1
|
Huang X, Uemura Y, Ardana-Lamas F, Frankenberger P, Knoll M, Yousef H, Wang H, Heder S, Nachtegaal M, Smolentsev G, Wang L, Zhu LF, Milne C, Lima FA. A high-energy Laue X-ray emission spectrometer at the FXE instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:506-523. [PMID: 40163362 DOI: 10.1107/s1600577525001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 04/02/2025]
Abstract
The high-energy-resolution X-ray emission spectroscopy (XES) spectrometers available at the Femtosecond X-ray Experiment (FXE) instrument of the European XFEL operate in Bragg (reflective) geometry, with optimum performance in the range between 5 and 15 keV. However, they quickly lose efficiency above around 15 keV due to the decrease in reflectivity of the crystal analyzers at such high photon energies. This hampers high-energy-resolution spectroscopy experiments on heavy elements (e.g. 4d metals), which thus do not fully profit from the high-photon-energy capabilities of the European XFEL. Here we present the design, implementation and performance of a novel high-resolution XES spectrometer operating in Laue (transmission) geometry optimized for measurements at high photon energies (>15 keV). The High-Energy Laue X-ray emIssiOn Spectrometer (HELIOS) operates mainly in dispersive mode by placing the crystal analyzer inside or outside the Rowland circle. The Laue spectrometer performance in terms of energy resolution and efficiency is presented and discussed. Two Laue analyzers, silicon and quartz, have been tested at SuperXAS of the Swiss Light Source and at FXE of the European XFEL. The quartz analyzer was found to be about 2.7 times more efficient than the silicon one. The Laue spectrometer energy resolution (ΔE/E) reached at the FXE instrument is around 1.2 × 10-4. Depending on different user requests, the resolution can be further increased by using higher diffraction orders. The new Laue spectrometer increases the existing portfolio of XES spectrometers at FXE, enabling efficient implementation of ultrafast X-ray spectroscopies with high energy resolution at photon energies above 15 keV. This spectrometer will allow the expansion of studies in the field of ultrafast sciences, particularly including investigation of 4d elements using hard X-rays.
Collapse
Affiliation(s)
- X Huang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y Uemura
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - M Knoll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S Heder
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M Nachtegaal
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - G Smolentsev
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - L Wang
- Department of Modern Physics, University of Science and Technology of China, 230026 Hefei, People's Republic of China
| | - L F Zhu
- Department of Modern Physics, University of Science and Technology of China, 230026 Hefei, People's Republic of China
| | - C Milne
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - F A Lima
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
2
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
3
|
Nagelski AL, Fataftah MS, MacMillan SN, MacLeod KC, McWilliams SF, Mercado BQ, Lancaster KM, Holland PL. Bridging Carbonyl and Carbyne Complexes of Weak-Field Iron: Electronic Structure and Iron-Carbon Bonding. J Am Chem Soc 2024; 146:32415-32430. [PMID: 39531614 PMCID: PMC11755204 DOI: 10.1021/jacs.4c08358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbon monoxide inhibited forms of nitrogenases have carbonyl (CO) and carbide (C4-) bridges, which are common in synthetic iron complexes with strong-field ligand environments but rare in iron sites with weak-field ligand environments analogous to the enzyme. Here, we explore the fundamental bonding description of bridging CO in high-spin iron systems. We describe the isolation of several diiron carbonyls and related species, and elucidate their electronic structures, magnetic coupling, and characteristic structural and vibrational parameters. These high-spin iron complexes exhibit equivalent π-backbonding abilities to low-spin iron complexes. Sequential reduction and silylation of a formally diiron(I) bridging CO complex ultimately gives a formally diiron(IV) bridging carbyne complex. Despite the large range of formal oxidation states across this series, X-ray absorption spectroscopy and density functional theory calculations indicate that the electron density at the iron sites does not change. Thus, the [Fe(μ-CO)]2 core undergoes redox changes at the bridging carbonyls rather than the metal centers, rendering the metal's formal oxidation state misleading. The ability of the Fe2C2 core to easily shift charge between the metals and the ligands has implications for nitrogenases, and for other multinuclear systems for redox catalysis.
