1
|
Zeng W, Peng C, Qiu Y. Electrochemical Benzylic C-H Carboxylation. J Am Chem Soc 2025; 147:13461-13470. [PMID: 40203205 DOI: 10.1021/jacs.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Direct benzylic C-H carboxylation stands as a high atom economy, efficient, and convenient route for the synthesis of valuable benzylic carboxylic acids, which are of great significance in many pharmaceuticals and bioactive molecules. However, the inherent inertness of both benzylic C-H bonds and carbon dioxide presents a great challenge for further transformations. Herein, we report our efforts to overcome this obstacle via halide-promoted linear paired electrolysis to generate various benzylic carboxylic acids. Remarkably, this process is transition-metal- and base-free, making it environmentally benign and cost-effective. Besides, it is suitable for constructing a wide range of primary, secondary, and tertiary benzylic carboxylic acids under mild reaction conditions, demonstrating broad substrate scopes and good functional group tolerance. Furthermore, our protocol enables the direct synthesis of some drug molecules, including Flurbiprofen, Ibuprofen, and Naproxen, and facilitates the late-stage modification of complex compounds, showcasing the practical application in synthetic chemistry and underscores its potential to advance the synthesis of benzylic carboxylic acids and related compounds.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
2
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
3
|
Zhang Y, Luo P, Ren H, Wan Q, Zhou H, Chen B, Zhang X. Efficient photoelectrochemical system for electrocarboxylation of 1,4-dibromobenzene with CO 2 using dye-sensitized photovoltaics. iScience 2025; 28:111748. [PMID: 39925419 PMCID: PMC11804777 DOI: 10.1016/j.isci.2025.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Efficient photosynthesis using CO2 and photovoltaics is an attractive solution to address environmental and energy crises. However, most attempts toward solar-driven CO2 conversion have focused on producing fuels such as CO, CH4, and ethanol by CO2 electroreduction. Here, we demonstrate the efficient electrocarboxylation of CO2 with 1,4-dibromobenzene (1,4-DBB) to value-added carboxylic acid esters driven solely by simulated sunlight. Employing a series-connected dye-sensitized photovoltaic and a silver (Ag) catalyst electrode with outstanding performance, a Faraday efficiency (FE) of 45.6% is achieved, which is close to the 47.7% FE of the common CO2 electrocarboxylation reaction. After 14 h, the FE of the whole photoelectrochemical system is still 66% of the initial FE. In addition, a stacking-separating strategy was adopted to assemble a series-connected dye-sensitized solar cell (DSC) module, which was flexibly assembled and easily detachable. This study offers a promising approach to producing value-added carboxylic acid derivatives from solar light and CO2.
Collapse
Affiliation(s)
- Yingtian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Peipei Luo
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Huaiyan Ren
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Qi Wan
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Huawei Zhou
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Baoli Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| | - Xianxi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, No.1, Hunan Road, Liaocheng 252000, China
| |
Collapse
|
4
|
Lesko I, Sengmany S, Beltran R, Le Gall E, Léonel E. Transition Metal-Free Direct Electrochemical Carboxylation of Organic Halides Using a Sacrificial Magnesium Anode: Straightforward Synthesis of Carboxylic Acids. ChemistryOpen 2025:e202400426. [PMID: 39876650 DOI: 10.1002/open.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO2 is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable. Mechanistic investigation account for the in situ generation of a carbanionic species that is not a simple organomagnesium halide.
