice of determining the electrocatalytic performance, which prevents a rational bottom-up catalyst design, are discussed. Large discrepancies in material properties as well as in electrocatalytic activity and stability become obvious when materials are tested under the conditions of their intended use as opposed to the usual laboratory conditions. They advocate for uniform activity/stability correlations under application-relevant conditions, and the need for a clear representation of electrocatalytic performance by contextualization in terms of functional investigation or progress towards application is emphasized.
Collapse
Affiliation(s)
- Justus Masa
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Corina Andronescu
- Faculty of ChemistryTechnical Chemistry IIIUniversity of Duisburg-EssenCarl-Benz-Str. 201, ZBT 24147057DuisburgGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätstr. 15044780BochumGermany
| |
Collapse
|
46
|
Masa J, Andronescu C, Schuhmann W. Elektrokatalyse als Nexus für nachhaltige erneuerbare Energien – der gordische Knoten aus Aktivität, Stabilität und Selektivität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Justus Masa
- Max Planck Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Corina Andronescu
- Fakultät für Chemie Technische Chemie III Universität Duisburg-Essen Carl-Benz-Straße 201, ZBT 241 47057 Duisburg Deutschland
| | - Wolfgang Schuhmann
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätstraße 150 44780 Bochum Deutschland
| |
Collapse
|
47
|
Wu D, Kusada K, Yamamoto T, Toriyama T, Matsumura S, Gueye I, Seo O, Kim J, Hiroi S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem Sci 2020; 11:12731-12736. [PMID: 34094468 PMCID: PMC8163215 DOI: 10.1039/d0sc02351e] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2021] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.
Collapse
Affiliation(s)
- Dongshuang Wu
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Ibrahima Gueye
- Synchrotron X-ray Group, Synchrotron X-ray Station at SPring-8, National Institute for Materials Science Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Okkyun Seo
- Synchrotron X-ray Group, Synchrotron X-ray Station at SPring-8, National Institute for Materials Science Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Jaemyung Kim
- Synchrotron X-ray Group, Synchrotron X-ray Station at SPring-8, National Institute for Materials Science Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Satoshi Hiroi
- Synchrotron X-ray Group, Synchrotron X-ray Station at SPring-8, National Institute for Materials Science Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Osami Sakata
- Synchrotron X-ray Group, Synchrotron X-ray Station at SPring-8, National Institute for Materials Science Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute 670-5198 Japan
| | - Shogo Kawaguchi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
48
|
|
49
|
Schmitz A, Meyer H, Meischein M, Garzón Manjón A, Schmolke L, Giesen B, Schlüsener C, Simon P, Grin Y, Fischer RA, Scheu C, Ludwig A, Janiak C. Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC Adv 2020; 10:12891-12899. [PMID: 35492117 PMCID: PMC9051251 DOI: 10.1039/d0ra01111h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Bottom-up and top-down approaches are described for the challenging synthesis of Fe/Al nanoparticles (NPs) in ionic liquids (ILs) under mild conditions. The crystalline phase and morphology of the metal nanoparticles synthesized in three different ionic liquids were identified by powder X-ray diffractometry (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and fast Fourier transform (FFT) of high-resolution TEM images. Characterization was completed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) for the analysis of the element composition of the whole sample consisting of the NPs and the amorphous background. The bottom-up approaches resulted in crystalline FeAl NPs on an amorphous background. The top-down approach revealed small NPs and could be identified as Fe4Al13 NPs which in the IL [OPy][NTf2] yield two absorption bands in the green-blue to green spectral region at 475 and 520 nm which give rise to a complementary red color, akin to appropriate Au NPs.
Collapse
Affiliation(s)
- Alexa Schmitz
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Hajo Meyer
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Michael Meischein
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-40237 Düsseldorf Germany
| | - Laura Schmolke
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Carsten Schlüsener
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 D-01187 Dresden Germany
| | - Yuri Grin
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 D-01187 Dresden Germany
| | - Roland A Fischer
- Department of Chemistry, Technische Universität München D-85748 Garching Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-40237 Düsseldorf Germany
| | - Alfred Ludwig
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| |
Collapse
|
50
|
Löffler T, Savan A, Meyer H, Meischein M, Strotkötter V, Ludwig A, Schuhmann W. Design of Complex Solid-Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves. Angew Chem Int Ed Engl 2020; 59:5844-5850. [PMID: 31867829 PMCID: PMC7155130 DOI: 10.1002/anie.201914666] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Indexed: 11/09/2022]
Abstract
Complex solid‐solution electrocatalysts (also referred to as high‐entropy alloy) are gaining increasing interest owing to their promising properties which were only recently discovered. With the capability of forming complex single‐phase solid solutions from five or more constituents, they offer unique capabilities of fine‐tuning adsorption energies. However, the elemental complexity within the crystal structure and its effect on electrocatalytic properties is poorly understood. We discuss how addition or replacement of elements affect the adsorption energy distribution pattern and how this impacts the shape and activity of catalytic response curves. We highlight the implications of these conceptual findings on improved screening of new catalyst configurations and illustrate this strategy based on the discovery and experimental evaluation of several highly active complex solid solution nanoparticle catalysts for the oxygen reduction reaction in alkaline media.
Collapse
Affiliation(s)
- Tobias Löffler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Hajo Meyer
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Michael Meischein
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Valerie Strotkötter
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|