1
|
Mi R, Yao X, Xu Y, Hu S, Huang G, Li X. Asymmetric Vicinal and Remote Hydroamination of Olefins by Employing a Heck-Reaction-Derived Hydride Source. J Am Chem Soc 2025; 147:17217-17227. [PMID: 40327331 DOI: 10.1021/jacs.5c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Metal hydrides are reactive intermediates in numerous catalytic processes. In many catalytic processes, metal hydrides are formed, but their potential reactivity is often wasted by reaction with a base or an oxidant to permit catalyst turnover. In this report, the hydroamination of unactivated olefins is described by coupling a Heck reaction with a hydroamination reaction between aryl boronic acid, olefin, and a nitrene precursor dioxazolone. Initiated by a Heck reaction between the olefin and arylboroic acid, a rhodium hydride intermediate is generated and is retained for the hydroamination of a second equivalent of the olefin. Depending on the chain length of the alkyl group of the olefin, α- or β-amino amides were obtained in excellent regio- and enantioselectivity via direct or remote (migratory) hydroamination, respectively. The coupling system features a broad scope, mild conditions, and excellent enantioselectivity, and it also represents a rare example of asymmetric olefin hydroamination using a chiral rhodium(III) cyclopentadienyl catalyst. Mechanistic studies delineated the turnover-limiting and enantio-determining steps of this catalytic system.
Collapse
Affiliation(s)
- Ruijie Mi
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Xuejing Yao
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Youzhi Xu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300073, China
| | - Shunle Hu
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300073, China
| | - Xingwei Li
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
2
|
Liaw MW, Hirata H, Zou GF, Wu J, Zhao Y. Borrowing Hydrogen/Chiral Enamine Relay Catalysis Enables Diastereo- and Enantioselective β-C-H Functionalization of Alcohols. J Am Chem Soc 2025; 147:7721-7728. [PMID: 39996277 DOI: 10.1021/jacs.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We report herein an unprecedented borrowing hydrogen/chiral enamine relay catalysis strategy that enables a highly efficient enantioselective formal β-alkylation of simple alcohols using electron-deficient alkenes and especially nitroalkenes. A variety of 1,4-difunctional products such as nitro alcohols are readily accessible in one waste-free step from feedstock alcohols in excellent levels of stereoselectivity. It is important to note that the products are formed in much higher diastereoselectivity than the enamine catalysis step alone under identical conditions, highlighting the unique advantage of cascade borrowing hydrogen catalysis in achieving high efficiency, economy, and stereoselectivity.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
| | - Haruka Hirata
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Gong-Feng Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
3
|
Li S, Yahaya S, Bojanowski J, Ragazzon G, Dydio P. Dual relay Rh-/Pd-catalysis enables β-C(sp 3)-H arylation of α-substituted amines. Chem Sci 2025; 16:4167-4174. [PMID: 39911345 PMCID: PMC11791518 DOI: 10.1039/d4sc06806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
A dual relay catalytic protocol, built on reversible dehydrogenation of amines by Rh catalysis and C-H functionalisation of transient imines by Pd catalysis, is reported to enable regioselective arylation of amines at their unactivated β-C(sp3)-H bond. Notably, the new strategy is applicable to secondary anilines and N-PMP-protected primary aliphatic amines of intermediate steric demands, which is in contrast to the existing strategies that involve either free-amine-directed C-H activation for highly sterically hindered secondary aliphatic amines or steric-controlled migrative cross-coupling for unhindered N-Boc protected secondary aliphatic amines. Regioselectivity of the reaction is imposed by the electronic effects of transient imine intermediates rather than by the steric effects between specific starting materials and catalysts, thereby opening the uncharted scope of amines. In a broader sense, this study demonstrates new opportunities in dual relay catalysis involving hydrogen borrowing chemistry, previously explored in the functionalisation of alcohols, to execute otherwise challenging transformations for amines, commonly present in natural products, pharmaceuticals, biologically active molecules, and functional materials.
Collapse
Affiliation(s)
- Shuailong Li
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Sani Yahaya
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Jan Bojanowski
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
4
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024; 63:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
5
|
Wang YW, Liu HY, Duan ZW, Ning P, Zhang HM, Qian F, Wang P. Carrier-free immobilized enzymatic reactor based on CipA-fused carbonyl reductase for efficient synthesis of chiral alcohol with cofactor self-sufficiency. Int J Biol Macromol 2024; 276:133873. [PMID: 39013505 DOI: 10.1016/j.ijbiomac.2024.133873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.
