1
|
Zhang E, Han W, Hou J, Chen S, Zhang L, Zhang Y, Dong P, Zhang B, Zhang Y. Advanced Electrolyte Additives for Enhanced Homogeneous Sulfur Fixation in Lithium-Sulfur Batteries. SMALL METHODS 2025:e2401961. [PMID: 40207847 DOI: 10.1002/smtd.202401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Indexed: 04/11/2025]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as leading contenders for next-generation energy storage owing to their exceptional theoretical energy density. However, severe sulfur electrode depletion causes rapid capacity fading and compromised cycling stability. Electrolyte engineering effectively enables homogeneous sulfur fixation, improving battery performance. The study investigates the mechanisms behind these homogeneous reactions, focusing on sulfur fixation processes. Sulfur fixation is explored through multiple perspectives, including the inhibition of polysulfide shuttling, mitigation of electrode passivation, and the combined application of both strategies. Regarding polysulfide shuttling inhibition, three distinct mechanisms for sulfur fixation are identified: 1) chemisorption-based sulfur fixation, involving the formation of chemical bonds with polysulfides; 2) redox-mediated sulfur fixation, which accelerates the kinetics of sulfur species; and 3) hybrid sulfur fixation, which combines elements of both approaches. Furthermore, the review analyzes current methods for homogeneous sulfur fixation, focusing on electrolyte designs that enable homogeneous sulfur fixation under limited conditions. It provides insights to optimize electrolytes, advancing Li-S battery performance and commercialization.
Collapse
Affiliation(s)
- Enfeng Zhang
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Wenchang Han
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiyue Hou
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Si Chen
- State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Lei Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Yiyong Zhang
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Binwei Zhang
- State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Yannan Zhang
- National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
2
|
Li XY, Zhao M, Song YW, Bi CX, Li Z, Chen ZX, Zhang XQ, Li BQ, Huang JQ. Polysulfide chemistry in metal-sulfur batteries. Chem Soc Rev 2025. [PMID: 40167254 DOI: 10.1039/d4cs00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Renowned for their high theoretical energy density and cost-effectiveness, metal-sulfur (M-S) batteries are pivotal in overcoming the current energy storage bottlenecks and accelerating the transition toward a cleaner society. Polysulfides (PSs) serve as essential intermediates in M-S batteries and bridge the electrochemical redox processes of sulfur, playing a decisive role in controlling the electrode behaviors and regulating the battery performances. Understanding PS chemistry across diverse battery environments is key to advancing M-S batteries. This review aims to provide a comprehensive overview of the PS chemistry in high-energy-density battery systems and outline future research directions. The compositions, properties, and characterization methods of PSs are introduced to facilitate a fundamental understanding of the PS chemistry in working batteries. Following this, a thorough examination of the chemical and electrochemical behaviors of PSs and their impacts on electrode performances is conducted to deepen the insights into the PS reactions in batteries. Building on this foundation, representative PS regulation strategies are discussed, focusing on molecular modification, solvation optimization, and interfacial regulation, to achieve superior M-S battery performances. Challenges of PSs in practical M-S batteries are finally analyzed, and perspectives on the future research trends of PS chemistry are presented.