Collapse
Affiliation(s)
- Iryna Lesko
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Stéphane Sengmany
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | | | - Erwan Le Gall
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Eric Léonel
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
5
|
Sarkar P, Dash S, Krause JA, Sinha S, Panetier JA, Jiang JJ. Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading. CHEMSUSCHEM 2024; 17:e202400517. [PMID: 38890556 DOI: 10.1002/cssc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Sandeep Dash
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Julien A Panetier
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | | |
Collapse
|
6
|
Palio L, Bru F, Ruggiero T, Bourda L, Van Hecke K, Cazin C, Nolan SP. The role of the stabilizing/leaving group in palladium catalysed cross-coupling reactions. Dalton Trans 2024; 53:18013-18020. [PMID: 39440538 DOI: 10.1039/d4dt02533d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the widespread use of well-defined PdII complexes as pre-catalysts for cross-coupling processes, the role of the throw-away ligand is still underexplored. In this work we focused on the complexes of the type [Pd(NHC)(η3-R-allyl)Cl] (NHC = N-heterocyclic carbene) and we investigated the influence of the R substitution on the allyl moiety. Starting from the already described [Pd(IPr)(η3-cinnamyl)Cl] and [Pd(IPr*)(η3-cinnamyl)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr* = N,N'-1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene) we prepared eight new complexes bearing new substitutions on the cinnamyl motif and we tested them in the C-N bond formation to evaluate the effect of the throw-away ligand modification in the catalytic activity. In addition, we studied the undesired formation of the less active off-cycle [PdI2(NHC)2(η3-R-allyl)(μ-Cl)] dimers from the corresponding PdII complexes to evaluate the role of the new throw-away ligands on the inhibition of this process.
Collapse
Affiliation(s)
- Lorenzo Palio
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS Unité de Catalyse et Chimie Solide, F-59000, Lille, France
| | - Francis Bru
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Tommaso Ruggiero
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Laurens Bourda
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Catherine Cazin
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| |
Collapse
|
7
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
8
|
Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO 2 Using a Solar Energy Conversion Device. Int J Mol Sci 2024; 25:10608. [PMID: 39408936 PMCID: PMC11476564 DOI: 10.3390/ijms251910608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Huawei Zhou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | - Baoli Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | | |
Collapse
|
9
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Michiyuki T, Homölle SL, Pandit NK, Ackermann L. Electrocatalytic Formal C(sp 2)-H Alkylations via Nickel-Catalyzed Cross-Electrophile Coupling with Versatile Arylsulfonium Salts. Angew Chem Int Ed Engl 2024; 63:e202401198. [PMID: 38695843 DOI: 10.1002/anie.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/15/2024]
Abstract
Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Neeraj K Pandit
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
11
|
Sheta AM, Fernández S, Liu C, Dubed-Bandomo GC, Lloret-Fillol J. An Electrocatalytic Cascade Reaction for the Synthesis of Ketones Using CO 2 as a CO Surrogate. Angew Chem Int Ed Engl 2024; 63:e202403674. [PMID: 38647344 DOI: 10.1002/anie.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 04/25/2024]
Abstract
The construction of carbonyl compounds via carbonylation reactions using safe CO sources remains a long-standing challenge to synthetic chemists. Herein, we propose a catalyst cascade Scheme in which CO2 is used as a CO surrogate in the carbonylation of benzyl chlorides. Our approach is based on the cooperation between two coexisting catalytic cycles: the CO2-to-CO electroreduction cycle promoted by [Fe(TPP)Cl] (TPP=meso-tetraphenylporphyrin) and an electrochemical carbonylation cycle catalyzed by [Ni(bpy)Br2] (2,2'-bipyridine). As a proof of concept, this protocol allows for the synthesis of symmetric ketones from good to excellent yields in an undivided cell with non-sacrificial electrodes. The reaction can be directly scaled up to gram-scale and operates effectively at a CO2 concentration of 10 %, demonstrating its robustness. Our mechanistic studies based on cyclic voltammetry, IR spectroelectrochemistry and Density Functional Theory calculations suggest a synergistic effect between the two catalysts. The CO produced from CO2 reduction is key in the formation of the [Ni(bpy)(CO)2], which is proposed as the catalytic intermediate responsible for the C-C bond formation in the carbonylation steps.