Collapse
Affiliation(s)
- Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Yu Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pan Ning
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hai-Min Zhang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
6
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Kim SW, Foker EA, Wolf WJ, Woltornist RA, Shemet A, McCowen S, Simmons EM, Lin Z, He BL, Menger R, Xu X, Ayers S, Bunner MH, Sarjeant AA. α-Alkylation and Asymmetric Transfer Hydrogenation of Tetralone via Hydrogen Borrowing and Dynamic Kinetic Resolution Strategy Using a Single Iridium(III) Complex. Org Lett 2024; 26:3103-3108. [PMID: 38588485 DOI: 10.1021/acs.orglett.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Here we present a novel strategy for the synthesis of enantiomerically enriched tetrahydronaphthalen-1-ols. The reaction proceeds via an alkylation (via hydrogen borrowing) and ammonium formate-mediated asymmetric transfer hydrogenation (via dynamic kinetic resolution), giving alkylated tetralols in high yields and good enantio- and diastereoselectivity across a diverse range of both alcohol and tetralone substrates. Additionally, these products were successfully derivatized to several complex molecules, demonstrating the utility of the tetrahydronaphthalen-1-ol.
Collapse
Affiliation(s)
- Seung Wook Kim
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Elizabeth A Foker
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - William J Wolf
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ryan A Woltornist
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Andrii Shemet
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Shelby McCowen
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ziqing Lin
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brian L He
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Robert Menger
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Xuejun Xu
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew H Bunner
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy A Sarjeant
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
8
|
Wang K, Niu S, Tang W, Xue D, Xiao J, Li H, Wang C. Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated ketones via a hydrogenation/isomerization cascade. Chem Commun (Camb) 2024; 60:4338-4341. [PMID: 38545855 DOI: 10.1039/d4cc00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Ru-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated ketones has been developed for the enantioselective synthesis of chiral α-substituted secondary alcohols with high diastereo- and enantioselectivities (up to >99 : 1 dr, 98% ee). Mechanistic experiments suggest that the reaction proceeds via a Ru-catalyzed asymmetric hydrogenation of the CO bond in concert with a base-promoted allylic alcohol isomerization, and the final stereoselectivities were controlled by a DKR process during the asymmetric hydrogenation of the ketone intermediate.
Collapse
Affiliation(s)
- Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Saisai Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK
| | - Hongfeng Li
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
9
|
Mullick S, Ghosh A, Banerjee D. Recent advances in cross-coupling of alcohols via borrowing hydrogen catalysis. Chem Commun (Camb) 2024; 60:4002-4014. [PMID: 38451211 DOI: 10.1039/d4cc00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Application of the borrowing hydrogen strategy facilitates utilization of abundantly available alcohols for linear or branched long-chain alcohols. Selective synthesis of such alcohols is highly challenging and involves the utilization of transition metal catalysts towards the desired cross-coupled product. Herein, we have highlighted recent advances (from 2015 to 2023) towards the synthesis of higher alcohols. Major focus has been given to the development of ligands, including transition metal catalysts. Judicious catalyst design plays a key role in the alkylation process and is summarised in this review.
