1
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
2
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Li D, Liu J, Wang B, Huang C, Chu PK. Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO 2 to C 2+ Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416597. [PMID: 40013974 PMCID: PMC11967780 DOI: 10.1002/advs.202416597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The electrocatalytic conversion of CO2 into valuable multi-carbon (C2+) products using Cu-based catalysts has attracted significant attention. This review provides a comprehensive overview of recent advances in Cu-based catalyst design to improve C2+ selectivity and operational stability. It begins with an analysis of the fundamental reaction pathways for C2+ formation, encompassing both established and emerging mechanisms, which offer critical insights for catalyst design. In situ techniques, essential for validating these pathways by real-time observation of intermediates and material evolution, are also introduced. A key focus of this review is placed on how to enhance C2+ selectivity through intermediates manipulation, particularly emphasizing catalytic site construction to promote C─C coupling via increasing *CO coverage and optimizing protonation. Additionally, the challenge of maintaining catalytic activity under reaction conditions is discussed, highlighting the reduction of active charged Cu species and materials reconstruction as major obstacles. To address these, the review describes recent strategies to preserve active sites and control materials evolution, including novel catalyst design and the utilization and mitigation of reconstruction. By presenting these developments and the challenges ahead, this review aims to guide future materials design for CO2 conversion.
Collapse
Affiliation(s)
- Dan Li
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Jinyuan Liu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Bin Wang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Chao Huang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| |
Collapse
|
4
|
Zhong Y, Sun Z, Xia BY, Su Y. Structural Reconstruction of Copper-Based Catalysts in CO 2 Electroreduction Reaction: A Comprehensive Review. Chemistry 2025:e202500770. [PMID: 40145133 DOI: 10.1002/chem.202500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
The escalating concerns over climate change and environmental pollution have intensified the pursuit for sustainable solutions to mitigate CO2 emissions, with the electrochemical CO2 reduction reaction (CO2RR) emerging as a promising strategy to convert CO2 into valuable chemicals and fuels. Central to this process is the development of efficient electrocatalysts, where Cu-based catalysts have garnered significant attention due to their high activity towards multi-carbon products. However, understanding of structural reconstruction of Cu-based catalysts under operational conditions presents a substantial challenge, complicating the identification of real active sites and the elucidation of structure-performance relationships. Herein, we first highlight the fundamental principles governing the structural reconstruction in CO2RR, encompassing both thermodynamic and kinetic perspectives. We then introduce advanced Operando techniques employed to monitor the structural changes of catalysts. The review further delves into the dynamic evolution behaviors of Cu-based catalysts, including atomic rearrangement and morphology evolution, with a focus on correlating these behaviors with catalytic properties such as activity, selectivity, and stability. Finally, we discuss cases of emerging strategies, such as heteroatom doping and electrolyte engineering, that hold promise for manipulating the structural reconstruction of Cu-based catalysts, and we explore future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Yi Zhong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhuangzhi Sun
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
- Center for Next-Generation Energy Materials and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Zhang D, Liu X, Zhao Y, Zhang H, Rudnev AV, Li JF. In situ Raman spectroscopic studies of CO 2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chem Sci 2025; 16:4916-4936. [PMID: 40007664 PMCID: PMC11848642 DOI: 10.1039/d5sc00569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) has gained widespread attention as an important technology for carbon cycling and sustainable chemistry. In situ Raman spectroscopy, due to its molecular structure, sensitive advantage and real-time monitoring capability, has become an effective tool for studying the reaction mechanisms and structure-performance relationships in eCO2RR. This article reviews recent advancements in the application of in situ Raman spectroscopy in eCO2RR research, focusing on its critical role in monitoring reaction intermediates, analyzing catalyst surface states, and optimizing catalyst design. Through systematic studies of different catalysts and reaction conditions, in situ Raman spectroscopy has revealed the formation and transformation pathways of various intermediates, deeply exploring their relationship with the active sites of the catalysts. Furthermore, the review discusses the integration of in situ Raman spectroscopy with other characterization techniques to achieve a more comprehensive understanding of the reaction mechanisms. Finally, we summarize the current challenges and opportunities in this research area and look ahead to the future applications of in situ Raman spectroscopy in the field of eCO2RR.
Collapse
Affiliation(s)
- Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Xuan Liu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Yu Zhao
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| |
Collapse
|
6
|
Meng D, Zheng J, Guo J, Zhang A, Wang Z. Synergistic Catalysis in Fe─In Diatomic Sites Anchored on Nitrogen-Doped Carbon for Enhanced CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408146. [PMID: 39891305 DOI: 10.1002/smll.202408146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Diatomic catalysts are promising for the electrochemical CO2 reduction reaction (CO2RR) due to their maximum atom utilization and the presence of multiple active sites. However, the atomic-scale design of diatomic catalysts and the elucidation of synergistic catalytic mechanisms between multiple active centers remain challenging. In this study, heteronuclear Fe─In diatomic sites anchored on nitrogen-doped carbon (FeIn DA/NC) are constructed. The FeIn DA/NC electrocatalyst achieves a CO Faradaic efficiency exceeding 90% across a wide range of applied potentials from -0.4 to -0.7 V, with a peak efficiency of 99.1% at -0.5 V versus the reversible hydrogen electrode. In situ, attenuated total reflection surface-enhanced infrared absorption spectroscopy and density functional theory calculations reveal that the synergistic interaction between Fe and In diatomic sites induce an asymmetric charge distribution, which promote the adsorption of CO2 at the Fe site and lowered the energy barrier for the formation of *COOH. Moreover, the unique Fe─In diatomic site structure increase the adsorption energy of *OH through a bridging interaction, which decrease the energy barrier for water dissociation and further promoted CO2RR activity.
Collapse
Affiliation(s)
- Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Anyu Zhang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Xiong WF, Cai WZ, Wang J, Si DH, Gao SY, Li HF, Cao R. Br, O-Modified Cu(111) Interface Promotes CO 2 Reduction to Multicarbon Products. SMALL METHODS 2025; 9:e2301807. [PMID: 38856023 DOI: 10.1002/smtd.202301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical reduction of CO2 to multicarbon (C2+) products with added value represents a promising strategy for achieving a carbon-neutral economy. Precise manipulation of the catalytic interface is imperative to control the catalytic selectivity, particularly toward C2+ products. In this study, a unique Cu/UIO-Br interface is designed, wherein the Cu(111) plane is co-modified simultaneously by Br and O from UIO-66-Br support. Such Cu/UIO-Br catalytic interface demonstrates a superior Faradaic efficiency of ≈53% for C2+ products (ethanol/ethylene) and the C2+ partial current density reached 24.3 mA cm-2 in an H-cell electrolyzer. The kinetic isotopic effect test, in situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory calculations have been conducted to elucidate the catalytic mechanism. The Br, O co-modification on the Cu(111) interface enhanced the adsorption of CO2 species. The hydrogen-bond effect from the doped Br atom regulated the kinetic processes of *H species in CO2RR and promoted the formation of *COH intermediate. The formed *COH facilitates the *CO-*COH coupling and promotes the C2+ selectivity finally. This comprehensive investigation not only provides an in-depth study and understanding of the catalytic process but also offers a promising strategy for designing efficient Cu-based catalysts with exceptional C2+ products.