Collapse
Affiliation(s)
- Xi-Yao Li
- Tsinghua Center for Green Chemical Engineering Electrification (CCEE), Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- Tsinghua Center for Green Chemical Engineering Electrification (CCEE), Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yun-Wei Song
- Tsinghua Center for Green Chemical Engineering Electrification (CCEE), Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chen-Xi Bi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zheng Li
- Tsinghua Center for Green Chemical Engineering Electrification (CCEE), Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zi-Xian Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xue-Qiang Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Zhang X, Wang Z, Wei C, Xi B, Xiong S, Feng J. Dynamic D-p-π Orbital Coupling of Fe N4-S pπ Atomic Centers on Graphitized Carbon Toward Invigorated Sulfur Kinetic Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412394. [PMID: 40099660 DOI: 10.1002/smll.202412394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Precisely modulating d-p orbital coupling of single-atom electrocatalysts for sulfur reduction reactions in lithium-sulfur batteries maintains tremendous challenges. Herein, a dynamic d-p-π orbital coupling modulation is elucidated by unsaturated Fe centers on nitrogen-doped graphitized carbon (NG) coordinated with trithiocyanuric acid featuring with p-π conjugation to engineer Fe single atom architecture (FeN4-Spπ-NG). Intriguingly, this coordination microenvironment of the Fe center is dynamically reconstituted during charge/discharge processes, because of the formation of trilithium salts rooted from the departed axial ligands to engineer interfacial coating on the sulfur cathode, and then it recovers to the initial coordination configuration. Theoretical and experimental results unravel that the axial p-π conjugated ligand reinforcing d-p orbital coupling enables the interfacial charge interaction, thereby strengthening LiPSs adsorption, and reducing the Li2S decomposition barrier by formation of Fe─S and S─Li bonds. Thus, dynamic d-p-π orbital coupling modulation of FeN4-Spπ endow lithium-sulfur batteries with considerable electrochemical performances, highlighting an intriguingly dynamic orbital coupling modulation strategy for single atom electrocatalysts.
Collapse
Affiliation(s)
- Xinlu Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Zhengran Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
4
|
Ovc-Okene D, Shankar LS, Vizintin A, Kun R. Revitalizing Li-S batteries: the power of electrolyte additives. RSC Adv 2025; 15:5381-5404. [PMID: 39980843 PMCID: PMC11840547 DOI: 10.1039/d4ra06245k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025] Open
Abstract
Lithium-sulfur (Li-S) batteries have garnered significant attention as promising next-generation energy storage solutions due to their high energy density and cost efficiency. However, the broad adoption of Li-S batteries is impeded by several critical issues. These include the intrinsically low conductivities of sulfur (S) and lithium sulfide (Li2S), the polysulfide shuttle effect, and dendrite formation on the lithium (Li) electrode, among other challenges. Overcoming these obstacles is crucial to realizing the full potential of Li-S batteries. A key step towards improving Li-S battery performance is the optimization of electrolytes, with a particular focus on enhancing cell cyclability, rate capability, safety, and lifespan. This review examines the current advancements in various electrolyte additive options, including their concepts, designs, and materials, and how the electrolyte's final chemical and physical properties influence the overall performance of Li-S batteries. The aim is to provide a comprehensive framework for the rational selection of future electrolyte additives for Li-S batteries, based on the available concepts, and to evaluate the existing electrolyte additives.
Collapse
Affiliation(s)
- Derek Ovc-Okene
- Solid-State Energy Storage Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Magyar Tudósok krt. 2. H-1117 Budapest Hungary +36 1 382 6579
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3 H-1111 Budapest Hungary
| | - Lakshmi Shiva Shankar
- Solid-State Energy Storage Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Magyar Tudósok krt. 2. H-1117 Budapest Hungary +36 1 382 6579
| | - Alen Vizintin
- National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Robert Kun
- Solid-State Energy Storage Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Magyar Tudósok krt. 2. H-1117 Budapest Hungary +36 1 382 6579
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3 H-1111 Budapest Hungary
| |
Collapse
|
5
|
Fan Q, Zhang J, Fan S, Xi B, Gao Z, Guo X, Duan Z, Zheng X, Liu Y, Xiong S. Advances in Functional Organosulfur-Based Mediators for Regulating Performance of Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409521. [PMID: 39246200 DOI: 10.1002/adma.202409521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Rechargeable lithium metal batteries (LMBs) are promising next-generation energy storage systems due to their high theoretical energy density. However, their practical applications are hindered by lithium dendrite growth and various intricate issues associated with the cathodes. These challenges can be mitigated by using organosulfur-based mediators (OSMs), which offer the advantages of abundance, tailorable structures, and unique functional adaptability. These features enable the rational design of targeted functionalities, enhance the interfacial stability of the lithium anode and cathode, and accelerate the redox kinetics of electrodes via alternative reaction pathways, thereby effectively improving the performance of LMBs. Unlike the extensively explored field of organosulfur cathode materials, OSMs have garnered little attention. This review systematically summarizes recent advancements in OSMs for various LMB systems, including lithium-sulfur, lithium-selenium, lithium-oxygen, lithium-intercalation cathode batteries, and other LMB systems. It briefly elucidates the operating principles of these LMB systems, the regulatory mechanisms of the corresponding OSMs, and the fundamentals of OSMs activity. Ultimately, strategic optimizations are proposed for designing novel OSMs, advanced mechanism investigation, expanded applications, and the development of safe battery systems, thereby providing directions to narrow the gap between rational modulation of organosulfur compounds and their practical implementation in batteries.