Collapse
Affiliation(s)
| | - Majed S. Fataftah
- Department of Chemistry, Yale University, New Haven, CT 06520 USA
- Current address: Department of Chemistry, University of Illinois, Urbana, IL 61801 USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - K. Cory MacLeod
- Department of Chemistry, Yale University, New Haven, CT 06520 USA
| | | | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | | |
Collapse
|
4
|
Tayal A, Coburn DS, Abel D, Rakitin M, Ivashkevych O, Wlodek J, Wierzbicki D, Xu W, Nazaretski E, Stavitski E, Leshchev D. Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1609-1621. [PMID: 39475836 PMCID: PMC11542649 DOI: 10.1107/s1600577524009342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5-2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.
Collapse
Affiliation(s)
- Akhil Tayal
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - David Scott Coburn
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Donald Abel
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Max Rakitin
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Oksana Ivashkevych
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Jakub Wlodek
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Dominik Wierzbicki
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
- AGH University of Science and Technology, Faculty of Energy and Fuels, Al. A. Mickiewicza 30, 30-059Cracow, Poland
| | - Weihe Xu
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Evgeny Nazaretski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Eli Stavitski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Denis Leshchev
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| |
Collapse
|
5
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
6
|
Burrow TG, Alcock NM, Huzan MS, Dunstan MA, Seed JA, Detlefs B, Glatzel P, Hunault MOJY, Bendix J, Pedersen KS, Baker ML. Determination of Uranium Central-Field Covalency with 3 d4 f Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146:22570-22582. [PMID: 39083620 PMCID: PMC11328134 DOI: 10.1021/jacs.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Understanding the nature of metal-ligand bonding is a major challenge in actinide chemistry. We present a new experimental strategy for addressing this challenge using actinide 3d4f resonant inelastic X-ray scattering (RIXS). Through a systematic study of uranium(IV) halide complexes, [UX6]2-, where X = F, Cl, or Br, we identify RIXS spectral satellites with relative energies and intensities that relate to the extent of uranium-ligand bond covalency. By analyzing the spectra in combination with ligand field density functional theory we find that the sensitivity of the satellites to the nature of metal-ligand bonding is due to the reduction of 5f interelectron repulsion and 4f-5f spin-exchange, caused by metal-ligand orbital mixing and the degree of 5f radial expansion, known as central-field covalency. Thus, this study furthers electronic structure quantification that can be obtained from 3d4f RIXS, demonstrating it as a technique for estimating actinide-ligand covalency.
Collapse
Affiliation(s)
- Timothy G Burrow
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nathan M Alcock
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Myron S Huzan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Maja A Dunstan
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - John A Seed
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Blanka Detlefs
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael L Baker
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
7
|
Hahn AW, Zsombor-Pindera J, Kennepohl P, DeBeer S. Introducing SpectraFit: An Open-Source Tool for Interactive Spectral Analysis. ACS OMEGA 2024; 9:23252-23265. [PMID: 38854548 PMCID: PMC11155667 DOI: 10.1021/acsomega.3c09262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
In chemistry, analyzing spectra through peak fitting is a crucial task that helps scientists extract useful quantitative information about a sample's chemical composition or electronic structure. To make this process more efficient, we have developed a new open-source software tool called SpectraFit. This tool allows users to perform quick data fitting using expressions of distribution and linear functions through the command line interface (CLI) or Jupyter Notebook, which can run on Linux, Windows, and MacOS, as well as in a Docker container. As part of our commitment to good scientific practice, we have introduced an output file-locking system to ensure the accuracy and consistency of information. This system collects input data, results data, and the initial fitting model in a single file, promoting transparency, reproducibility, collaboration, and innovation. To demonstrate SpectraFit's user-friendly interface and the advantages of its output file-locking system, we are focusing on a series of previously published iron-sulfur dimers and their XAS spectra. We will show how to analyze the XAS spectra via CLI and in a Jupyter Notebook by simultaneously fitting multiple data sets using SpectraFit. Additionally, we will demonstrate how SpectraFit can be used as a black box and white box solution, allowing users to apply their own algorithms to engineer the data further. This publication, along with its Supporting Information and the Jupyter Notebook, serves as a tutorial to guide users through each step of the process. SpectraFit will streamline the peak fitting process and provide a convenient, standardized platform for users to share fitting models, which we hope will improve transparency and reproducibility in the field of spectroscopy.