Collapse
Affiliation(s)
- Wan-Feng Xiong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Wan-Zhen Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Duan-Hui Si
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shui-Ying Gao
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hong-Fang Li
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Rong Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
8
|
Zhao Y, Wang H, Liu C, Ji Y, Li X, Jiang Q, Zheng T, Xia C. Interfacial Metal Oxides Stabilize Cu Oxidation States for Electrocatalytical CO 2 Reduction. CHEMSUSCHEM 2025:e202402510. [PMID: 39803814 DOI: 10.1002/cssc.202402510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states. This review provides an in-depth examination of the reaction mechanisms occurring at oxide-modified Cuδ+ sites, offering a comprehensive understanding of their behavior. We explore how Cu/metal oxide interfaces stabilize Cu oxidation states, showing that oxides-modified Cu catalysts often enhance selectivity for C2+ or CH4 products by stabilizing Cu+ or Cu2+ sites. In addition, we discuss innovative strategies for the rational design of efficient Cu catalytic sites tailored for specific deep CO2RR products. The review concludes with an outlook on current challenges and future directions, offering new insights into the rational design of selective and efficient CO2RR catalysts.
Collapse
Affiliation(s)
- Yajie Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Haoyuan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
9
|
Wu Y, Chen C, Liu S, Qian Q, Zhu Q, Feng R, Jing L, Kang X, Sun X, Han B. Highly Selective CO 2 Electroreduction to Multi-Carbon Alcohols via Amine Modified Copper Nanoparticles at Acidic Conditions. Angew Chem Int Ed Engl 2024; 63:e202410659. [PMID: 39136316 DOI: 10.1002/anie.202410659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 11/01/2024]
Abstract
Electroreduction of CO2 into multi-carbon (C2+) products (e.g. C2+ alcohols) offers a promising way for CO2 utilization. Use of strong alkaline electrolytes is favorable to producing C2+ products. However, CO2 can react with hydroxide to form carbonate/bicarbonate, which results in low carbon utilization efficiency and poor stability. Using acidic electrolyte is an efficient way to solve the problems, but it is a challenge to achieve high selectivity of C2+ products. Here we report that the amine modified copper nanoparticles exhibit high selectivity of C2+ products and carbon utilization at acidic condition. The Faradaic efficiency (FE) of C2+ products reach up to 81.8 % at acidic media (pH=2) with a total current density of 410 mA cm-2 over n-butylamine modified Cu. Especially the FE of C2+ alcohols is 52.6 %, which is higher than those reported for CO2 electroreduction at acidic condition. In addition, the single-pass carbon efficiency towards C2+ production reach up to 60 %. Detailed studies demonstrate that the amine molecule on the surface of Cu cannot only enhance the formation, adsorption and coverage of *CO, but also provide a hydrophobic environment, which result in the high selectivity of C2+ alcohols at acidic condition.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
10
|
Cong Y, Kang X, Wu Z, Gu L, Wu C, Duan X, Chen J, Yang J. Self-Reconstruction Induced Electronic Metal-Support Interaction for Modulated Cu + Sites on TiO 2 Nanofibers in Electrocatalytic Nitrate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407554. [PMID: 39388507 DOI: 10.1002/smll.202407554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The Cu+ active sites have gained great attention in electrochemical nitrate reduction, offering a highly promising method for nitrate removal from water bodies. However, challenges arise from the instability of the Cu+ state and microscopic structure over prolonged operation, limiting the selectivity and durability of Cu+-based electrodes. Herein, a self-reconstructed Cu2O/TiO2 nanofibers (Cu2O/TiO2 NFs) catalyst, demonstrating exceptional stability over 50 cycles (12 h per cycle), a high NO3 --N removal rate of 90.2%, and N2 selectivity of 98.7% is reported. The in situ electrochemical reduction contributes to the self-reconstruction of Cu2O/TiO2 nanofibers with stabilized Cu+ sites via the electronic metal-support interaction between TiO2 substrates, as evidenced by in situ characterizations and theoretical simulations. Additionally, density functional theory (DFT) calculations also indicate that the well-retained Cu+ sites enhance catalytic capability by inhibiting the hydrogen evolution reaction and optimizing the binding energy of *NO on the Cu2O/TiO2 NFs heterostructure surface. This work proposes an effective strategy for preserving low-valence-state Cu-based catalysts with high intrinsic activity for nitrate reduction reaction (NO3RR), thereby advancing the prospects for sustainable nitrate remediation technologies.
