1
|
Cenciarelli F, Giuri D, Pieraccini S, Masiero S, D'Agostino S, Tomasini C. Phenylalanine-Based Amphiphilic Self-Assembled Materials: Gels or Crystals? Chemistry 2025; 31:e202404586. [PMID: 40047254 PMCID: PMC12015405 DOI: 10.1002/chem.202404586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 03/18/2025]
Abstract
We prepared three simple molecules, that we chose as representative examples of amphiphilic and bolamphiphilic amino acid derivatives: N-lauroyl-L-phenylalanine (Lau-Phe-OH), N-palmitoyl-L-phenylalanine (Pal-Phe-OH), N,N-azeloyl-L-diphenylalanine Az-(Phe-OH)2, to study the influence of the aliphatic side chain on the formation of supramolecular materials. We found that Pal-Phe-OH is a very efficient gelator in contrast with Az-(Phe-OH)2 that efficiently forms crystals, while Lau-Phe-OH forms metastable hydrogels that slowly become crystals. We demonstrated by X-ray diffraction that Lau-Phe-OH and Pal-Phe-OH easily form hetero-intermolecular hydrogen bonds between the carboxylic and amidic groups, while Az-(Phe-OH)2 forms homo-intermolecular hydrogen bonds, i. e., the typical carboxylic ring dimer and chains between the amidic functions, which leads to an extended and robust 2D hydrogen bonding network. Moreover, Lau-Phe-OH is more ordered than Pal-Phe-OH and the comparison of these results clearly indicates that the reduced order of Pal-L-Phe-OH is the main reason for the efficiency of this molecule as supergelator.
Collapse
Affiliation(s)
- Fabia Cenciarelli
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| | - Demetra Giuri
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| | - Silvia Pieraccini
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| | - Stefano Masiero
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| | - Simone D'Agostino
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo CiamicianUniversità di BolognaVia Piero Gobetti, 8540129BolognaItaly
| |
Collapse
|
2
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
3
|
Gao M, Wu R, Zhang Y, Meng Y, Fang M, Yang J, Li Z. New Molecular Photoswitch Based on the Conformational Transition of Phenothiazine Derivatives and Corresponding Triplet Emission Properties. J Am Chem Soc 2025; 147:2653-2663. [PMID: 39801435 DOI: 10.1021/jacs.4c14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Molecular photoswitch research has drawn much attention in the last century owing to its great potential in the development of smart materials. However, photoswitches suitable for constructing light-responsive luminescent materials remain limited, especially those involving triplet-state phosphorescence. Herein, we designed a novel molecular photoswitch based on the conformation transition of phenothiazine derivatives, minimizing steric hindrance (-CH3 > -Cl > -F) to regulate the conformation transition process while introducing a cyanobenzene acceptor to promote phosphorescence emission potential. When they were doped into a polymer matrix, varying photoswitch rates were achieved by incorporating different steric hindrance groups into phenothiazine or cyanobenzene groups, accompanied by photoresponsive room-temperature phosphorescence. This study is expected to greatly expand the diversity and applications of organic photoswitch molecules.
Collapse
Affiliation(s)
- Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ruimin Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yawen Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yunshu Meng
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Bianco S, Wimberger L, Ben‐Tal Y, Williams GT, Smith AJ, Beves JE, Adams DJ. Reversibly Tuning the Viscosity of Peptide-Based Solutions Using Visible Light. Chemistry 2024; 30:e202400544. [PMID: 38407499 PMCID: PMC11497239 DOI: 10.1002/chem.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Light can be used to design stimuli-responsive systems. We induce transient changes in the assembly of a low molecular weight gelator solution using a merocyanine photoacid. Through our approach, reversible viscosity changes can be achieved via irradiation, delivering systems where flow can be controlled non-invasively on demand.