Collapse
Affiliation(s)
- Qianqian Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Junhao Zhang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Siying Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Baojuan Xi
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhiyuan Gao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xingmei Guo
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Zhongyao Duan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiangjun Zheng
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yuanjun Liu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Shenglin Xiong
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Lan Y, Wang Y, Wang Y, Lu G, Liu L, Tang T, Li M, Cheng Y, Xiao J, Li X. Chip-Inspired Design of High-Performance Lithium-Sulfur Batteries by Integrating Monodisperse Sulfur Nanoreactors on Graphene. ACS NANO 2024; 18:15638-15650. [PMID: 38848453 DOI: 10.1021/acsnano.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
For practical application of lithium-sulfur batteries (LSBs), designing devices with an overall optimal structure instead of modifying electrode materials is significant. Herein, we report a chip-inspired design of a vertically integrated structure as an LSB cathode by implanting Mo2C nanoparticles and nanosulfur into the reduced graphene oxide (rGO) matrix. This configuration enabled the synthesis of isolated sulfur nanoreactors (S-NRs) integrated in a tandem array on the rGO, generating chip-like integrated LSBs. The spatial confinement/protection and concentration gradient of the S-NRs effectively avoided the dissolution, diffusion, and loss of polysulfides, thereby enhancing the sulfur utilization and redox reaction kinetics. Additionally, the adaptive storage energy can be improved by utilizing the tandem, isolation, and synergistic multiplicative effect among the nanoreactor units. As a result, the integrated LSB cathode obtained excellent electrochemical performances with an initial capacity of 1392 mAh g-1 at 0.1C, a low capacity decay rate of 0.017% per cycle during 1500 cycles of operation at 0.5C, and a superior rate performance. This work provides a rational design idea and method of further advancing the precise preparation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Yudong Lan
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yiwen Wang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yu Wang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guiling Lu
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ling Liu
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Yong Cheng
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianrong Xiao
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Xinyu Li
- College of Physics and Electronic Information Engineering and Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Yan R, Zhao Z, Zhu R, Wu M, Liu X, Adeli M, Yin B, Cheng C, Li S. Alveoli-Inspired Carbon Cathodes with Interconnected Porous Structure and Asymmetric Coordinated Vanadium Sites for Superior Li-S Batteries. Angew Chem Int Ed Engl 2024; 63:e202404019. [PMID: 38622071 DOI: 10.1002/anie.202404019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Accelerating sulfur conversion catalysis to alleviate the shuttle effect has become a novel paradigm for effective Li-S batteries. Although nitrogen-coordinated metal single-atom (M-N4) catalysts have been investigated, further optimizing its utilization rate and catalytic activities is urgently needed for practical applications. Inspired by the natural alveoli tissue with interconnected structure and well-distributed enzyme catalytic sites on the wall for the simultaneously fast diffusion and in situ catalytic conversion of substrates, here, we proposed the controllable synthesis of bioinspired carbon cathode with interconnected porous structure and asymmetric coordinated V-S1N3 sites for efficient and stable Li-S batteries. The enzyme-mimetic V-S1N3 shows asymmetric electronic distribution and high tunability, therefore enhancing in situ polysulfide conversion activities. Experimental and theoretical results reveal that the high charge asymmetry degree and large atom radius of S in V-S1N3 result in sloping adsorption for polysulfide, thereby exhibiting low thermodynamic energy barriers and long-range stability (0.076 % decay over 600 cycles).