Collapse
Affiliation(s)
- Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Joseph Zsombor-Pindera
- Department
of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department
of Chemistry, The University of British
Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department
of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
8
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
9
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
10
|
Peredkov S, Pereira N, Grötzsch D, Hendel S, Wallacher D, DeBeer S. PINK: a tender X-ray beamline for X-ray emission spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:622-634. [PMID: 38662410 PMCID: PMC11075709 DOI: 10.1107/s1600577524002200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.
Collapse
Affiliation(s)
- Sergey Peredkov
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Nilson Pereira
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, Berlin, Germany
| | - Stefan Hendel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Choi TK, Park J, Kim G, Jang H, Park SY, Sohn JH, Cho BI, Kim H, Kim KS, Nam I, Chun SH. Resonant X-ray emission spectroscopy using self-seeded hard X-ray pulses at PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1038-1047. [PMID: 37738032 PMCID: PMC10624040 DOI: 10.1107/s1600577523007312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Self-seeded hard X-ray pulses at PAL-XFEL were used to commission a resonant X-ray emission spectroscopy experiment with a von Hamos spectrometer. The self-seeded beam, generated through forward Bragg diffraction of the [202] peak in a 100 µm-thick diamond crystal, exhibited an average bandwidth of 0.54 eV at 11.223 keV. A coordinated scanning scheme of electron bunch energy, diamond crystal angle and silicon monochromator allowed us to map the Ir Lβ2 X-ray emission lines of IrO2 powder across the Ir L3-absorption edge, from 11.212 to 11.242 keV with an energy step of 0.3 eV. This work provides a reference for hard X-ray emission spectroscopy experiments utilizing self-seeded pulses with a narrow bandwidth, eventually applicable for pump-probe studies in solid-state and diluted systems.
Collapse
Affiliation(s)
- Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeku Park
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyujin Kim
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hoyoung Jang
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sang-Youn Park
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang Hyeob Sohn
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byoung Ick Cho
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Kyung Sook Kim
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Inhyuk Nam
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sae Hwan Chun
- XFEL Division, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
12
|
Tofoni A, Tavani F, Vandone M, Braglia L, Borfecchia E, Ghigna P, Stoian DC, Grell T, Stolfi S, Colombo V, D’Angelo P. Full Spectroscopic Characterization of the Molecular Oxygen-Based Methane to Methanol Conversion over Open Fe(II) Sites in a Metal-Organic Framework. J Am Chem Soc 2023; 145:21040-21052. [PMID: 37721732 PMCID: PMC10540213 DOI: 10.1021/jacs.3c07216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/19/2023]
Abstract
Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.