Collapse
Affiliation(s)
- Ahmed M Sheta
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, Carrer Marcel ⋅ lí Domingo s/n, 43007, Tarragona, Spain
- Department of Chemistry, Damietta University, Damietta El-Gadeeda City, Kafr Saad, Damietta Governorate, 34511, Egypt
| | - Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Changwei Liu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, Carrer Marcel ⋅ lí Domingo s/n, 43007, Tarragona, Spain
| | - Geyla C Dubed-Bandomo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain
- Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
12
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Tao L, Wang H, Liu XF, Ren WM, Lu XB, Zhang WZ. Electrochemical ring-opening carboxylation of cyclic carbonate with carbon dioxide. Chem Commun (Camb) 2024; 60:5735-5738. [PMID: 38742637 DOI: 10.1039/d4cc01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electroreductive ring-opening carboxylation of styrene carbonates with CO2 to achieve dicarboxylic acids and/or β-hydroxy acids has been developed via the selective cleavage of the C(sp3)-O bond in cyclic carbonates. The product selectivity is probably determined by the stability and reactivity of the key benzylic radical and carbanion intermediate.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| | - He Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| | - Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Tao L, Liu XF, Ren BH, Wang H, Sun HQ, Zhang K, Teng YQ, Ren WM, Lu XB, Zhang WZ. Electroreductive Ring-Opening Carboxylation of 1,3-Oxazolidin-2-ones with CO 2 for Accessing β-Amino Acids. Org Lett 2024. [PMID: 38189289 DOI: 10.1021/acs.orglett.3c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrocarboxylation of the C(sp3)-O bond in 1,3-oxazolidin-2-ones with CO2 to achieve β-amino acids is developed. The C-O bond in substrates can be selectively cleaved via the single electron transfer on the surface of a cathode or through a CO2• - intermediate under additive-free conditions. A great diversity of β-amino acids can be obtained in a moderate to excellent yield and readily converted to various biologically active compounds.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - He Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui-Qin Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yong-Qiang Teng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
15
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
16
|
Andreetta P, Martin RT, Souilah C, Rentería-Gómez Á, Song Z, Khorramshahi Bayat Y, Ivlev S, Gutierrez O, Casitas A. Experimental and Computational Studies on Cobalt(I)-Catalyzed Regioselective Allylic Alkylation Reactions. Angew Chem Int Ed Engl 2023; 62:e202310129. [PMID: 37772828 PMCID: PMC10843511 DOI: 10.1002/anie.202310129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Here, we report the development of cobalt(I)-catalyzed regioselective allylic alkylation reactions of tertiary allyl carbonates with 1,3-dicarbonyl compounds. A family of well-defined tetrahedral cobalt(I) complexes bearing commercially available bidentate bis(phosphine) ligands [(P,P)Co(PPh3 )Cl] are synthesized and explored as catalysts in allylic alkylation reactions. The catalyst [(dppp)Co(PPh3 )Cl] (dppp=1,3-Bis(diphenylphosphino)propane) enables the alkylation of a large variety of tertiary allyl carbonates with high yields and excellent regioselectivity for the branched product. Remarkably, this methodology is selective for the activation of tertiary allyl carbonates even in the presence of secondary allyl carbonates. This contrasts with the selectivity observed in cobalt-catalyzed allylic alkylations enabled by visible light photocatalysis. Mechanistic insights by means of experimental and computational investigations support a Co(I)/Co(III) catalytic cycle.