Collapse
Affiliation(s)
- Suteerna Mullick
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Adrija Ghosh
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
10
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
11
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
12
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
13
|
Tang J, He J, Zhao SY, Liu W. Manganese-Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angew Chem Int Ed Engl 2023; 62:e202215882. [PMID: 36847452 DOI: 10.1002/anie.202215882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of secondary alcohols, primary alcohols and methanol for the synthesis of β,β-methylated/alkylated secondary alcohols. Using our method, a series of 1-arylethanol, benzyl alcohol derivatives, and methanol undergo sequential coupling efficiently to construct assembled alcohols with high chemoselectivity in moderate to good yields. Mechanistic studies suggest that the reaction proceeds via methylation of a benzylated secondary alcohol intermediate to generate the final product.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingxi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Zeng G, Wu J, Shen L, Zheng Q, Chen ZN, Xu X, Tu T. Modular Access to Quaternary α-Hydroxyl Acetates by Catalytic Cross-Coupling of Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Guangkuo Zeng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Yang X, Tian X, Sun N, Hu B, Shen Z, Hu X, Jin L. Geometry-Constrained N, N, O-Nickel Catalyzed α-Alkylation of Unactivated Amides via a Borrowing Hydrogen Strategy. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xue Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xiaoyu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. Simultaneous Access to Two Enantio-enriched Alcohols by a Single Ru-Catalyst: Asymmetric Hydrogen Transfer from Racemic Alcohols to Matching Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Demidoff FC, Caleffi GS, Figueiredo M, Costa PRR. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of Chalcones in Water: Application to the Enantioselective Synthesis of Flavans BW683C and Tephrowatsin E. J Org Chem 2022; 87:14208-14222. [PMID: 36251770 DOI: 10.1021/acs.joc.2c01733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The oxo-tethered-Ru(II) precatalyst promoted the one-pot C═C/C═O reduction of chalcones using sodium formate as the hydrogen source in water through asymmetric transfer hydrogenation. Twenty-seven 1,3-diarylpropan-1-ols were obtained in good to excellent yields (up to 96%) and enantiomeric purities (up to 98:2). Our data suggested that the enones are first reduced to the corresponding dihydrochalcones (1,4-selectivity) and then into 1,3-diarylpropan-1-ols (C═O reduction). The stereoelectronic effects of electron-donating and electron-withdrawing groups at the ortho, meta and para positions of both aromatic rings were evaluated. The 2-OH group at the B ring was well tolerated, allowing a straightforward enantioselective synthesis of two flavans through the Mitsunobu cyclization, the antiviral (S)-BW683C and the natural flavan (S)-tephrowatsin E.
Collapse
Affiliation(s)
- Felipe C Demidoff
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Guilherme S Caleffi
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Marcella Figueiredo
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| |
Collapse
|
18
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
20
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203244. [DOI: 10.1002/anie.202203244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
21
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
22
|
Wang K, Niu S, Guo X, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Hydrogenation of Racemic Allylic Alcohols via an Isomerization-Dynamic Kinetic Resolution Cascade. J Org Chem 2022; 87:3804-3809. [PMID: 35041421 DOI: 10.1021/acs.joc.1c02916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prochiral racemic allylic alcohols are converted to enantioenriched chiral alcohols bearing adjacent stereocenters catalyzed by a diamine diphosphine Ru complex in the presence of tBuOK. The protocol features a broad substrate scope (56 examples) and high diastereo- and enantioselectivities (up to >99:1 dr, >99% ee) and could be applied to the synthesis of enantioenriched chromane and indane compounds. Mechanistic studies suggest that the reaction proceeds via tBuOK-promoted allylic alcohol isomerization followed by Ru-catalyzed hydrogenative dynamic kinetic resolution.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Saisai Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xin Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
23
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
24
|
Xing X, Liu Y, Shi ML, Li K, Fan XY, Wu ZL, Wang N, Yu XQ. Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. NEW J CHEM 2022. [DOI: 10.1039/d1nj06000g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controllable and mild photoenzymatic production of chiral alcohols was realized by coupling a photochemical NAD(P)H regeneration system with (R)- or (S)-selective ketoreductases.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Ming-Liang Shi
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xin-Yue Fan
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
25
|
Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A. Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00759b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Alkylation of alcohols has been efficiently accomplished using readily available 3d metal Cr under microwave conditions in air. Well-defined molecular Cr is involved with a KIE of 7.33 and insertion of α-alkylated ketone into Cr–H bond as the RDS.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Reliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Jyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
26
|
Jiang B, Shi SL. Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Jiang W, Fu X, Wu W. Gene mining, codon optimization and analysis of binding mechanism of an aldo-keto reductase with high activity, better substrate specificity and excellent solvent tolerance. PLoS One 2021; 16:e0260787. [PMID: 34855894 PMCID: PMC8638942 DOI: 10.1371/journal.pone.0260787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