Collapse
Affiliation(s)
- Alessandro Tofoni
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Francesco Tavani
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marco Vandone
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Luca Braglia
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Elisa Borfecchia
- Dipartimento
di Chimica & UdR INSTM di Torino, Università
di Torino, Via P. Giuria
7, 10125 Turin, Italy
| | - Paolo Ghigna
- Dipartimento
di Chimica, Università di Pavia, V.le Taramelli 13, I-27100 Pavia, Italy
| | - Dragos Costantin Stoian
- The Swiss-Norwegian
Beamlines (SNBL), European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Toni Grell
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Sara Stolfi
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Valentina Colombo
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- CNR
− SCITEC − Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta”, Via Golgi 19, 20133 Milan, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
13
|
Pollock CJ, Debefve LM. Resonant Excitation Unlocks Chemical Selectivity of Platinum Lβ Valence-to-Core X-ray Emission Spectra. Inorg Chem 2023; 62:13681-13691. [PMID: 37578150 PMCID: PMC10467576 DOI: 10.1021/acs.inorgchem.3c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/15/2023]
Abstract
Valence-to-core X-ray emission spectroscopy (VtC XES) is an emerging technique that uses hard X-rays to probe the valence electronic structure of an absorbing atom. Despite finding varied applications for light elements and first row transition metals, little work has been done on heavier elements such as second and third row transition metals. This lack of application is at least partially due to the relatively low resolution of the data at the high energies required to measure these elements, which obscures the useful chemical information that can be extracted from the lower energy, higher resolution spectra of lighter elements. Herein, we collect data on a set of platinum-containing compounds and demonstrate that the VtC XES resolution can be dramatically enhanced by exciting the platinum atom in resonance with its L3-edge white line absorption. Whereas spectra excited using standard nonresonant absorption well above the Pt L3-edge display broad, unfeatured VtC regions, resonant XES (RXES) spectra have more than twofold improved resolution and are revealed to be rich in chemical information with the ability to distinguish between even closely related species. We further demonstrate that these RXES spectra may be used to selectively probe individual components of a mixture of Pt-containing compounds, establishing this technique as a viable probe for chemically complex samples. Lastly, it is shown that the spectra are interpretable using a molecular orbital framework and may be calculated using density functional theory, thus suggesting resonant excitation as a general strategy for extracting chemically useful information from heavy element VtC spectra.
Collapse
Affiliation(s)
- Christopher J. Pollock
- Cornell High Energy Synchrotron Source,
Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Louise M. Debefve
- Cornell High Energy Synchrotron Source,
Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
15
|
Yogendra S, Wilson DWN, Hahn AW, Weyhermüller T, Van Stappen C, Holland P, DeBeer S. Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorg Chem 2023; 62:2663-2671. [PMID: 36715662 PMCID: PMC9930126 DOI: 10.1021/acs.inorgchem.2c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/31/2023]
Abstract
Metal clusters featuring carbon and sulfur donors have coordination environments comparable to the active site of nitrogenase enzymes. Here, we report a series of di-iron clusters supported by the dianionic yldiide ligands, in which the Fe sites are bridged by two μ2-C atoms and four pendant S donors.The [L2Fe2] (L = {[Ph2P(S)]2C}2-) cluster is isolable in two oxidation levels, all-ferrous Fe2II and mixed-valence FeIIFeIII. The mixed-valence cluster displays two peaks in the Mössbauer spectra, indicating slow electron transfer between the two sites. The addition of the Lewis base 4-dimethylaminopyridine to the Fe2II cluster results in coordination with only one of the two Fe sites, even in the presence of an excess base. Conversely, the cluster reacts with 8 equiv of isocyanide tBuNC to give a monometallic complex featuring a new C-C bond between the ligand backbone and the isocyanide. The electronic structure descriptions of these complexes are further supported by X-ray absorption and resonant X-ray emission spectroscopies.
Collapse
Affiliation(s)
- Sivathmeehan Yogendra
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick Holland
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
17
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Onur Sahin E, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202211543. [PMID: 36001016 PMCID: PMC9826365 DOI: 10.1002/anie.202211543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Herein, we show that coupling boron with cobalt oxide tunes its structure and significantly boost its electrocatalytic performance for the oxygen evolution reaction (OER). Through a simple precipitation and thermal treatment process, a series of Co-B oxides with tunable morphologies and textural parameters were prepared. Detailed structural analysis supported first the formation of an disordered and partially amorphous material with nanosized Co3 BO5 and/or Co2 B2 O6 being present on the local atomic scale. The boron modulation resulted in a superior OER reactivity by delivering a large current and an overpotential of 338 mV to reach a current density of 10 mA cm-2 in 1 M KOH electrolyte. Identical location transmission electron microscopy and in situ electrochemical Raman spectroscopy studies revealed alteration and surface re-construction of materials, and formation of CoO2 and (oxy)hydroxide intermediate, which were found to be highly dependent on crystallinity of the samples.