Collapse
Affiliation(s)
- Yuting Cong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chang Wu
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Ma H, Zhang L, Fan X, Wang G, Lv B, Xu Y, Pan Z, Zhao S, Lu H, Song C. Electrochemically Assisted Cobalt/MXene Membrane for Effective Water Treatment: Synchronously Improving Catalytic Performance and Anti-Interference Ability. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39570631 DOI: 10.1021/acsami.4c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Catalytic membrane technology for water treatment is often constrained by a trade-off between permeability and catalytic efficiency as well as interference from coexisting anions and organic matter in natural water matrices. Herein, a novel cobalt-loaded MXene (Co/MXene) 2D membrane with good hydrophilicity, electrical conductivity, and PMS activation function is constructed. The negative voltage is exerted on the membrane to significantly enhance its PMS activation efficiency and anti-interference capacity toward effective water treatment. Under -2 V, the optimal Co/MXene catalytic membrane displays 100% rhodamine b (RhB) removal within a residence time of only 1.1 s, whose RhB degradation kinetic constant (k of 6.85 s-1) is 17.6 times higher than that of the Co/MXene catalytic membrane alone and is also greatly superior to other advanced catalysts and catalytic membranes. Meanwhile, the catalytic membrane displays obvious anti-interference ability in the presence of various coexisting substances of the water matrix and performs well in treating the secondary effluent of coking wastewater. The radical-dominated (SO4•- and •OH) mechanism accompanied by the nonradical species (1O2 and Co(VI)═O) is revealed in the system, and the reactive species production is obviously enhanced under negative voltage. Experimental results and theoretical calculations jointly confirm the key role of electrochemical assistance in enhancing membrane performance, which not only facilitates cycling of Co3+/Co2+ for enhanced PMS activation via improving PMS adsorption and promoting charge transfer from Co to PMS but also hinders interference from coexisting substances in water via electrostatic repulsion.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Lijun Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bowen Lv
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Shuaifei Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
- Deakin University, Geelong, Institute for Frontier Materials, Victoria 3216, Australia
| | - Huixia Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| |
Collapse
|
12
|
Zhao J, Lin S. Towards superior CO 2RR catalysts: Deciphering the selectivity puzzle over dual-atom catalyst. J Colloid Interface Sci 2024; 680:257-264. [PMID: 39566413 DOI: 10.1016/j.jcis.2024.11.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is one of the most important electrocatalytic reactions. Starting from a well-defined *CO intermediate, the CO2RR can bifurcate into two pathways, either forming a hydrogenation product by *CO bond hydrogenation or leading to CO desorption by *C bond cleavage. However, it is perplexing why many dual-atom catalysts (DACs) exhibit high CO selectivity in experiments, despite previous theoretical studies arguing that the *CO bond hydrogenation is thermodynamically more favorable than the *C bond breaking. Furthermore, the selectivity is contingent upon the potential and is perturbed by the hydrogen evolution reaction (HER), which is far from clear. Using ab initio molecular dynamics and a "slow-growth" sampling method to evaluate the potential-dependent kinetics, we uncover the selectivity origin of CO2RR to CO on a typical NC-based DAC (CuFe-N6-C). Importantly, the results show that at higher CO* coverage, CO* desorption kinetics are accelerated, while the competing *CO bond hydrogenation reaction is inhibited at varying potentials. Furthermore, the selectivity of the HER is observed to increase as the potential decreases. However, at higher CO* coverage, the energy barrier for the *C bond cleavage is lower than that for HER, suggesting that HER is suppressed on CuFe-N6-C. Our work unlocks a long-standing puzzle about the selectivity of important DAC catalysts for CO2RR and provides insights for more effective catalyst design.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Hu Y, Asif M, Gong J, Zeb H, Lan H, Kashif Khan M, Xia H, Du M. Mechanistic insights into C-C coupling in electrocatalytic CO 2 reduction reaction. Chem Commun (Camb) 2024; 60:10618-10628. [PMID: 39240587 DOI: 10.1039/d4cc03964e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The utilization of CO2 has become an emerging area of research in response to climate change and global warming. The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a technology to address this issue by converting CO2 molecules into various commercially valuable chemicals. While CO2RR to C1 hydrocarbons has achieved high activity and selectivity, the C-C coupling to produce higher hydrocarbons remains challenging due to low energy efficiency and the prevalent hydrogen evolution reaction (HER) on the same catalyst, leading to high hydrogenation rates. In this review, we aim to elucidate the fundamental challenges of C-C coupling and explore potential strategies to enhance the selectivity for higher hydrocarbon products. We discuss the mechanisms underlying the formation of C2 and C3 products, focusing on molecular catalysts that facilitate C-C coupling by positioning CO2 molecules in close proximity. Additionally, we provide a comprehensive overview of different approaches to improve higher hydrocarbon selectivity, along with future suggestions and recommendations for new researchers in the field. This review serves as a valuable resource for both academic researchers and industrial stakeholders aiming for the commercialization of CO2RR technologies.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| | - Muhammad Asif
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do 16419, Republic of Korea
| | - Jiaxuan Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| | - Hassan Zeb
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Muhammad Kashif Khan
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do 16419, Republic of Korea
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| |
Collapse
|
14
|
Zhou B, Tong Y, Yao Y, Zhang W, Zhan G, Zheng Q, Hou W, Gu XK, Zhang L. Reversed I 1Cu 4 single-atom sites for superior neutral ammonia electrosynthesis with nitrate. Proc Natl Acad Sci U S A 2024; 121:e2405236121. [PMID: 39226362 PMCID: PMC11406288 DOI: 10.1073/pnas.2405236121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, People’s Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, People’s Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
15
|
Li Y, Zhang Y, Shi L, Liu X, Zhang Z, Xie M, Dong Y, Jiang H, Zhu Y, Zhu J. Activating Inert Perovskite Oxides for CO 2 Electroreduction via Slight Cu 2+ Doping in B-Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402823. [PMID: 38712472 DOI: 10.1002/smll.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.
Collapse
Affiliation(s)
- Yuxi Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lei Shi
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangjian Liu
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Heqing Jiang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
16
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
17
|
Liu H, Yang C, Bian T, Yu H, Zhou Y, Zhang Y. Bottom-up Growth of Convex Sphere with Adjustable Cu(0)/Cu(I) Interfaces for Effective C 2 Production from CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202404123. [PMID: 38702953 DOI: 10.1002/anie.202404123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
One challenge confronting the Cu2O catalysts in the electrocatalysis of carbon dioxide reduction reaction (CO2RR) is the reduction of active Cu(I) species, resulting in low selectivity and quick deactivation. In this study, we for the first time introduce a bottom-up growth of convex sphere with adjustable Cu(0)/Cu(I) interfaces (Cux@Cu2O convex spheres). Interestingly, the interfaces are dynamically modulated by varying hydrothermal time, thus regulating the conversion of C1 and C2 products. In particular, the 4 h hydrothermal treatment applied to Cu0.25@Cu2O convex sphere with the favorable Cu(0)/Cu(I) interface results in the highest selectivity for C2 products (90.5 %). In situ Fourier-transform infrared spectroscopy measurements and density functional theory calculations reveal that the Cu(0)/Cu(I) interface lowers the energy barrier for the production of ethylene and ethanol while increasing the coverage of localized *CO adsorbate for increased dimerization. This work establishes a novel approach for transforming the state of valence-sensitive electrocatalysts into high-value energy-related engineering products.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Tong Bian
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Huijun Yu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, P. R. China
| |
Collapse
|
18
|
Ma M, Seger B. Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO 2 into Multicarbon Products. Angew Chem Int Ed Engl 2024; 63:e202401185. [PMID: 38576259 DOI: 10.1002/anie.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The electrocatalytic conversion of CO2 into multi-carbon (C2+) products provides an attractive route for storing intermittent renewable electricity as fuels and feedstocks with high energy densities. Although substantial progress has been made in selective electrosynthesis of C2+ products via engineering the catalyst, rational design of the local reaction environment in the vicinity of catalyst surface also acts as an effective approach for further enhancing the performance. Here, we discuss recent advances and pertinent challenges in the modulation of local reaction environment, encompassing local pH, the choice of the species and concentrations of cations and anions as well as local reactant/intermediate concentrations, for achieving high C2+ selectivity. In addition, mechanistic understanding in the effects of the local reaction environment is also discussed. Particularly, the important progress extracted from in situ and operando spectroscopy techniques provides insights into how local reaction environment affects C-C coupling and key intermediates formation that lead to reaction pathways toward a desired C2+ product. The possible future direction in understanding and engineering the local reaction environment is also provided.