Collapse
Affiliation(s)
- Philip Andreetta
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park. 8051 Regents Dr, College Park, Maryland, 20742, USA
| | - Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park. 8051 Regents Dr, College Park, Maryland, 20742, USA
| | - Yas Khorramshahi Bayat
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
17
|
Liu Y, Li P, Wang Y, Qiu Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew Chem Int Ed Engl 2023; 62:e202306679. [PMID: 37327185 DOI: 10.1002/anie.202306679] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C-C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2 , SO2 , and D2 O.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
18
|
Li P, Kou G, Feng T, Wang M, Qiu Y. Electrochemical NiH-Catalyzed C(sp 3 )-C(sp 3 ) Coupling of Alkyl Halides and Alkyl Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311941. [PMID: 37708153 DOI: 10.1002/anie.202311941] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Herein, an electrochemically driven NiH-catalyzed reductive coupling of alkyl halides and alkyl alkenes for the construction of Csp3 -Csp3 bonds is firstly reported. Notably, alkyl halides serve dual function as coupling substrates and as hydrogen sources to generate NiH species under electrochemical conditions. The tunable nature of this reaction is realized by introducing an intramolecular coordinating group to the substrate, where the product can be easily adjusted to give the desired branched products. The method proceeds under mild conditions, exhibits a broad substrate scope, and affords moderate to excellent yields with over 70 examples, including late-stage modification of natural products and drug derivatives. Mechanistic insights offer evidence for an electrochemically driven coupling process. The sp3 -carbon-halogen bonds can be activated through single electron transfer (SET) by the nickel catalyst in its low valence state, generated by cathodic reduction, and the generation of NiH species from alkyl halides is pivotal to this transformation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
19
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
20
|
Li Y, Wen L, Guo W. A guide to organic electroreduction using sacrificial anodes. Chem Soc Rev 2023; 52:1168-1188. [PMID: 36727623 DOI: 10.1039/d3cs00009e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organic electrosynthesis is a green strategy for the synthesis of valuable molecules. Electrochemical reactions using sacrificial metal anodes enable new reactivity to be uncovered that could not be achieved with traditional non-electrochemical methods. Compared with reactions using metal powder as the reducing reagent, the mild electroreduction protocols usually exhibit diverse reactivity and excellent selectivity. The inexpensive metal anodes possess low oxidation potential, which could prevent undesired overoxidation of substrates, active intermediates and products. The in situ generated metal ions from sacrificial anodes could not only serve as Lewis acids to activate the reactants but also as a promoter or mediator. This tutorial review highlights the recent achievements in this rapidly growing area within the past five years. The sacrificial anode-enabled electroreductions are discussed according to the reaction type.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lirong Wen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
21
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
22
|
Chantarojsiri T, Soisuwan T, Kongkiatkrai P. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Zhao Y, Guo X, Li S, Fan Y, Ji G, Jiang M, Yang Y, Jiang Y. Transient Stabilization Effect of CO
2
in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of α‐Ketoesters. Angew Chem Int Ed Engl 2022; 61:e202213636. [DOI: 10.1002/anie.202213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Guo‐Cui Ji
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Mengmeng Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yuan‐Ye Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| |
Collapse
|
24
|
Liu XF, Zhang K, Wang LL, Wang H, Huang J, Zhang XT, Lu XB, Zhang WZ. Electroreductive Ring-Opening Carboxylation of Cycloketone Oxime Esters with Carbon Dioxide. J Org Chem 2022; 88:5212-5219. [PMID: 36273332 DOI: 10.1021/acs.joc.2c01816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electroreductive ring-opening carboxylation of cycloketone oxime esters with atmospheric carbon dioxide is reported. This reaction proceeded under simple constant current conditions in an undivided cell using glassy carbon as the cathode and magnesium as the sacrificial anode, providing substituted γ- and δ-cyanocarboxylic acids in moderate to good yields. Electrochemically generated cyanoalkyl radicals and cyanoalkyl anion are proposed as the key intermediates.
Collapse
Affiliation(s)
- Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lin-Lin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - He Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jian Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xun-Ting Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
25
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022; 61:e202210201. [DOI: 10.1002/anie.202210201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Deng Pan
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
26
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO
2
for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207746. [DOI: 10.1002/anie.202207746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
27
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue XS, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Zhiwei Zhao
- Nankai University College of Chemistry CHINA
| | - Deng Pan
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | | | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Song Xue
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
28
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
29
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | | | | | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
30
|