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Xiao T, Yang JL, Zhang B, Wu J, Li J, Mai W, Fan HJ. All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery. Angew Chem Int Ed Engl 2024; 63:e202318470. [PMID: 38179860 DOI: 10.1002/anie.202318470] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.
Collapse
Affiliation(s)
- Tao Xiao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jiawen Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Flexible Electronics Technology, Tsinghua University, Jiaxing, 314000, China
| | - Jinliang Li
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mai
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
10
|
Zhao M, Peng HJ, Li BQ, Huang JQ. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries. Acc Chem Res 2024. [PMID: 38319810 DOI: 10.1021/acs.accounts.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ConspectusLithium-sulfur (Li-S) batteries have attracted worldwide attention as promising next-generation rechargeable batteries due to their high theoretical energy density of 2600 Wh kg-1. The actual energy density of Li-S batteries at the pouch cell level has significantly exceeded that of state-of-the-art Li-ion batteries. However, the overall performances of Li-S batteries under practical working conditions are limited by the sluggish conversion kinetics of the sulfur cathodes. To overcome the above challenge, various kinetic promotion strategies have been proposed to accelerate the multiphase and multi-electron cathodic redox reactions between sulfur, lithium polysulfides (LiPSs), and lithium sulfide. Nowadays, kinetic promoters have been massively employed in sulfur cathodes to achieve Li-S batteries with high energy densities, high rates, and long lifespans. A comprehensive and timely summary of cutting-edge kinetic promoters for sulfur cathodes is of great essence to afford an in-depth understanding of the unique Li-S electrochemistry.In this Account, we outline the recent efforts on the design of sulfur cathode kinetic promoters for advanced Li-S batteries. The latest progress is discussed in detail regarding heterogeneous, homogeneous, and semi-immobilized kinetic promoters. Heterogeneous promoters, representatively known as electrocatalysts, function mainly by reducing the energy barriers of the interfacial electrochemical reactions. The working mechanism, activity regulation strategies, and reconstitution/deactivation processes of the heterogeneous promoters are reviewed to provide guiding principles for rational design. In comparison, homogeneous promoters are able to fully contact with the reaction interfaces and regulate the electron/ion-inaccessible reactants in working Li-S batteries. Redox mediators and redox comediators are typical homogeneous promoters. The former establishes extra chemical reaction pathways to circumvent the originally sluggish steps and boost the overall kinetics, while the latter fundamentally modifies the LiPS molecules to enhance their redox kinetics. For semi-immobilized promoters, the active units are generally anchored on the cathode substrate through flexible chains with mobile characteristics. Such a design endows the promoter with both heterogeneous and homogeneous characteristics to comprehensively regulate the multiphase sulfur redox reactions involving both mobile and immobile reactants.Overall, this Account summarizes the fundamental electrochemistry, design principles, and practical promotion effects of the various kinetic promoters used for the sulfur cathodes in Li-S batteries. We believe that this Account will provide an in-depth and cutting-edge understanding of the unique sulfur electrochemistry, thereby providing guidance for further development of high-performance Li-S batteries and analogous rechargeable battery systems.