Collapse
Affiliation(s)
- Ming Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Brian Seger
- Surface Physics and Catalysis (Surfcat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Fu Z, Ouyang Y, Wu M, Ling C, Wang J. Mechanism of surface oxygen-containing species promoted electrocatalytic CO 2 reduction. Sci Bull (Beijing) 2024; 69:1410-1417. [PMID: 38480022 DOI: 10.1016/j.scib.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 05/28/2024]
Abstract
Oxygen-containing species have been demonstrated to play a key role in facilitating electrocatalytic CO2 reduction (CO2RR), particularly in enhancing the selectivity towards multi-carbon (C2+) products. However, the underlying promotion mechanism is still under debate, which greatly limits the rational optimization of the catalytic performance of CO2RR. Herein, taking CO2 and O2 co-electrolysis over Cu as the prototype, we successfully clarified how O2 boosts CO2RR from a new perspective by employing comprehensive theoretical simulations. Our results demonstrated that O2 in feed gas can be rapidly reduced into *OH, leading to the partial oxidation of Cu surface under reduction conditions. Surface *OH accelerates the formation of quasi-specifically adsorbed K+ due to the electrostatic interaction between *OH and K+ ions, which significantly increases the concentration of K+ near the Cu surface. These quasi-specifically adsorbed K+ ions can not only lower the C-C coupling barriers but also promote the hydrogenation of CO2 to improve the CO yield rate, which are responsible for the remarkably enhanced efficiency of C2+ products. During the whole process, O2 co-electrolysis plays an indispensable role in stabilizing surface *OH. This mechanism can be also adopted to understand the effect of high pH of electrolyte and residual O in oxide-derived Cu (OD-Cu) on the catalytic efficiency towards C2+ products. Therefore, our work provides new insights into strategies for improving C2+ products on the Cu-based catalysts, i.e., maintaining partial oxidation of surface under reduction conditions.
Collapse
Affiliation(s)
- Zhanzhao Fu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Yixin Ouyang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Mingliang Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China.
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China.
| |
Collapse
|
20
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
21
|
Jun M, Kundu J, Kim DH, Kim M, Kim D, Lee K, Choi SI. Strategies to Modulate the Copper Oxidation State Toward Selective C 2+ Production in the Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313028. [PMID: 38346313 DOI: 10.1002/adma.202313028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The electrochemical reduction of CO2 to form value-added chemicals receives considerable attention in recent years. Copper (Cu) is recognized as the only element capable of electro-reducing CO2 into hydrocarbons with two or more carbon atoms (C2+), but the low product selectivity of the Cu-based catalyst remains a major technological challenge to overcome. Therefore, identification of the structural features of Cu-based catalysts is of great importance for the highly selective production of C2+ products (ethylene, ethanol, n-propanol, etc.), and the oxidation state of Cu species in the catalysts is found critical to the catalyst performance. This review introduces recent efforts to fine-tune the oxidation state of Cu to increase carbon capture and produce specific C2+ compounds, with the intention of greatly expediting the advance in the catalyst designs. It also points to the remaining challenges and fruitful research directions for the development of Cu-based catalysts that can shape the practical CO2 reduction technology.
Collapse
Affiliation(s)
- Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joyjit Kundu
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Duck Hyun Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minah Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Dongyong Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
22
|
Ding J, Li F, Ren X, Liu Y, Li Y, Shen Z, Wang T, Wang W, Wang YG, Cui Y, Yang H, Zhang T, Liu B. Molecular tuning boosts asymmetric C-C coupling for CO conversion to acetate. Nat Commun 2024; 15:3641. [PMID: 38684736 PMCID: PMC11059391 DOI: 10.1038/s41467-024-47913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yifan Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zheng Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weijue Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
23
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
24
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
25
|
Lee T, Lee Y, Eo J, Nam DH. Acidic CO 2 electroreduction for high CO 2 utilization: catalysts, electrodes, and electrolyzers. NANOSCALE 2024; 16:2235-2249. [PMID: 38193364 DOI: 10.1039/d3nr05480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) is considered a promising technology for converting atmospheric CO2 into value-added compounds by utilizing renewable energy. The CO2RR has developed in various ways over the past few decades, including product selectivity, current density, and catalytic stability. However, its commercialization is still unsuitable in terms of economic feasibility. One of the major challenges in its commercialization is the low single-pass conversion efficiency (SPCE) of CO2, which is primarily caused by the formation of carbonate (CO32-) in neutral and alkaline electrolytes. Notably, the majority of CO2RRs take place in such media, necessitating significant energy input for CO2 regeneration. Therefore, performing the CO2RR under conditions that minimize CO32- formation to suppress reactant and electrolyte ion loss is regarded an optimal strategy for practical applications. Here, we introduce the recent progress and perspectives in the electrochemical CO2RR in acidic electrolytes, which receives great attention because of the inhibition of CO32- formation. This includes the categories of nanoscale catalytic design, microscale microenvironmental effects, and bulk scale applications in electrolyzers for zero carbon loss reactions. Additionally, we offer insights into the issue of limited catalytic durability, a notable drawback under acidic conditions and propose guidelines for further development of the acidic CO2RR.