Chen C, Liu RX, Xiong F, Li ZH, Kang JC, Ding TM, Zhang SY. Electrochemical collective synthesis of labeled pyrroloindoline alkaloids with Freon-type methanes as functional C1 synthons. Chem Commun (Camb) 2022; 58:9230-9233. [PMID: 35899819 DOI: 10.1039/d2cc03301a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of Freon-type methanes as functional one-carbon synthons in the synthesis of various deuterated indoline alkaloids was demonstrated here. A series of halomethyl radicals were generated from electro-reductive C-X cleavage of Freon-type methanes and captured efficiently by acrylamides to provide various halogenated oxindoles via radical cyclization. This reaction features good functional group tolerance, and deuterium and fluorine atoms could be introduced facilely from Freon-type methanes. Further transformation of halogenated oxindoles enabled the synthesis of many (labeled) bioactive drug molecules and skeletons, such as deuterated (±)-physostigmine, deuterated (±)-esermethole and deuterated (±)-lansai B.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Feng Xiong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
31
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ke Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bai-Hao Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Lin-Lin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Min Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wei-Min Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals E-330 West Campus, No.2 Linggong Road, High-Tech Zone 116024 Dalian CHINA
| |
Collapse
|
32
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β-Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207660. [PMID: 35862121 DOI: 10.1002/anie.202207660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Highly selective and direct electroreductive ring-opening carboxylation of epoxides with CO2 in an undivided cell is reported. This reaction shows broad substrate scopes within styrene oxides under mild conditions, providing practical and scalable access to important synthetic intermediate β-hydroxy acids. Mechanistic studies show that CO2 functions not only as a carboxylative reagent in this reaction but also as a promoter to enable efficient and chemoselective transformation of epoxides under additive-free electrochemical conditions. Cathodically generated α-radical and α-carbanion intermediates lead to the regioselective formation of α-carboxylation products.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Bai-Hao Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Lin-Lin Wang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Min Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wei-Min Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, E-330 West Campus, No.2 Linggong Road, High-Tech Zone, 116024, Dalian, CHINA
| |
Collapse
|
33
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
34
|
A highly regio- and stereoselective Pd-catalyzed electrocarboxylation of Baylis-Hillman acetates: An interesting switchable regioselectivity based on electrode material. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Li P, Guo C, Wang S, Ma D, Feng T, Wang Y, Qiu Y. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat Commun 2022; 13:3774. [PMID: 35773255 PMCID: PMC9247074 DOI: 10.1038/s41467-022-31435-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Herein, a facile and general electroreductive deuteration of unactivated alkyl halides (X = Cl, Br, I) or pseudo-halides (X = OMs) using D2O as the economical deuterium source was reported. In addition to primary and secondary alkyl halides, sterically hindered tertiary chlorides also work very well, affording the target deuterodehalogenated products with excellent efficiency and deuterium incorporation. More than 60 examples are provided, including late-stage dehalogenative deuteration of natural products, pharmaceuticals, and their derivatives, all with excellent deuterium incorporation (up to 99% D), demonstrating the potential utility of the developed method in organic synthesis. Furthermore, the method does not require external catalysts and tolerates high current, showing possible use in industrial applications.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
36
|
Zhang K, Liu XF, Zhang WZ, Ren WM, Lu XB. Electrocarboxylation of N-Acylimines with Carbon Dioxide: Access to Substituted α-Amino Acids. Org Lett 2022; 24:3565-3569. [DOI: 10.1021/acs.orglett.2c01267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
37
|
You Y, Mita T. Recent Advances in the Catalytic Umpolung Carboxylation of Allylic Alcohol Derivatives with Carbon Dioxide. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 P. R. China
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku, Sapporo Hokkaido 060-0810 Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku, Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
38
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
39
|
Chakraborty B, Rajput A, Soni M. Electroreduction: A sustainable and less energy‐intensive approach compared to chemical reduction for phosphine oxide recycling to phosphine. ChemElectroChem 2022. [DOI: 10.1002/celc.202101658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biswarup Chakraborty
- Indian Institute of Technology Delhi Department of Chemistry Hauz Khas 110016 New Delhi INDIA
| | - Anubha Rajput
- IIT Delhi: Indian Institute of Technology Delhi Department of Chemistry Hauz Khas 110016 INDIA
| | - Monika Soni
- IIT Delhi: Indian Institute of Technology Delhi Department of Chemistry Hauz Khas 110016 Delhi INDIA
| |
Collapse
|
40
|
You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials. J Am Chem Soc 2022; 144:3685-3695. [PMID: 35189683 DOI: 10.1021/jacs.1c13032] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dearomative dicarboxylation of stable heteroaromatics using CO2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO2 radical anion (E1/2 of CO2 = -2.2 V in DMF and -2.3 V in CH3CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (-2.50 to -2.94 V). On the basis of the calculated reduction potentials, N-protected indoles with reduction potentials up to -3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than -3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.