The biosynthesis of chiral alcohols has important value and high attention. Aldo–keto reductases (AKRs) mediated reduction of prochiral carbonyl compounds is an interesting way of synthesizing single enantiomers of chiral alcohols due to the high enantio-, chemo- and regioselectivity of the enzymes. However, relatively little research has been done on characterization and apply of AKRs to asymmetric synthesis of chiral alcohols. In this study, the AKR from Candida tropicalis MYA-3404 (C. tropicalis MYA-3404), was mined and characterized. The AKR shown wider optimum temperature and pH. The AKR exhibited varying degrees of catalytic activity for different substrates, suggesting that the AKR can catalyze a variety of substrates. It is worth mentioning that the AKR could catalytic reduction of keto compounds with benzene rings, such as cetophenone and phenoxyacetone. The AKR exhibited activity on N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP), a key intermediate for biosynthesis of the antidepressant drug duloxetine. Besides, the AKR still has high activity whether in a reaction system containing 10%-30% V/V organic solvent. What’s more, the AKR showed the strongest stability in six common organic solvents, DMSO, acetonitrile, ethyl acetate, isopropanol, ethanol, and methanol. And, it retains more that 70% enzyme activity after 6 hours, suggesting that the AKR has strong solvent tolerance. Furthermore, the protein sequences of the AKR and its homology were compared, and a 3D model of the AKR docking with coenzyme NADPH were constructed. And the important catalytic and binding sites were identified to explore the binding mechanism of the enzyme and its coenzyme. These properties, predominant organic solvents resistance and extensive substrate spectrum, of the AKR making it has potential applications in the pharmaceutical field.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- * E-mail: ,
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Weiliang Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
28
|
Neumann CN, Payne MT, Rozeveld SJ, Wu Z, Zhang G, Comito RJ, Miller JT, Dincă M. Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52113-52124. [PMID: 34405986 DOI: 10.1021/acsami.1c09873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.
Collapse
Affiliation(s)
- Constanze N Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T Payne
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhenwei Wu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Robert J Comito
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Prakasham AP, Ta S, Dey S, Ghosh P. One pot tandem dual CC and CO bond reductions in the β-alkylation of secondary alcohols with primary alcohols by ruthenium complexes of amido and picolyl functionalized N-heterocyclic carbenes. Dalton Trans 2021; 50:15640-15654. [PMID: 34673856 DOI: 10.1039/d1dt02849a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two different classes of ruthenium complexes, namely, [1-mesityl-3-(2,6-Me2-phenylacetamido)-imidazol-2-ylidene]Ru(p-cymene)Cl (1c) and {[1-(pyridin-2-ylmethyl)-3-(2,6-Me2-phenyl)-imidazol-2-ylidene]Ru(p-cymene)Cl}Cl (2c), successfully catalyzed the one-pot tandem alcohol-alcohol coupling reactions of a variety of secondary and primary alcohols, in moderate to good yields of ca. 63-89%. The mechanistic investigation performed on two representative catalytic substrates, 1-phenylethanol and benzyl alcohol using the neutral ruthenium (1c) complex showed that the catalysis proceeded via a partially reduced CC hydrogenated carbonyl species, [PhCOCH2CH2Ph] (3'), to the fully reduced CO and CC hydrogenated secondary alcohol, [PhCH(OH)CH2CH2Ph] (3). Furthermore, the time dependent study showed that the major product of the catalysis modulated between (3') and (3) during the catalysis run performed over an extended period of 120 hours. Finally, the practical utility of the alcohol-alcohol coupling reaction was demonstrated by preparing five different flavan derivatives (13-17) related to various bioactive flavonoid natural products, in a one-pot tandem fashion.
Collapse
Affiliation(s)
- A P Prakasham
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Sabyasachi Ta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Shreyata Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Prasenjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
30
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2021; 61:e202112993. [PMID: 34626073 DOI: 10.1002/anie.202112993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 01/20/2023]
Abstract
The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,β-unsaturated ketones, β-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.
Collapse
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
31
|
Liu Y, Tao R, Lin ZK, Yang G, Zhao Y. Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nat Commun 2021; 12:5035. [PMID: 34413301 PMCID: PMC8376995 DOI: 10.1038/s41467-021-25268-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
The direct transformation of racemic feedstock materials to valuable enantiopure compounds is of significant importance for sustainable chemical synthesis. Toward this goal, the radical mechanism has proven uniquely effective in stereoconvergent carbon-carbon bond forming reactions. Here we report a mechanistically distinct redox-enabled strategy for an efficient enantioconvergent coupling of pyrroles with simple racemic secondary alcohols. In such processes, chirality is removed from the substrate via dehydrogenation and reinstalled in the catalytic reduction of a key stabilized cationic intermediate. This strategy provides significant advantage of utilizing simple pyrroles to react with feedstock alcohols without the need for leaving group incorporation. This overall redox-neutral transformation is also highly economical with no additional reagent nor waste generation other than water. In our studies, oxime-derived iridacycle complexes are introduced, which cooperate with a chiral phosphoric acid to enable heteroarylation of alcohols, accessing a wide range of valuable substituted pyrroles in high yield and enantioselectivity. Synthesizing complex structures of high enantiomeric excess from racemic feedstock is an enduring challenge. Here, the authors couple racemic secondary alcohols with pyrroles to form enantioenriched 2-substituted heteroarenes, via a borrowing hydrogen mechanism using the combination of an iridium catalyst and chiral phosphoric acid.