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Yue Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Ezgi Onur Sahin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Minmin Chen
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| |
Collapse
|
18
|
Hwang IH, Solovyev MA, Han SW, Chan MKY, Hammonds JP, Heald SM, Kelly SD, Schwarz N, Zhang X, Sun CJ. AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1309-1317. [PMID: 36073891 PMCID: PMC9455206 DOI: 10.1107/s1600577522006786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Mikhail A. Solovyev
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Maria K. Y. Chan
- Center for Nanoscale Nanomaterials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John P. Hammonds
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Steve M. Heald
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
19
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Sahin EO, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Yue Wang
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Ezgi Onur Sahin
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Minmin Chen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Serena DeBeer
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Olaf Rüdiger
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
20
|
Flach M, Hirsch K, Timm M, Ablyasova OS, da Silva Santos M, Kubin M, Bülow C, Gitzinger T, von Issendorff B, Lau JT, Zamudio-Bayer V. Iron L 3-edge energy shifts for the full range of possible 3d occupations within the same oxidation state of iron halides. Phys Chem Chem Phys 2022; 24:19890-19894. [PMID: 35959850 DOI: 10.1039/d2cp02448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation states are integer in number but dn configurations of transition metal centers vary continuously in polar bonds. We quantify the shifts of the iron L3 excitation energy, within the same formal oxidation state, in a systematic L-edge X-ray absorption spectroscopy study of diatomic gas-phase iron(II) halide cations, [FeX]+,where X = F, Cl, Br, I. These shifts correlate with the electronegativity of the halogen, and are attributed exclusively to a fractional increase in population of 3d-derived orbitals along the series as supported by charge transfer multiplet simulations and density functional theory calculations. We extract an excitation energy shift of 420 meV ± 60 meV spanning the full range of possible 3d occupations between the most ionic bond in [FeF]+ and covalently bonded [FeI]+.
Collapse
Affiliation(s)
- Max Flach
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Olesya S Ablyasova
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Mayara da Silva Santos
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Markus Kubin
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Tim Gitzinger
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| |
Collapse
|
21
|
Cutsail GE, Banerjee R, Rice DB, McCubbin Stepanic O, Lipscomb JD, DeBeer S. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J Biol Inorg Chem 2022; 27:573-582. [PMID: 35988092 PMCID: PMC9470658 DOI: 10.1007/s00775-022-01953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Soluble methane monooxygenase (sMMO) facilitates the conversion of methane to methanol at a non-heme FeIV2 intermediate MMOHQ, which is formed in the active site of the sMMO hydroxylase component (MMOH) during the catalytic cycle. Other biological systems also employ high-valent FeIV sites in catalysis; however, MMOHQ is unique as Nature’s only identified FeIV2 intermediate. Previous 57Fe Mössbauer spectroscopic studies have shown that MMOHQ employs antiferromagnetic coupling of the two FeIV sites to yield a diamagnetic cluster. Unfortunately, this lack of net spin prevents the determination of the local spin state (Sloc) of each of the irons by most spectroscopic techniques. Here, we use Fe Kβ X-ray emission spectroscopy (XES) to characterize the local spin states of the key intermediates of the sMMO catalytic cycle, including MMOHQ trapped by rapid-freeze-quench techniques. A pure XES spectrum of MMOHQ is obtained by subtraction of the contributions from other reaction cycle intermediates with the aid of Mössbauer quantification. Comparisons of the MMOHQ spectrum with those of known Sloc = 1 and Sloc = 2 FeIV sites in chemical and biological models reveal that MMOHQ possesses Sloc = 2 iron sites. This experimental determination of the local spin state will help guide future computational and mechanistic studies of sMMO catalysis.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany.
| | - Rahul Banerjee
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Derek B Rice
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
22
|
Leshchev D, Rakitin M, Luvizotto B, Kadyrov R, Ravel B, Attenkofer K, Stavitski E. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1095-1106. [PMID: 35787577 PMCID: PMC9255565 DOI: 10.1107/s160057752200460x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.