Collapse
Affiliation(s)
- Yong You
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
41
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
42
|
Liao LL, Wang ZH, Cao KG, Sun GQ, Zhang W, Ran CK, Li Y, Chen L, Cao GM, Yu DG. Electrochemical Ring-Opening Dicarboxylation of Strained Carbon-Carbon Single Bonds with CO 2: Facile Synthesis of Diacids and Derivatization into Polyesters. J Am Chem Soc 2022; 144:2062-2068. [PMID: 35084189 DOI: 10.1021/jacs.1c12071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diacids are important monomers in the polymer industry to construct valuable materials. Dicarboxylation of unsaturated bonds, such as alkenes and alkynes, with CO2 has been demonstrated as a promising synthetic method. However, dicarboxylation of C─C single bonds with CO2 has rarely been investigated. Herein we report a novel electrochemical ring-opening dicarboxylation of C─C single bonds in strained rings with CO2. Structurally diverse glutaric acid and adipic acid derivatives were synthesized from substituted cyclopropanes and cyclobutanes in moderate to high yields. In contrast to oxidative ring openings, this is also the first realization of an electroreductive ring-opening reaction of strained rings, including commercialized ones. Control experiments suggested that radical anions and carbanions might be the key intermediates in this reaction. Moreover, this process features high step and atom economy, mild reaction conditions (1 atm, room temperature), good chemoselectivity and functional group tolerance, low electrolyte concentration, and easy derivatization of the products. Furthermore, we conducted polymerization of the corresponding diesters with diols to obtain a potential UV-shielding material with a self-healing function and a fluorine-containing polyester, whose performance tests showed promising applications.
Collapse
Affiliation(s)
- Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhe-Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ke-Gong Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Li Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guang-Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
43
|
Buckley BR. Electrosynthetic routes toward carbon dioxide activation and utilization. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
44
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
45
|
Shukla G, Saha P, Pali P, Raghuvanshi K, Singh MS. Electrochemical Synthesis of 1,2,3-Thiadiazoles from α-Phenylhydrazones. J Org Chem 2021; 86:18004-18016. [PMID: 34818010 DOI: 10.1021/acs.joc.1c02275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an electrochemical approach for the synthesis of fully substituted 1,2,3-thiadiazoles from α-phenylhydrazones at room temperature, which is very challenging and complementary to the conventional thermal reactions. The key step involves anodic oxidation of phenylhydrazone derivatives at a constant current followed by N,S-heterocyclization. The protocol is remarkable in that it is free of a base and free of an external oxidant and can be converted to a gram scale for postsynthetic drug development with functional thiadiazoles. Most importantly, the electrochemical transformation reflected efficient electro-oxidation with an operationally friendly easy procedure with ample functional molecules. Cyclic voltammograms support the mechanism of this electro-oxidative cyclization process.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priya Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Keshav Raghuvanshi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
46
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
47
|
Yang LR, Zhang JJ, Zhao YJ, Wang ZL, Wang H, Lu JX. La1−xSrxFeO3 perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailun Liang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Xing Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Department of Chemical and Materials Engineering, Abdulaziz University. Jeddah 21589, Saudi Arabia
| |
Collapse
|
49
|
Shi Y, Xia C, Huang Y, He L. Electrochemical Approaches to Carbonylative Coupling Reactions. Chem Asian J 2021; 16:2830-2841. [PMID: 34378346 DOI: 10.1002/asia.202100800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The carbonylation reaction is an effective way to introduce CO or other carbonyl groups into organic compounds, and widely used in the preparation of aldehydes, ketones, amides, and esters. The replacement of conventional reaction approaches by greener electrochemical methods is appealing with great synthetic potential as well as inherent safety, owing to the avoidance of external oxidants or reductants and a more facile control in product selectivity. In this minireview, we give a summary of the recent development of carbonylation reactions via the electrochemical approach.
Collapse
Affiliation(s)
- Yunru Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yang Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
50
|
Massignan L, Zhu C, Hou X, Oliveira JCA, Salamé A, Ackermann L. Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Aude Salamé
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| |
Collapse
|