Collapse
Affiliation(s)
- Meng Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Yu X, Ding Y, Sun J. Design principles for 2D transition metal dichalcogenides toward lithium-sulfur batteries. iScience 2023; 26:107489. [PMID: 37601770 PMCID: PMC10433127 DOI: 10.1016/j.isci.2023.107489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Lithium-sulfur (Li-S) batteries are regarded as a promising candidate for next-generation energy storage systems owing to their remarkable energy density, resource availability, and environmental benignity. Nevertheless, severe shuttling effect, sluggish redox kinetics, large volumetric expansion, and uncontrollable dendrite growth hamper the practical applications. To address these intractable issues, two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged expeditiously as an essential material strategy. Herein, this review emphasizes the development and application of 2D TMDs in Li-S batteries. It starts with introducing the fundamentals of Li-S batteries and common synthetic routes of TMDs, followed by summarizing the employment of pristine, hybrid, and defective TMDs in the realm of expediting sulfur chemistry and stabilizing lithium anode. Finally, the development roadmap and possible research directions of TMDs are proposed to offer guidance for the future design of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Xiaoyu Yu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P.R.China
| | - Yifan Ding
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P.R.China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P.R.China
| |
Collapse
|
12
|
Zhao Y, Li L, Shan Y, Zhou D, Chen X, Cui W, Wang H. In Situ Construction Channels of Lithium-Ion Fast Transport and Uniform Deposition to Ensure Safe High-Performance Solid Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301572. [PMID: 37236175 DOI: 10.1002/smll.202301572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Solid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels. The organic-modified montmorillonite (OMMT) is rich in the Lewis acid centers, which promoted lithium salt dissociation. LOPPM PE possessed high ionic conductivity of 1.1 × 10-3 S cm-1 and a lithium-ion transference number of 0.54. The capacity retention of the battery remained 100% after 100 cycles at RT and 0.5 C. The initial capacity of one with the second-recycled LOPPM PE is 123.9 mAh g-1 . This work offered a feasible pathway for developing high-performance and reusable LIBs.
Collapse
Affiliation(s)
- Yangmingyue Zhao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Libo Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yuhang Shan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Da Zhou
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Xiaochuan Chen
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wenjun Cui
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Heng Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| |
Collapse
|
13
|
Gao X, Tian J, Cheng S, Zuo Z, Wen R, He F, Li Y. A Low-Strain Cathode by sp-Carbon Induced Conversion in Multi-Level Structure of Graphdiyne. Angew Chem Int Ed Engl 2023; 62:e202304491. [PMID: 37314397 DOI: 10.1002/anie.202304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
A multi-level architecture formed alternatively by the conformal graphdiyne (GDY) and CuS is well engineered for Li-free cathode. Such a proof-of-concept architecture efficiently integrates the advantages of GDY and produces new functional heterojunctions (sp-C-S-Cu hybridization bond). The layer-by-layer 2D confinement effect successfully avoids structural collapse, the selective transport inhibits the shuttling of active components, and the interfacial sp-C-S-Cu hybridization bond significantly regulates the phase conversion reaction. Such new sp-C-S-Cu hybridization of GDY greatly improves the reaction dynamics and reversibility, and the cathode delivers an energy density of 934 Wh kg-1 and an unattenuated lifespan of 3000 cycles at 1 C. Our results indicate that the GDY-based interface strategy will greatly promote the efficient utilization of the conversion-type cathodes.
Collapse
Affiliation(s)
- Xiaoya Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianxin Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shujin Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Sang P, Chen Q, Wang DY, Guo W, Fu Y. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chem Rev 2023; 123:1262-1326. [PMID: 36757873 DOI: 10.1021/acs.chemrev.2c00739] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lithium-ion batteries have received significant attention over the last decades due to the wide application of portable electronics and increasing deployment of electric vehicles. In order to further enhance the performance of the batteries and overcome the capacity limitations of inorganic electrode materials, it is imperative to explore new cathode and functional materials for rechargeable lithium batteries. Organosulfur materials containing sulfur-sulfur bonds as a kind of promising organic electrode materials have the advantages of high capacities, abundant resources, tunable structures, and environmental benignity. In addition, organosulfur materials have been widely used in almost every aspect of rechargeable batteries because of their multiple functionalities. This review aims to provide a comprehensive overview on the development of organosulfur materials including the synthesis and application as cathode materials, electrolyte additives, electrolytes, binders, active materials in lithium redox flow batteries, and other metal battery systems. We also give an in-depth analysis of structure-property-performance relationship of organosulfur materials, and guidance for the future development of organosulfur materials for next generation rechargeable lithium batteries and beyond.