Collapse
Affiliation(s)
- Yongbing Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi-Keng Lin
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
32
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
33
|
Cai Y, Shi SL. Enantioconvergent Arylation of Racemic Secondary Alcohols to Chiral Tertiary Alcohols Enabled by Nickel/N-Heterocyclic Carbene Catalysis. J Am Chem Soc 2021; 143:11963-11968. [PMID: 34324325 DOI: 10.1021/jacs.1c06614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The direct upgrading reaction of simple and readily available achiral alcohols via C-H functionalization is an ideal strategy to prepare value-added chiral higher alcohols. Herein, we disclose the first enantioconvergent upgrading reaction of simple racemic secondary alcohols to enantioenriched tertiary alcohols. An N-heterocyclic carbene (NHC)-nickel catalyst was leveraged to enable this highly efficient formal asymmetric alcohol α-C-H arylation via a dehydrogenation using phenyl triflate as a mild oxidant followed by asymmetric addition of arylboronic esters to the transient ketones. Mechanistic studies and control experiments were conducted to reveal the possible reasons for the exceptional control over chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
34
|
Pan HJ, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021; 60:18599-18604. [PMID: 34125475 DOI: 10.1002/anie.202101517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/13/2021] [Indexed: 01/23/2023]
Abstract
We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yamei Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Taotao Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Wei Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
35
|
Pan H, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo‐ and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yamei Lin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University 1 Wenyuan Road Nanjing 210023 P. R. China
| | - Taotao Gao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Wei Feng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
36
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
37
|
Lu Z, Zheng Q, Zeng G, Kuang Y, Clark JH, Tu T. Highly efficient NHC-iridium-catalyzed β-methylation of alcohols with methanol at low catalyst loadings. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1017-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Soto M, Gotor‐Fernández V, Rodríguez‐Solla H, Baratta W. Transfer Hydrogenation of Flavanones and
ortho
‐Hydroxychalcones to 1,3‐Diarylpropanols Catalyzed by CNN Pincer Ruthenium Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202002025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Martín Soto
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Humberto Rodríguez‐Solla
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali Università di Udine Via Cotonoficio 108 33100 Udine Italy
| |
Collapse
|
39
|
Reed-Berendt B, Latham DE, Dambatta MB, Morrill LC. Borrowing Hydrogen for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:570-585. [PMID: 34056087 PMCID: PMC8155478 DOI: 10.1021/acscentsci.1c00125] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/03/2023]
Abstract
Borrowing hydrogen is a process that is used to diversify the synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol by removing hydrogen to form a reactive carbonyl compound. This intermediate can undergo a diverse range of subsequent transformations before the catalyst returns the "borrowed" hydrogen to liberate the product and regenerate the catalyst. In this way, alcohols may be used as alkylating agents whereby the sole byproduct of this one-pot reaction is water. In recent decades, significant advances have been made in this area, demonstrating many effective methods to access valuable products. This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances. By succinctly describing and conveying the versatility of borrowing hydrogen chemistry, we anticipate its uptake will increase across a wider scientific audience, expanding opportunities for further development.