Collapse
Affiliation(s)
- Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Yujin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jungsu Eo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
26
|
Wu Z, Li Q, Xu G, Jin W, Xiao W, Li Z, Ma T, Feng S, Wang L. Microwave Phosphine-Plasma-Assisted Ultrafast Synthesis of Halogen-Doped Ru/RuP 2 with Surface Intermediate Adsorption Modulation for Efficient Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311018. [PMID: 38101817 DOI: 10.1002/adma.202311018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Anionic modification engineering is a crucial approach to develop highly efficient electrocatalysts for hydrogen evolution reaction. Herein, halogen elements (X = Cl, Br, and I)-modified Ru-based nanosheets (X-Ru/RuP2 ) are designed by rapid and eco-friendly microwave-phosphide plasma approach within 60 s. Experimental and density functional theory calculations verify that the introduced halogen element, especially Br, can optimize the surface intermediates adsorption. Specially, the designed Br-Ru/RuP2 favors the water dissociation and following hydrogen adsorption/desorption process. Then, the as-synthesized Br-Ru/RuP2 exhibits low overpotential of 34 mV to reach 10 mA cm-2 coupled with small Tafel slope of 27 mV dec-1 in alkaline electrolyte with excellent long-term stability. Moreover, the electrocatalytic performances in acid and neutral media are also boosted via Br element modification. This work paves a novel way to regulate the electronic structure of Ru-based compounds, and then can boost the electrocatalytic kinetics.
Collapse
Affiliation(s)
- Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
27
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
28
|
Wang S, Wang L, Zhu X, Zhuang Y, Niu X, Zhao Q. A covalency-aided electrochemical mechanism for CO 2 reduction: the synergistic effect of copper and boron dual active sites drives the formation of a high-efficiency ethanol product. NANOSCALE 2023; 15:17776-17784. [PMID: 37902023 DOI: 10.1039/d3nr04288j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into high-value multi-carbon products is of great significance for CO2 utilization, but the chemical inertness, low yields, and poor product selectivity hinder the application prospects of the electrocatalytic conversion methods. In this work, a covalency-aided electrochemical mechanism for CO2 reduction is proposed for the first time by embedding the nonmetallic element boron (B) on copper surfaces, in which p-block dopants have a significant impact on modifying the adsorbent intermediates and improving the catalytic activity. Herein, B atoms not only provide empty and occupied orbitals to adsorb and activate CO, but also afford a large amount of charge to stabilize the C2 intermediates. In addition, B atoms can also adjust the oxidation state of nearby copper (namely, Cu+), and the synergistic Cu+ and B dual active sites act as O* adsorption and C* adsorption sites, respectively, leading to strong adsorption and activation of CO2. First-principles calculations reveal that CO2 can be reduced into C2H5OH with an ultralow potential of -0.26 V. Overall, this study provides new insights into CO2 reduction, which offers a promising way for achieving an efficient ethanol product.
Collapse
Affiliation(s)
- Shiyan Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yanling Zhuang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Xianghong Niu
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
29
|
Gu L, Dutta Chowdhury A. Controlling the C 1/C 2+ product selectivity of electrochemical CO 2 reduction upon tuning bimetallic CuIn electrocatalyst composition and operating conditions. Dalton Trans 2023; 52:15958-15967. [PMID: 37846524 DOI: 10.1039/d3dt03044j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide (CO2) reduction (eCO2R) over Cu-based bimetallic catalysts is a promising technique for converting CO2 into value-added multi-carbon products, such as fuels, chemicals, and materials. For improving the process efficiency, electrocatalyst development for the eCO2R must be integrated with tuning of operating conditions. For example, CuIn-based materials typically lead to preferential C1 product selectivity, which delivers the desired C2+ products upon varying the In/Cu ratio and operating conditions (i.e., in 0.1 M KHCO3 electrolytes using an H-type cell with a cation exchange membrane vs. in 1 M KOH electrolytes using a flow cell with an anion exchange membrane). At lower Cu-loading (i.e., InCu5Ox material), the maximum faradaic efficiency of HCOOH (FEHCOOH) of 70% was achieved at -1 V versus the reversible hydrogen electrode (vs. RHE) in an H-type cell. However, upon increasing the Cu loading, the preferential product selectivity could be altered: the InCu73Ox material led to a high CO selectivity (maximum FE of 51%) in the H-type cell at -0.8 V vs. RHE and delivered a current density of 100 mA cm-2 with a FEC2+ of up to 37% at -0.8 V vs. RHE in the flow cell configuration. Various characterization tools were also employed to probe the catalytic materials to rationalize the electrocatalytic performance.
Collapse
Affiliation(s)
- Lin Gu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
30
|
Luo H, Li S, Wu Z, Liu Y, Luo W, Li W, Zhang D, Chen J, Yang J. Modulating the Active Hydrogen Adsorption on Fe─N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-Long Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304695. [PMID: 37488087 DOI: 10.1002/adma.202304695] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Indexed: 07/26/2023]
Abstract
The electrocatalytic reduction of nitrate (NO3 - ) to nitrogen (N2 ) is an environmentally friendly approach for efficient N-cycle management (toward a nitrogen-neutral cycle). However, poor catalyst durability and the competitive hydrogen evolution reaction significantly impede its practical application. Interface-chemistry engineering, utilizing the close relationship between the catalyst surface/interface microenvironment and electron/proton transfer process, has facilitated the development of catalysts with high intrinsic activity and physicochemical durability. This study reports the synthesis of a nitrogen-doped carbon-coated rice-like iron nitride (RL-Fe2 N@NC) electrocatalyst with excellent electrocatalytic nitrate-reduction reaction activity (high N2 selectivity (≈96%) and NO3 - conversion (≈86%)). According to detailed mechanistic investigations by in situ tests and theoretical calculations, the strong hydrogenation ability of iron nitride and enhanced nitrate enrichment of the system synergistically contribute to the rapid hydrogenation of nitrogen-containing species, increasing the intrinsic activity of the catalyst and reducing the occurrence of the competing hydrogen-evolution side reaction. Moreover, RL-Fe2 N@NC shows excellent stability, retaining good NO3 - -to-N2 electrocatalysis activity for more than 40 cycles (one cycle per day). This paper could guide the interfacial design of Fe-based composite nanostructures for electrocatalytic nitrate reduction, facilitating a shift toward nitrogen neutrality.
Collapse
Affiliation(s)
- Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Ziyang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environmental, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
31
|
Li M, Zhang F, Kuang M, Ma Y, Liao T, Sun Z, Luo W, Jiang W, Yang J. Atomic Cu Sites Engineering Enables Efficient CO 2 Electroreduction to Methane with High CH 4/C 2H 4 Ratio. NANO-MICRO LETTERS 2023; 15:238. [PMID: 37882895 PMCID: PMC10603021 DOI: 10.1007/s40820-023-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures.