Collapse
Affiliation(s)
- Pengfei Sang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dan-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
15
|
Wang Z, You Y, Cai Y, Ni J, Liu Y, Zhang H. Cluster-type Lithium Polysulfides Regulator for High Performance Lithium-Sulfur Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat Commun 2022; 13:4811. [PMID: 35973986 PMCID: PMC9381601 DOI: 10.1038/s41467-022-32139-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interplay and only partial understanding of the multi-step phase transitions and reaction kinetics of redox processes in lithium–sulfur batteries are the main stumbling blocks that hinder the advancement and broad deployment of this electrochemical energy storage system. To better understand these aspects, here we report operando confocal Raman microscopy measurements to investigate the reaction kinetics of Li–S redox processes and provide mechanistic insights into polysulfide generation/evolution and sulfur deposition. Operando visualization and quantification of the reactants and intermediates enabled the characterization of potential-dependent rates during Li–S redox and the linking of the electronic conductivity of the sulfur-based electrode and concentrations of polysulfides to the cell performance. We also report the visualization of the interfacial evolution and diffusion processes of different polysulfides that demonstrate stepwise discharge and parallel recharge mechanisms during cell operation. These results provide fundamental insights into the mechanisms and kinetics of Li–S redox reactions. The complex redox processes in lithium–sulfur batteries are not yet fully understood at the fundamental level. Here, the authors report operando confocal Raman microscopy measurements to provide mechanistic insights into polysulfide evolution and sulfur deposition during battery cycling.
Collapse
|
17
|
A permselective and multifunctional 3D N-doped carbon nanotubes interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Gao M, Lan J, Fu Y, Guo W. Biomass-Derived Lenthionine Enhanced by Radical Receptor for Rechargeable Lithium Battery. CHEMSUSCHEM 2022; 15:e202200423. [PMID: 35365969 DOI: 10.1002/cssc.202200423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Organic compounds with tunable structures and high capacities are promising electrode materials for batteries. Cyclic organosulfide (i. e., lenthionine), as a natural material that can provide excellent ratio of effective atoms (S) and non-efficient atoms (C, H, and others), has a high theoretical specific capacity of 853.6 mAh g-1 . However, the multiphase transformation causes rapid capacity decay and hysteresis of charge/discharge voltage plateaus. To overcome these issues, a receptor, phenyl disulfide (PDS), was introduced to truncate subsequent transformations directly from the source and change the reaction path, inhibit the capacity decay, and improve the cycling stability. After 500 cycles, the capacity retention was 81.1 % with PDS, which was in sharp contrast to that (35.6 %) of the control cell. This study helps to understand the electrochemistry mechanism of biomass-derived lenthionine used as a high-capacity cathode material for rechargeable lithium batteries, also offering a strategy to overcome its inherent issues.
Collapse
Affiliation(s)
- Mengnan Gao
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Jiaqi Lan
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| |
Collapse
|
19
|
Lin X, Yang C, Han T, Li J, Chen Z, Zhang H, Mu K, Si T, Liu J. A graphene oxide scaffold-encapsulated microcapsule for polysulfide-immobilized long life lithium-sulfur batteries. LAB ON A CHIP 2022; 22:2185-2191. [PMID: 35543209 DOI: 10.1039/d2lc00161f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineering high-performance cathodes for high energy-density lithium-sulfur (Li-S) batteries is quite significant to achieve commercialization. Here, we develop a graphene oxide scaffold/sulfur composite-encapsulated microcapsule (GSM) for high-performance Li-S batteries, which is prepared through the co-flow focusing (CFF) approach. The GSM-based cathode displays a high capacity of 1004 mA h g-1 at 0.2C after cycling 200 times, a long-term cycling stability after 1000 cycles at 2C, and a good rate-performance. At temperatures of -5 °C and 45 °C, the electrochemical performance is also excellent. The computational calculations based on density functional theory (DFT) verify the high adsorption energies of the microcapsules towards polysulfides, suppressing the shuttle effect efficiently. It is expected that the GSM system developed based on the CFF method here and its high electrochemical performance will enable it to be applicable for preparing many other emerging energy-storage materials and secondary batteries.