Collapse
|
40
|
Frost JR, Cheong CB, Akhtar WM, Caputo DF, Christensen KE, Stevenson NG, Donohoe TJ. Hydrogen borrowing catalysis using 1° and 2° alcohols: Investigation and scope leading to α and β branched products. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Zhang L, Wang B, Zhao Y, Pu M, Liu S, Lei M. Using Bases as Initiators to Isomerize Allylic Alcohols: Insights from Density Functional Theory Studies. J Phys Chem A 2021; 125:2316-2323. [PMID: 33724037 DOI: 10.1021/acs.jpca.1c00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allylic alcohols, as common and readily available building blocks, could be converted into many widely used carbonyl compounds through isomerization reactions. However, these processes often involve expensive transition metal (TM) complexes as the catalyst. What is the bottleneck in the mechanism when no TM is used? In this study, density functional theory (DFT) was employed to explore the mechanistic patterns of allylic alcohols catalyzed using bases, such as KOH, NaOH, LiOH, tBuOK, tBuONa, tBuOLi, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine, and 1,8-diazabicyclo[5.4.0]undec-7-ene. Our results show that bases containing metal cations follow the metal cation-assisted (MCA) mechanism, whereas organic bases without metal cations follow the ion pair-assisted (IPA) mechanism. The catalytic efficiency of bases containing metal cations is higher than that of bases without metal cations, indicating that metal cations play an important role in the reaction. Additionally, the modulation of substituents R1 and R2 in the substrate reveals that electron-withdrawing groups are favorable for C-H bond cleavage, and electron-donating groups are favorable for hydrogen transfer. To better understand these patterns, we applied the DFT and information-theoretic approach (ITA) to examine the impact of bases and substrate substituents on the reactivity of allylic alcohol isomerization. This work should provide a much-needed theoretical guidance to design better non-TM catalysts for the isomerization of allylic alcohols and their derivatives.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selektive und skalierbare Synthese von Zuckeralkoholen durch homogene asymmetrische Hydrierung von ungeschützten Ketosen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
| | - Steffen Mader
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Alois Kindler
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Frank Rominger
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| |
Collapse
|
43
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selective and Scalable Synthesis of Sugar Alcohols by Homogeneous Asymmetric Hydrogenation of Unprotected Ketoses. Angew Chem Int Ed Engl 2021; 60:721-725. [PMID: 32926512 DOI: 10.1002/anie.202009790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Indexed: 11/10/2022]
Abstract
Sugar alcohols are of great importance for the food industry and are promising building blocks for bio-based polymers. Industrially, they are produced by heterogeneous hydrogenation of sugars with H2 , usually with none to low stereoselectivities. Now, we present a homogeneous system based on commercially available components, which not only increases the overall yield, but also allows a wide range of unprotected ketoses to be diastereoselectively hydrogenated. Furthermore, the system is reliable on a multi-gram scale allowing sugar alcohols to be isolated in large quantities at high atom economy.
Collapse
Affiliation(s)
- Daniel J Tindall
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Steffen Mader
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Alois Kindler
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Frank Rominger
- Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
44
|
Yi X, Chen Y, Huang A, Song D, He J, Ling F, Zhong W. Design of chiral ferrocenylphosphine-spiro phosphonamidite ligands for ruthenium-catalyzed highly enantioselective coupling of 1,2-diols with amines. Org Chem Front 2021. [DOI: 10.1039/d1qo01443a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of chiral ferrocene-backbone phosphines-spiro phosphonamidite ligands was developed for ruthenium-catalyzed enantioselective access to a broad range of β-amino alcohols from 1,2-diols and amines via the borrowing-hydrogen prciniple.
Collapse
Affiliation(s)
- Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yirui Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - An Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dingguo Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiaying He
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
45
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020; 59:21959-21964. [DOI: 10.1002/anie.202009754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
46
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
47
|
Pan Y, You Y, He D, Chen F, Chang X, Jin MY, Xing X. Asymmetric Synthesis of γ-Secondary Amino Alcohols via a Borrowing-Hydrogen Cascade. Org Lett 2020; 22:7278-7283. [DOI: 10.1021/acs.orglett.0c02614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yupeng Pan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongxu He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fumin Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
48
|
Rong ZQ, Yu Z, Weng C, Yang LC, Lu S, Lan Y, Zhao Y. Dynamic Kinetic Asymmetric Amination of Alcohols Assisted by Microwave: Stereoconvergent Access to Tetralin- and Indane-Derived Chiral Amines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhaoyuan Yu
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Li-Cheng Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- China Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
49
|
Genç S, Gülcemal S, Günnaz S, Çetinkaya B, Gülcemal D. Iridium-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols: A Route to Access Branched Ketones and Alcohols. J Org Chem 2020; 85:9139-9152. [DOI: 10.1021/acs.joc.0c01099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sertaç Genç
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | | | - Salih Günnaz
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | - Bekir Çetinkaya
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | - Derya Gülcemal
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| |
Collapse
|