Collapse
Affiliation(s)
- Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maksim Rakitin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Luvizotto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ruslan Kadyrov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruce Ravel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Material Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
23
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
24
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Henthorn JT, DeBeer S. Selenium Valence-to-Core X-ray Emission Spectroscopy and Kβ HERFD X-ray Absorption Spectroscopy as Complementary Probes of Chemical and Electronic Structure. Inorg Chem 2022; 61:2760-2767. [PMID: 35113562 PMCID: PMC8848279 DOI: 10.1021/acs.inorgchem.1c02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Selenium X-ray absorption
spectroscopy (XAS) has found widespread
use in investigations of Se-containing materials, geochemical processes,
and biologically active sites. In contrast to sulfur Kβ X-ray
emission spectroscopy (XES), which has been found to contain electronic
and structural information complementary to S XAS, Se Kβ XES
remains comparatively underexplored. Herein, we present the first
Se Valence-to-Core (VtC) XES studies of reduced Se-containing compounds
and FeSe dimers. Se VtC XES is found to be sensitive to changes in
covalent Se bonding interactions (Se–Se/Se–C/Se–H
bonding) while being relatively insensitive to changes in Fe oxidation
states as selenide bridges in FeSe dimers ([Fe2Se2]2+ vs [Fe2Se2]+). In
contrast, Se Kβ HERFD XAS is demonstrated to be quite sensitive
to changes in the Fe oxidation state with Se Kβ HERFD XAS demonstrating
experimental resolution equivalent to Kα HERFD XAS. Additionally,
computational studies reveal both Se VtC XES and XAS to be sensitive
to selenium protonation in FeSe complexes. Selenium is a trace element that plays
vital roles in biological
and geochemical cycles, energy storage, photovoltaics, and nanomaterials.
Herein, selenium Valence-to-Core X-ray emission spectroscopy is explored
as a new method of probing the chemical and electronic structure in
selenium-containing compounds, demonstrating sensitivity to selenium
bonding interactions. When paired with high-resolution Se X-ray absorption
spectroscopy (HERFD XAS), these two methods have the potential to
reveal greater insight into protonation and redox changes of Se-substituted
FeS clusters.
Collapse
Affiliation(s)
- Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Stabilization of intermediate spin states in mixed-valent diiron dichalcogenide complexes. Nat Chem 2022; 14:328-333. [PMID: 35058610 PMCID: PMC8898764 DOI: 10.1038/s41557-021-00853-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
The electronic structure and ground spin states, S, observed for mixed-valent iron–sulfur dimers (FeII-FeIII) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2). In the case of antiferromagnetically coupled iron centres, stabilization of the high-spin S = 9/2 ground state is also feasible through a Heisenberg double-exchange interaction, B, which lifts the degeneracy of the Heisenberg spin states. This theorem also predicts intermediate spin states for mixed-valent dimers, but those have so far remained elusive. Herein, we describe the structural, electron paramagnetic resonance and Mössbauer spectroscopic, and magnetic characterization of a series of mixed-valent complexes featuring [Fe2Q2]+ (Q = S2–, Se2–, Te2–), where the Se and Te complexes favour S = 3/2 spin states. The incorporation of heavier chalcogenides in this series reveals a delicate balance of antiferromagnetic coupling, Heisenberg double-exchange and vibronic coupling. ![]()
Despite extensive investigations of mixed-valence complexes, molecules with intermediate spin states have remained elusive. Now, selenium- and tellurium-bridged mixed-valent iron dimers have been prepared in which a balance of Heisenberg exchange and double-exchange coupling of the unpaired electron, combined with moderate vibronic contributions, stabilizes S = 3/2 ground spin states.
Collapse
|
27
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021; 60:10112-10121. [PMID: 33497500 PMCID: PMC8252016 DOI: 10.1002/anie.202015669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/07/2022]
Abstract
The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Anselm W. Hahn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | | | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|