Collapse
Affiliation(s)
- Xirong Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Chaoyu Yang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhonghua Chen
- Shenzhen FBTech Electronics Ltd., Shenzhen, Guandong 518100, PR China.
| | - Haikuo Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Kai Mu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China.
| |
Collapse
|
20
|
|
21
|
Guo W, Wang D, Chen Q, Fu Y. Advances of Organosulfur Materials for Rechargeable Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103989. [PMID: 34825523 PMCID: PMC8811802 DOI: 10.1002/advs.202103989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Indexed: 05/12/2023]
Abstract
Battery materials have become a hotspot in the academic research. Organosulfur compounds are considered as a promising class of cathode materials for rechargeable metal batteries. They have attracted increasing attention in recent years after a long-term stagnancy since 1980s. Recent studies have focused on the understanding of redox mechanism of linear organosulfur molecules R-Sn -R with defined structures. In addition, some new organosulfur compounds are developed. The reversible sulfursulfur (SS) bond breakage/formation of organosulfur in batteries makes them applicable as functional materials in batteries. In this review, new organosulfur materials including molecules, polymers, and composites are introduced. In the following, organosulfur-inorganic hybrid materials are discussed, which have shown unique redox process and enhanced battery performance. In the third part, organosulfur additives are used in Li-S batteries, which can improve the formation of solid-electrolyte interphase (SEI) and alter the redox pathways of sulfur cathodes. In the fourth part, organosulfur materials used in other metal batteries are introduced. Lastly, a summary and some perspectives are given. This review presents an overview of the recent advances of organosulfur materials in batteries and provides guidance for the future development of these materials.
Collapse
Affiliation(s)
- Wei Guo
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Dan‐Yang Wang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Qiliang Chen
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhu Fu
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
22
|
Zhang Q, Huang Q, Hao S, Deng S, He Q, Lin Z, Yang Y. Polymers in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103798. [PMID: 34741443 PMCID: PMC8805586 DOI: 10.1002/advs.202103798] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Lithium-sulfur batteries (LSBs) hold great promise as one of the next-generation power supplies for portable electronics and electric vehicles due to their ultrahigh energy density, cost effectiveness, and environmental benignity. However, their practical application has been impeded owing to the electronic insulation of sulfur and its intermediates, serious shuttle effect, large volume variation, and uncontrollable formation of lithium dendrites. Over the past decades, many pioneering strategies have been developed to address these issues via improving electrodes, electrolytes, separators and binders. Remarkably, polymers can be readily applied to all these aspects due to their structural designability, functional versatility, superior chemical stability and processability. Moreover, their lightweight and rich resource characteristics enable the production of LSBs with high-volume energy density at low cost. Surprisingly, there have been few reviews on development of polymers in LSBs. Herein, breakthroughs and future perspectives of emerging polymers in LSBs are scrutinized. Significant attention is centered on recent implementation of polymers in each component of LSBs with an emphasis on intrinsic mechanisms underlying their specific functions. The review offers a comprehensive overview of state-of-the-art polymers for LSBs, provides in-depth insights into addressing key challenges, and affords important resources for researchers working on electrochemical energy systems.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qihua Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Shu‐Meng Hao
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Shuyi Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qiming He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Zhiqun Lin
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| |
Collapse
|
23
|