Collapse
Affiliation(s)
- Minhan Li
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Fangzhou Zhang
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Min Kuang
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuanyuan Ma
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia
| | - Ziqi Sun
- School of Mechanical, Medical and Process Engineering, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia
| | - Wei Luo
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Wan Jiang
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jianping Yang
- Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
32
|
Zi X, Zhou Y, Zhu L, Chen Q, Tan Y, Wang X, Sayed M, Pensa E, Geioushy RA, Liu K, Fu J, Cortés E, Liu M. Breaking K + Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO 2 Reduction to Multi-Carbon Products. Angew Chem Int Ed Engl 2023; 62:e202309351. [PMID: 37639659 DOI: 10.1002/anie.202309351] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.
Collapse
Affiliation(s)
- Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Li Zhu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Mahmoud Sayed
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Ramadan A Geioushy
- Central Metallurgical Research and Development Institute, CMRDI P.O. Box: 87, Helwan, 11421, Cairo, Egypt
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
33
|
Wang M, Chen H, Wang M, Wang J, Tuo Y, Li W, Zhou S, Kong L, Liu G, Jiang L, Wang G. Tuning C 1 /C 2 Selectivity of CO 2 Electrochemical Reduction over in-Situ Evolved CuO/SnO 2 Heterostructure. Angew Chem Int Ed Engl 2023; 62:e202306456. [PMID: 37485764 DOI: 10.1002/anie.202306456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2 ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2 ER product selectivity and the in situ evolved heterostructures. At -0.85 VRHE , the CuO/SnO2 evolves to Cu2 O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at -1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C-C coupling, leading to high selectivity to ethanol.
Collapse
Affiliation(s)
- Min Wang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Huimin Chen
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Jinxiu Wang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yongxiao Tuo
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenzhen Li
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011-1098, USA
| | - Shanshan Zhou
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Linghui Kong
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangbo Liu
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Luhua Jiang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
34
|
Zhou B, Zhan G, Yao Y, Zhang W, Zhao S, Quan F, Fang C, Shi Y, Huang Y, Jia F, Zhang L. Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device. WATER RESEARCH 2023; 242:120256. [PMID: 37354842 DOI: 10.1016/j.watres.2023.120256] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Green ammonia production from wastewater via electrochemical nitrate reduction contributes substantially to the realization of carbon neutrality. Nonetheless, the current electrochemical technology is largely limited by the lack of suitable device for efficient and continuous electroreduction nitrate into ammonia and in-situ ammonia recovery. Here, we report a flow-through coupled device composed of a compact electrocatalytic cell for efficient nitrate reduction and a unit to separate the produced ammonia without any pH adjustment and additional energy-input from the circulating nitrate-containing wastewater. Using an efficient and selective Cl-modified Cu foam electrode, nearly 100% NO3- electroreduction efficiency and over 82.5% NH3 Faradaic efficiency was realized for a wide range of nitrate-containing wastewater from 50 to 200 mg NO3--N L-1. Moreover, this flow-through coupled device can continuingly operate at a large current of 800 mA over 100 h with a sustained NH3 yield rate of 420 μg h-1 cm-2 for nitrate-containing wastewater treatment (50 mg NO3--N L-1). When driven by solar energy, the flow-through coupled device can also exhibit exceptional real wastewater treatment performance, delivering great potential for practical application. This work paves a new avenue for clean energy production and environmental sustainability as well as carbon neutrality.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fengjiao Quan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuyang Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
35
|
Warkentin H, O'Brien CP, Holowka S, Maxwell B, Awara M, Bouman M, Zeraati AS, Nicholas R, Ip AH, Elsahwi ES, Gabardo CM, Sinton D. Early Warning for the Electrolyzer: Monitoring CO 2 Reduction via In-Line Electrochemical Impedance Spectroscopy. CHEMSUSCHEM 2023:e202300657. [PMID: 37535892 DOI: 10.1002/cssc.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) to fuels and feedstocks presents an opportunity to decarbonize the chemical industry, and current electrolyzer performance levels approach commercial viability. However, stability remains below that required, in part because of the challenge of probing these electrolyzer systems in real time and the challenge of determining the root cause of failure. Failure can result from initial conditions (e. g., the over- or under-compression of the electrolyzer), gradual degradation of components (e. g., cathode or anode catalysts), the accumulation of products or by-products, or immediate changes such as the development of a hole in the membrane or a short circuit. Identifying and mitigating these assembly-related, gradual, and immediate failure modes would increase both electrolyzer lifetime and economic viability of CO2 RR. We demonstrate the continuous monitoring of CO2 RR electrolyzers during operation via non-disruptive, real-time electrochemical impedance spectroscopy (EIS) analysis. Using this technique, we characterise common failure modes - compression, salt formation, and membrane short circuits - and identify electrochemical parameter signatures for each. We further propose a framework to identify, predict, and prevent failures in CO2 RR electrolyzers. This framework allowed for the prediction of anode degradation ~11 hours before other indicators such as selectivity or voltage.
Collapse
Affiliation(s)
- Hugh Warkentin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Sarah Holowka
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Benjamin Maxwell
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Mariam Awara
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Mark Bouman
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
| | - Rachael Nicholas
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Alexander H Ip
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - Essam S Elsahwi
- Pulsenics Inc., 2 Cedar St, Newark, NJ, 07102, United States of America
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
- CERT Systems Inc., 406-501 Alliance Ave, Toronto, ON M6 N 2 J1, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8, Canada
| |
Collapse
|
36
|
Lu X, Li J, Liu F, Wang Y, Tang X, Li H, Peng Y, Xu C. Powerful Orbital Hybridization of Copper-Silver Bimetallic Nanosheets for Electrocatalytic Nitrogen Reduction to Ammonia. Inorg Chem 2023. [PMID: 37465928 DOI: 10.1021/acs.inorgchem.3c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical nitrogen reduction (eNRR) is a promising strategy to replace the energy- and capital-intensive Haber-Bosch process. Unfortunately, the low selectivity of the eNRR process impedes the industrial application of this approach. In this work, a highly efficient and stable NRR electrocatalyst is obtained via coreduction of Cu and Ag precursors using the holly leaves as reducing agents. The as-obtained Cu3Ag bimetallic nanosheets exhibit excellent NRR performance with an NH3 production rate of 31.3 μg h-1 mg-1cat. and a Faradaic efficiency of 31.3% at -0.2 V vs RHE. According to density functional theory (DFT) calculation, the outstanding performance of Cu3Ag bimetallic nanosheets could be caused by the fact that Ag optimizes the 3d orbital occupation of Cu and synergistically enhances the charge transfer during the NRR process, resulting in a suitable adsorption strength of the intermediates.