Collapse
Affiliation(s)
- Simona Bianco
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | | | - Yael Ben‐Tal
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - George T. Williams
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
- Institute for Life sciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Andrew J. Smith
- Diamond Light Source Ltd., Diamond HouseHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | | | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
5
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Höglsperger F, Larik FA, Bai C, Seyfried MD, Daniliuc C, Klaasen H, Thordarson P, Beves JE, Ravoo BJ. Water-Soluble Arylazoisoxazole Photoswitches. Chemistry 2023; 29:e202302069. [PMID: 37578089 DOI: 10.1002/chem.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Azoheteroarenes are emerging as powerful alternatives to azobenzene molecular photoswitches. In this study, water-soluble arylazoisoxazole photoswitches are introduced. UV/vis and NMR spectroscopy revealed moderate to very good photostationary states and reversible photoisomerization between the E- and Z-isomers over multiple cycles with minimal photobleaching. Several arylazoisoxazoles form host-guest complexes with β- and γ-cyclodextrin with significant differences in binding constants for each photoisomer as shown by isothermal titration calorimetry and NMR experiments, indicating their potential for photoresponsive host-guest chemistry in water. One carboxylic acid functionalized arylazoisoxazole can act as a hydrogelator, allowing gel properties to be manipulated reversibly with light. The hydrogel was characterized by rheological experiments, atom force microscopy and transmission electron microscopy. These results demonstrate that arylazoisoxazoles can find applications as molecular photoswitches in aqueous media.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Fayaz Ali Larik
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Changzhuang Bai
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Henning Klaasen
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Jonathon E Beves
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Zhu J, Sun XW, Yang X, Yu SN, Liang L, Chen YZ, Zheng X, Yu M, Yan L, Tang J, Zhao W, Yang XJ, Wu B. In Situ Photoisomerization of an Azobenzene-Based Triple Helicate with a Prolonged Thermal Relaxation Time. Angew Chem Int Ed Engl 2023:e202314510. [PMID: 37926915 DOI: 10.1002/anie.202314510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The phosphate-coordination triple helicates A2 L3 (A=anion) with azobenzene-spaced bis-bis(urea) ligands (L) have proven to undergo a rare in situ photoisomerization (without disassembly of the structure) rather than the typically known, stepwise "disassembly-isomerization-reassembly" process. This is enabled by the structural self-adaptability of the "aniono" assembly arising from multiple relatively weak and flexible hydrogen bonds between the phosphate anion and bis(urea) units. Notably, the Z→E thermal relaxation rate of the isomerized azobenzene unit is significantly decreased (up to 20-fold) for the triple helicates compared to the free ligands. Moreover, the binding of chiral guest cations inside the cavity of the Z-isomerized triple helicate can induce optically pure diastereomers, thus demonstrating a new strategy for making light-activated chiroptical materials.
Collapse
Affiliation(s)
- Jiajia Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xintong Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Shu-Na Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Lin Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ya-Zhi Chen
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyan Zheng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Meng Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Li Yan
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
8
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
9
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
10
|
Hugenbusch D, Lehr M, von Glasenapp JS, McConnell AJ, Herges R. Light-Controlled Destruction and Assembly: Switching between Two Differently Composed Cage-Type Complexes. Angew Chem Int Ed Engl 2023; 62:e202212571. [PMID: 36215411 PMCID: PMC10099457 DOI: 10.1002/anie.202212571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 12/30/2022]
Abstract
We report on two regioisomeric, diazocine ligands 1 and 2 that can both be photoswitched between the E- and Z-configurations with violet and green light. The self-assembly of the four species (1-Z, 1-E, 2-Z, 2-E) with CoII ions was investigated upon changing the coordination vectors as a function of the ligand configuration (E vs Z) and regioisomer (1 vs 2). With 1-Z, Co2 (1-Z)3 was self-assembled, while a mixture of ill-defined species (oligomers) was observed with 2-Z. Upon photoswitching with 385 nm to the E configurations, the opposite was observed with 1-E forming oligomers and 2-E forming Co2 (2-E)3 . Light-controlled dis/assembly was demonstrated in a ligand competition experiment with sub-stoichiometric amounts of CoII ions; alternating irradiation with violet and green light resulted in the reversible transformation between Co2 (1-Z)3 and Co2 (2-E)3 over multiple cycles without significant fatigue by photoswitching.