Fan XZ, Liu M, Zhang R, Zhang Y, Wang S, Nan H, Han Y, Kong L. An odyssey of lithium metal anode in liquid lithium–sulfur batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Graphene oxide-wrapped cobalt-doped oxygen-deficient titanium dioxide hollow spheres clusters as efficient sulfur immobilizers for lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Zhao Z, Yi Z, Li H, Pathak R, Cheng X, Zhou J, Wang X, Qiao Q. Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium-sulfur batteries. NANOSCALE 2021; 13:14777-14784. [PMID: 34473163 DOI: 10.1039/d1nr03390e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The underlying interface effects of sulfur hosts/polysulfides at the molecular level are of great significance to achieve advanced lithium-sulfur batteries. Herein, we systematically study the polysulfide-binding ability and the decomposition energy barrier of Li2S enabled by different kinds of nitrogen (pyridinic N, pyrrolic N and graphitic N) and phosphorus (P-O, PO and graphitic P) doping and decipher their inherent modulation effect. The doping process helps in forming a graphene-like structure and increases the micropores/mesopores, which can expose more active sites to come into contact with polysulfides. First-principles calculations reveal that the PO possesses the highest binding energies with polysulfides due to the weakening of the chemical bonds. Besides, PO as a promoter is beneficial for the free diffusion of lithium ions, and the pyridinic N and pyrrolic N can greatly reduce the kinetic barrier and catalyze the polysulfide conversion. The synergetic effects of nitrogen and phosphorus as bifunctional active centers help in achieving an in situ adsorption-diffusion-conversion process of polysulfides. Benefiting from these features, the graphene-like network achieves superior rate capability (a high reversible capacity of 954 mA h g-1 at 2C) and long-term stability (an ultralow degradation rate of 0.009% around 800 cycles at 5C). Even at a high sulfur loading of 5.6 mg cm-2, the cell can deliver an areal capacity of 4.6 mA h cm-2 at 0.2C.
Collapse
Affiliation(s)
- Zhenxin Zhao
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Zonglin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huijun Li
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Rajesh Pathak
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaoqin Cheng
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Junliang Zhou
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Xiaomin Wang
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Qiquan Qiao
- Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
26
|
Song YW, Peng YQ, Zhao M, Lu Y, Liu JN, Li BQ, Zhang Q. Understanding the Impedance Response of Lithium Polysulfide Symmetric Cells. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yun-Wei Song
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yan-Qi Peng
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Meng Zhao
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Yang Lu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Bo-Quan Li
- School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Yuan S, Kong T, Zhang Y, Dong P, Zhang Y, Dong X, Wang Y, Xia Y. Advanced Electrolyte Design for High‐Energy‐Density Li‐Metal Batteries under Practical Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shouyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Taoyi Kong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yongyao Xia
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
28
|
Yuan S, Kong T, Zhang Y, Dong P, Zhang Y, Dong X, Wang Y, Xia Y. Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angew Chem Int Ed Engl 2021; 60:25624-25638. [PMID: 34331727 DOI: 10.1002/anie.202108397] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Given the limitations inherent in current intercalation-based Li-ion batteries, much research attention has focused on potential successors to Li-ion batteries such as lithium-sulfur (Li-S) batteries and lithium-oxygen (Li-O2 ) batteries. In order to realize the potential of these batteries, the use of metallic lithium as the anode is essential. However, there are severe safety hazards associated with the growth of Li dendrites, and the formation of "dead Li" during cycles leads to the inevitable loss of active Li, which in the end is undoubtedly detrimental to the actual energy density of Li-metal batteries. For Li-metal batteries under practical conditions, a low negative/positive ratio (N/P ratio), a electrolyte/cathode ratio (E/C ratio) along with a high-voltage cathode is prerequisite. In this Review, we summarize the development of new electrolyte systems for Li-metal batteries under practical conditions, revisit the design criteria of advanced electrolytes for practical Li-metal batteries and provide perspectives on future development of electrolytes for practical Li-metal batteries.
Collapse
Affiliation(s)
- Shouyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China.,National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Taoyi Kong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yongyao Xia
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Parke CD, Subramaniam A, Subramanian VR, Schwartz DT. Realigning the Chemistry and Parameterization of Lithium‐Sulfur Battery Models to Accommodate Emerging Experimental Evidence and Cell Configurations. ChemElectroChem 2021. [DOI: 10.1002/celc.202001575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin D. Parke
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Akshay Subramaniam
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Venkat R. Subramanian
- Walker Department of Mechanical Engineering & Material Science Engineering Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
| | - Daniel T. Schwartz
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|