Collapse
Affiliation(s)
- Xiaoying Lu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fen Liu
- Eco-environmental Monitoring and Scientific Research Center, YRBEEA, Zhengzhou 450000, China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaohai Tang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hua Li
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Yong Peng
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Sun Y, Xie J, Fu Z, Zhang H, Yao Y, Zhou Y, Wang X, Wang S, Gao X, Tang Z, Li S, Wang X, Nie K, Yang Z, Yan Y. Boosting CO 2 Electroreduction to C 2H 4 via Unconventional Hybridization: High-Order Ce 4+ 4f and O 2p Interaction in Ce-Cu 2O for Stabilizing Cu . ACS NANO 2023. [PMID: 37410800 DOI: 10.1021/acsnano.3c03952] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.
Collapse
Affiliation(s)
- Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhenzhen Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiying Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yebo Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yixiang Zhou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zheng Tang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyuan Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yiming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
38
|
Liu Y, Yao XM, Liu X, Liu Z, Wang YQ. Cu 2+1O/Ag Heterostructure for Boosting the Electrocatalytic Nitrate Reduction to Ammonia Performance. Inorg Chem 2023; 62:7525-7532. [PMID: 37133541 DOI: 10.1021/acs.inorgchem.3c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrocatalytic nitrate reduction reaction (ENO3RR) is an alternative, sustainable, and environmentally friendly value-added NH3 synthesis method under ambient conditions relative to the traditional Haber-Bosch process; however, its low NH3 yield, low Faradaic efficiency (FE), low selectivity, and low conversion rate severely restrict the development. In this work, a Cu2+1O/Ag-CC heterostructured electrocatalyst was successfully fabricated by constructing a heterogeneous interface between Cu2+1O and Ag for selective electrochemical nitrate-to-ammonia conversion. The construction of the heterogeneous interface effectively promotes the synergistic effect of the catalytically active components Cu2+1O and Ag, which enhances the material conductivity, accelerates the interfacial electron transfer, and exposes more active sites, thus improving the performance of ENO3RR. Such Cu2+1O/Ag-CC manifests a high NH3 yield of 2.2 mg h-1 cm-2 and a notable ammonia FE of 85.03% at the optimal applied potential of -0.74 V vs RHE in a relatively low concentration of 0.01 M NO3--containing 0.1 M KOH. Moreover, it shows excellent electrochemical stability during the cycle tests. Our study not only provides an efficient catalyst for ammonia electro-synthesis from ENO3RR but also an effective strategy for the construction of ENO3RR electrocatalysts for electrocatalytic applications.
Collapse
Affiliation(s)
- Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Xiao-Man Yao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Xu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
39
|
Liu LX, Cai Y, Du H, Lu X, Li X, Liu F, Fu J, Zhu JJ. Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO 2 to C 2+ Products. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16673-16679. [PMID: 36961885 DOI: 10.1021/acsami.2c21902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical carbon-dioxide reduction reaction (CO2RR) to high-value multi-carbon (C2+) chemicals provides a hopeful approach to store renewable energy and close the carbon cycle. Although copper-based catalysts with a porous architecture are considered potential electrocatalysts for CO2 reduction to C2+ chemicals, challenges remain in achieving high selectivity and partial current density simultaneously for practical application. Here, the porous Cu catalysts with a cavity structure by in situ electrochemical-reducing Cu2O cavities are developed for high-performance conversion of CO2 to C2+ fuels. The as-described catalysts exhibit a high C2+ Faradaic efficiency and partial current density of 75.6 ± 1.8% and 605 ± 14 mA cm-2, respectively, at a low applied potential (-0.59 V vs RHE) in a microfluidic flow cell. Furthermore, in situ Raman tests and finite element simulation indicated that the cavity structure can enrich the local concentration of CO intermediates, thus promoting the C-C coupling process. More importantly, the C-C coupling should be major through the *CO-*CHO pathway as demonstrated by the electrochemical Raman spectra and density functional theory calculations. This work can provide ideas and insights into designing high-performance electrocatalysts for producing C2+ compounds and highlight the important effect of in situ characterization for uncovering the reaction mechanism.
Collapse
Affiliation(s)
- Li-Xia Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Yanming Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Huitong Du
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xuanzhao Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Fuqiang Liu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Jiaju Fu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Zhu LJ, Si DH, Ma FX, Sun MJ, Zhang T, Cao R. Copper–Supramolecular Pair Catalyst Promoting C 2+ Product Formation in Electrochemical CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
41
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
42
|
Wang L, Yin S, Yang J, Dou SX. Moiré Superlattice Structure in Two-Dimensional Catalysts: Synthesis, Property and Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300165. [PMID: 36974572 DOI: 10.1002/smll.202300165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) layered materials have been widely used as catalysts due to their high specific surface area, large fraction of uncoordinated surface atoms, and high charge carrier mobility. Moiré superlattice emerges in 2D layered materials with twist angle or lattice mismatch. By manipulating the moiré superlattice structure, 2D layered materials present modulated electronic band structure, topological edge states, and unconventional superconductivity which are tightly associated with the performance of catalysts. Hence, engineering moiré superlattice structures are proposed to be an important technology in modifying 2D layered materials for improved catalytic properties. However, currently, the investigation of moiré superlattice structure in a catalytic application is still in its infancy. This perspective starts with the discussion of structural features and fabrication strategy of 2D materials with moiré superlattice structure. Afterward, the catalytic applications, including electrocatalytic and photocatalytic applications, are summarized. In particular, the promotion mechanism of the catalytic performance caused by the moiré superlattice structure is proposed. Finally, the perspective is concluded by outlining the remaining challenges and possible solutions for the future development of 2D materials with moiré superlattice structure towards the catalytic applications.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Sisi Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
43
|
Wang T, Chen J, Ren X, Zhang J, Ding J, Liu Y, Lim KH, Wang J, Li X, Yang H, Huang Y, Kawi S, Liu B. Halogen-Incorporated Sn Catalysts for Selective Electrochemical CO2 Reduction to Formate. Angew Chem Int Ed Engl 2023; 62:e202211174. [PMID: 36562773 DOI: 10.1002/anie.202211174] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2 RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2 RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2 RR to produce formate.