Collapse
Affiliation(s)
- Daniel Hugenbusch
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Marc Lehr
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Anna J McConnell
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
11
|
Zhang W, Zhao J, Yang D. Anion-Coordination-Driven Assembly: From Discrete Supramolecular Self-Assemblies to Functional Soft Materials. Chempluschem 2022; 87:e202200294. [PMID: 36410745 DOI: 10.1002/cplu.202200294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Indexed: 01/31/2023]
Abstract
Anion templated assembly of supramolecular systems has been extensively explored in previous reports, whereas anions serve only as an auxiliary and spectator role. With the development of anion coordination chemistry in recent years, anion coordination-driven assembly (ACDA) has emerged as a new strategy for the construction of supramolecular self-assemblies. Anions are proved to exist as the main actors in the construction of supramolecular architectures, i. e., serve as the coordination center. This Review will focus on the recent progress in anion-coordination-driven assembly of discrete supramolecular architectures, such as helicates, polyhedrons and polygons, and the various applications of 'aniono'-systems. At the end of this Review, we highlight current challenges and opportunities for future research of anion-coordination-driven self-assembly.
Collapse
Affiliation(s)
- Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.,Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, P. R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
12
|
Zhang J, Li H, Xue L, Pei X, Cui Z, Song B. Rheological behavior of thread-like fiber solutions formed from a rosin-based surfactant with two head groups. SOFT MATTER 2022; 18:6694-6702. [PMID: 36017747 DOI: 10.1039/d2sm00964a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wormlike micelles are conventional aggregates that exist in viscoelastic solutions. However, to achieve a solution with prominent viscoelasticity, rather high concentrations of surfactants are usually required due to the flexibility of aggregates in solution. If thread-like aggregates with rigidity can be formed by surfactants, the solutions are expected to show strong viscoelasticity at very low surfactant concentrations. Herein, A novel rosin-based quaternary ammonium surfactant with two head groups (abbreviated as R-11-3-DA) was synthesized. Cryogenic transmission electron microscopy (Cryo-TEM) images showed that flexible nanofibers with diameters of about 7-8 nm and lengths of over 1 μm were formed in the 1 : 1.5 R-11-3-DA : SL solutions. The rigidity of the aggregates seems to be inherited from the rigidity of the surfactant molecules. The novel aggregates endow the solutions with remarkable viscoelasticity at very low concentrations, with a critical overlap concentration of 0.01 wt% and a critical gelling concentration of 0.58 wt%. The rheological behavior of the solutions also shows excellent shear resistance and weak sensitivity to temperature below the critical gelation temperature (Tgel). This work reveals the advantages of viscoelastic solutions containing flexible nanofibers. The design principles of new molecular structures and system compositions can be applied to the preparation of smart soft materials based on the self-assembly of molecules.
Collapse
Affiliation(s)
- Jinpeng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Linyu Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| |
Collapse
|
13
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
14
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
15
|
Gao Y, Zhao J, Huang Z, Ronson TK, Zhao F, Wang Y, Li B, Feng C, Yu Y, Cheng Y, Yang D, Yang X, Wu B. Hierarchical Self‐Assembly of Adhesive and Conductive Gels with Anion‐Coordinated Triple Helicate Junctions. Angew Chem Int Ed Engl 2022; 61:e202201793. [DOI: 10.1002/anie.202201793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Yiwei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Zehuan Huang
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fen Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chenlu Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yongliang Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiao‐Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
16
|
Wang Y, Xiong J, Peng F, Li Q, Zeng MH. Building a supramolecular gel with an ultra-low-molecular-weight Schiff base gelator and its multiple-stimulus responsive properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Gao Y, Zhao J, Huang Z, Ronson TK, Zhao F, Wang Y, Li B, Feng C, Yu Y, Cheng Y, Yang D, Yang X, Wu B. Hierarchical Self‐Assembly of Adhesive and Conductive Gels with Anion‐Coordinated Triple Helicate Junctions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiwei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Zehuan Huang
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fen Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chenlu Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yongliang Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiao‐Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
18
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
19
|
Bhunia S, Dolai A, Bera S, Samanta S. Near-Complete Bidirectional Photoisomerization of para-Dialkylamino-Substituted Arylazopyrazoles under Violet and Green or Red Lights. J Org Chem 2022; 87:4449-4454. [PMID: 35201776 DOI: 10.1021/acs.joc.1c02898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
para-Dimethylamine- and para-pyrrolidine-substituted arylazopyrazoles display very high to near-quantitative or quantitative bidirectional isomerization under violet and green or red lights in both polar (DMSO and DMSO/aqueous buffer, pH 7.5) and nonpolar solvents. These switches confer a reasonable thermal stability to their cis-states (t1/2 ≈ 4-7 h in DMSO and DMSO/buffer) and also show a high level of resistance to photobleaching and an impressive stability to reduction by glutathione. Using DFT calculations, attempts have been made to decipher the photophysical properties and thermal stabilities of the cis isomers.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
20
|
Using Rheology to Understand Transient and Dynamic Gels. Gels 2022; 8:gels8020132. [PMID: 35200514 PMCID: PMC8872063 DOI: 10.3390/gels8020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Supramolecular gels can be designed such that pre-determined changes in state occur. For example, systems that go from a solution (sol) state to a gel state and then back to a sol state can be prepared using chemical processes to control the onset and duration of each change of state. Based on this, more complex systems such as gel-to-sol-to-gel and gel-to-gel-to-gel systems can be designed. Here, we show that we can provide additional insights into such systems by using rheological measurements at varying values of frequency or strain during the evolution of the systems. Since the different states are affected to different degrees by the frequency and/or strain applied, this allows us to better understand and follow the changes in state in such systems.
Collapse
|
21
|
Hu H, Jiang B, Zhang B, Wang R, Zhang C, Sun C, Hu B. Novel pyrazolyazoindole derivatives as photoswitches: design, synthesis, and photoswitching behavior research combined with theoretical methods. NEW J CHEM 2022. [DOI: 10.1039/d2nj03526j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel pyrazolyazoindole photoswitches with high to near-complete photoconversion, adjustable thermal half-lives, photochromic properties, and potential application value are developed.
Collapse
Affiliation(s)
- Haoran Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Bitao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Bo Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Rong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
22
|
Higashi S, Ikeda M. Development of an Amino Sugar-Based Supramolecular Hydrogelator with Reduction Responsiveness. JACS AU 2021; 1:1639-1646. [PMID: 34723267 PMCID: PMC8549036 DOI: 10.1021/jacsau.1c00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive supramolecular hydrogels are a newly emerging class of aqueous soft materials with a wide variety of bioapplications. Here we report a reduction-responsive supramolecular hydrogel constructed from a markedly simple low-molecular-weight hydrogelator, which is developed on the basis of modular molecular design containing a hydrophilic amino sugar and a reduction-responsive nitrophenyl group. The hydrogel formation ability differs significantly between glucosamine- and galactosamine-based self-assembling molecules, which are epimers at the C4 position, and only the glucosamine-based derivative can act as a hydrogelator.
Collapse
Affiliation(s)
- Sayuri
L. Higashi
- United
Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- United
Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center
for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
23
|
Wen F, Li J, Wang L, Li F, Yu H, Li B, Fan K, Guan X. Novel self-healing and multi-stimuli-responsive supramolecular gel based on d-sorbitol diacetal for multifunctional applications. RSC Adv 2021; 11:32459-32463. [PMID: 35495530 PMCID: PMC9042006 DOI: 10.1039/d1ra05605k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
A simple-structured super gelator with self-healability and multi-stimuli responses was reported herein, which exhibited multiple visual molecular recognition abilities. Multifunctional applications such as effective lubricants, safe fuels, high-efficient propellants, dyes adsorbents, enhanced fluorescence emission and separation of aldehydes from aqueous solutions are integrated into a single organogelator, which was rarely reported. A simple-structured super gelator with self-healability and multi-stimuli responses was reported herein, which exhibited multiple visual molecular recognition abilities.![]()
Collapse
Affiliation(s)
- Fuqiang Wen
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| | - Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| | - Fei Li
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| | - Haiyang Yu
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| | - Binglong Li
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kaiqi Fan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xidong Guan
- School of Pharmaceutical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|