Collapse
Affiliation(s)
- Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jiadong Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jincheng Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jie Ding
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Kang Hui Lim
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
44
|
Liu C, Wang M, Ye J, Liu L, Li L, Li Y, Huang X. Highly Selective CO 2 Electroreduction to C 2+ Products over Cu 2O-Decorated 2D Metal-Organic Frameworks with Rich Heterogeneous Interfaces. NANO LETTERS 2023; 23:1474-1480. [PMID: 36779931 DOI: 10.1021/acs.nanolett.2c04911] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electroreduction of carbon dioxide into high-value-added products is an effective approach to alleviating the energy crisis and pollution issues. However, there are still significant challenges for multicarbon (C2+) product production due to the lack of efficient catalysts with high selectivity. Herein, a Cu-rich electrocatalyst, where Cu2O nanoparticles are decorated on two-dimensional (2D) Cu-BDC metal-organic frameworks (MOFs) with abundant heterogeneous interfaces, is synthesized for highly selective CO2 electroreduction into C2+ products. A high C2+ Faradaic efficiency of 72.1% in an H-type cell and 58.2% in a flow cell are obtained, respectively. The heterogeneous interfaces of Cu2O/Cu-BDC can optimize the adsorption energy of reaction intermediates during CO2 electroreduction. An in situ infrared spectroscopy study indicates that the constructed interfaces can maintain the particular distribution of Cu valence states, where the C-C coupling is promoted to efficiently produce C2+ products owing to the stabilization of *CHO and *COH intermediates.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Mingmin Wang
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Jinyu Ye
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Liangbin Liu
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Leigang Li
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Yunhua Li
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Xiaoqing Huang
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| |
Collapse
|
45
|
Zhang XD, Liu T, Liu C, Zheng DS, Huang JM, Liu QW, Yuan WW, Yin Y, Huang LR, Xu M, Li Y, Gu ZY. Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO 2 Reduction Stability and Controllable Product Selectivity. J Am Chem Soc 2023; 145:2195-2206. [PMID: 36629383 DOI: 10.1021/jacs.2c09501] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper-based catalysts are widely explored in electrochemical CO2 reduction (CO2RR) because of their ability to convert CO2 into high-value-added multicarbon products. However, the poor stability and low selectivity limit the practical applications of these catalysts. Here, we proposed a simple and efficient asymmetric low-frequency pulsed strategy (ALPS) to significantly enhance the stability and the selectivity of the Cu-dimethylpyrazole complex Cu3(DMPz)3 catalyst in CO2RR. Under traditional potentiostatic conditions, Cu3(DMPz)3 exhibited poor CO2RR performance with the Faradaic efficiency (FE) of 34.5% for C2H4 and FE of 5.9% for CH4 as well as the low stability for less than 1 h. We optimized two distinguished ALPS methods toward CH4 and C2H4, correspondingly. The high selectivities of catalytic product CH4 (FECH4 = 80.3% and above 76.6% within 24 h) and C2H4 (FEC2H4 = 70.7% and above 66.8% within 24 h) can be obtained, respectively. The ultralong stability for 300 h (FECH4 > 60%) and 145 h (FEC2H4 > 50%) was also recorded with the ALPS method. Microscopy (HRTEM, SAED, and HAADF) measurements revealed that the ALPS method in situ generated and stabilized extremely dispersive and active Cu-based clusters (∼2.7 nm) from Cu3(DMPz)3. Meanwhile, ex situ spectroscopies (XPS, AES, and XANES) and in situ XANES indicated that this ALPS method modulated the Cu oxidation states, such as Cu(0 and I) with C2H4 selectivity and Cu(I and II) with CH4 selectivity. The mechanism under the ALPS methods was explored by in situ ATR-FTIR, in situ Raman, and DFT computation. The ALPS methods provide a new opportunity to boost the selectivity and stability of CO2RR.
Collapse
Affiliation(s)
- Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian-Wen Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei-Wen Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Rui Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
46
|
Li M, Song N, Luo W, Chen J, Jiang W, Yang J. Engineering Surface Oxophilicity of Copper for Electrochemical CO 2 Reduction to Ethanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204579. [PMID: 36394094 PMCID: PMC9839838 DOI: 10.1002/advs.202204579] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Copper-based materials are known for converting CO2 into deep reduction products via electrochemical reduction reaction (CO2 RR). As the major multicarbon products (C2+ ), ethanol (C2 H5 OH) and ethylene (C2 H4 ) are believed to share a common oxygenic intermediate according to theoretical studies, while the key factors that bifurcate C2 H5 OH and C2 H4 pathways on Cu-based catalysts are not fully understood. Here, a surface oxophilicity regulation strategy to enhance C2 H5 OH production in CO2 RR is proposed, demonstrated by a Cu-Sn bimetallic system. Compared with bare Cu catalyst, the Cu-Sn bimetallic catalysts show improved C2 H5 OH but suppressed C2 H4 selectivity. The experimental results and theoretical calculations demonstrate that the surface oxophilicity of Cu-Sn catalysts plays an important role in steering the protonation of the key oxygenic intermediate and guides the reaction pathways to C2 H5 OH. This study provides new insights into the electrocatalyst design for enhanced production of oxygenic products from CO2 RR by engineering the surface oxophilicity of copper-based catalysts.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Nan Song
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAustralian Institute of Innovative MaterialsUniversity of WollongongInnovation CampusWollongongNSW2522Australia
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
47
|
Liu C, Zhang XD, Huang JM, Guan MX, Xu M, Gu ZY. In Situ Reconstruction of Cu–N Coordinated MOFs to Generate Dispersive Cu/Cu 2O Nanoclusters for Selective Electroreduction of CO 2 to C 2H 4. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Meng-Xue Guan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
48
|
Zang Y, Liu T, Wei P, Li H, Wang Q, Wang G, Bao X. Selective CO
2
Electroreduction to Ethanol over a Carbon‐Coated CuO
x
Catalyst. Angew Chem Int Ed Engl 2022; 61:e202209629. [DOI: 10.1002/anie.202209629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Yipeng Zang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences China
| | - Hefei Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences China
| | - Qi Wang
- School of Materials Science and Engineering Dalian Jiaotong University Dalian 116028 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
49
|
Perspective of p-block single-atom catalysts for electrocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Li S, Dong X, Zhao Y, Mao J, Chen W, Chen A, Song Y, Li G, Jiang Z, Wei W, Sun Y. Chloride Ion Adsorption Enables Ampere‐Level CO
2
Electroreduction over Silver Hollow Fiber. Angew Chem Int Ed Engl 2022; 61:e202210432. [DOI: 10.1002/anie.202210432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Shoujie Li
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201203 P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Yonghui Zhao
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianing Mao
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Zheng Jiang
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201203 P. R. China
| | - Yuhan Sun
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201203 P. R. China
| |
Collapse
|