1
|
Tan D, Ding T, Shen K, Xu C, Jin S, Hu D, Sun S, Zhu M. Icosahedron kernel defect in Pt 1Ag x series of bimetallic nanoclusters enhances photocatalytic hydrogen evolution. Chem Sci 2025:d5sc01735a. [PMID: 40290332 PMCID: PMC12025090 DOI: 10.1039/d5sc01735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Developing high-efficiency photocatalysts for photocatalytic hydrogen production and understanding the structure-property relationships is much desired. In this study, a family of Pt1Ag x (x = 9, 11, 13 and 14) nanoclusters (NCs), including a new Pt1Ag11(SR)5(P(Ph-OMe)3)7 NC, were designed and synthesized via ligand engineering (SR = 2,3,5,6-tetrafluorothiophenol, P(Ph-OMe)3 = tris(4-methylphenyl)phosphine). The positive effect of the kernel structural defect on photocatalytic activity was investigated using the photocatalytic water-splitting reaction as a model, and the mechanistic relationship between the defect structure and catalytic activity was clarified. In this series of Pt1Ag x bimetallic NCs, the Pt1Ag11 NC, which exhibits a distinctive defect-containing icosahedral kernel structure, displayed excellent catalytic performance for photocatalytic hydrogen evolution, with the hydrogen production rate reaching 1780 μmol g-1 h-1. The experimental results revealed that the superior catalytic activity of Pt1Ag11/g-C3N4 may originate from the formation of Z-scheme heterojunction between Pt1Ag11 and the g-C3N4, facilitating efficient electron-hole separation and charge transfer. Furthermore, density-functional theory (DFT) calculations reveal the critical role of the defect-containing icosahedron-kernel on photocatalytic activity, which is favourable for the formation of the most stable nanocomposites and the easy absorption of H* intermediates on the Ag sites in Pt1Ag11/g-C3N4. This paper provides insights into the effect that the defects have on the mechanism of the photocatalytic hydrogen evolution reaction at the atomic level and promotes the rational design of high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Dong Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Tengfei Ding
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Kaidong Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Chang Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Song Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
2
|
Zhong Y, Liao P, Jiang P, Zhang Y, Kang J, Xie S, Feng R, Fan Y, Liu Q, Li G. Ionic-Fence Effect in Au Nanoparticle-Loaded UiO-66 Metal-Organic Frameworks for Highly Chemoselective Hydrogenation. Angew Chem Int Ed Engl 2025; 64:e202501821. [PMID: 39964049 DOI: 10.1002/anie.202501821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
The chemoselective reaction are vital for fine chemicals, which requires economical and environmentally friendly catalysts. In order to improve the selectivity of multi-reaction competition, herein, we propose a novel ionic-fence strategy to synthesize heterogeneous catalyst for efficient hydrogenation. Practically, UIO-66 metal-organic frameworks (MOF) modified with pyridinium-linker has been constructed through post-synthetic chains with paired anion via quaternization and ion exchange to form ionic-fence MOF (IFMOF-Cl), which can manage the adsorption mode of nitro substrate, further confine the formation of metal nanoparticles with high dispersity. The optimal Au@IFMOF-Cl catalyst demonstrates satisfactory selectivity for hydrogenation of nitro group compared to acetylene group in 4-nitrophenylacetylene. Specifically, it owns a high yield of 4-aminophenylacetylene (~97 %) with ultra-high catalytic efficiency (3880 h-1 TOF) and long stability, far superior to other catalysts without ionic fence effect. Adsorption experiments and density functional theory studies reveal that the incorporation of ionic fence could modulate the adsorption energy of nitro group, which is responsible for the high selectivity enhancement. Notably, this ionic-fence strategy exhibits comprehensive universality towards a wide range of substrates (23 kinds in total), providing a promising avenue for precisely engineering the internal microenvironments of catalysts to achieve highly selective synthesis of fine chemicals.
Collapse
Affiliation(s)
- Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Pingping Jiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- BYD Auto Industry Company Limited, Shenzhen, 518083, P. R. China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Sizhuo Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Rongyu Feng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Zhou S, Chen W, Luo X, Guo W, Dong J, Liu Y, Zhang Y, Wang D, Li Z, Gu P. Harmonizing proton sponge and proton reservoir in conjugated microporous polymers for enhanced photocatalytic hydrogen peroxide production. Chem Sci 2025:d4sc06603k. [PMID: 40242848 PMCID: PMC11998021 DOI: 10.1039/d4sc06603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Photocatalytic technology is highly sought-after for H2O2 production; however, the low selectivity between the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) pathways is the primary factor limiting photocatalytic performance. Herein, a strategy that simulates a proton sponge by integrating aliphatic tertiary amines into conjugated microporous polymers (CMPs) to synthesize PPDI-N is reported. This method uses a carboxylic acid contaminant (2,4-dichlorophenoxyacetic acid, 2,4-D) as the proton reservoir to synergistically expedite the photosynthesis of H2O2 via a selective one-step 2e- ORR. Importantly, with the aid of 2,4-D (acting as both a proton supplier and hole scavenger), the H2O2 production rate of PPDI-N is 4.4-fold higher than that in pure water, reaching 8.15 mmol g-1 within 4 h irradiation time, which is 58.2 times greater at the same pH value. By mimicking a photo Fenton-like process with the assistance of Fe2+, PPDI-N exhibits an unprecedented removal efficiency (>99%) for 300 ppm of 2,4-D within 60 min. As revealed by Kelvin probe force microscopy and electric surface potential calculations, an enhanced built-in electric field was established in PPDI-N. This work provides valuable guidance for advancing CMP photocatalysts and establishes an ideal scenario for enabling simultaneous photocatalytic mineralization of organic contaminants and H2O2 production.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Wenwen Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Jingwen Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Yuxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Yuzhe Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- Engineering Laboratory of Functional Nano- and Microstructured Materials in Petroleum and Chemical Industry, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
4
|
Zhang Y, Wu Y, Ma H, Gao Y, Fan X, Zhao Y, Kang F, Li Z, Liu Y, Zhang Q. Modulating N-Heterocyclic Microenvironment in β-Ketoenamine Covalent Organic Frameworks to Boost Overall Photosynthesis of H 2O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500674. [PMID: 40018876 DOI: 10.1002/smll.202500674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Covalent Organic Frameworks (COFs) have emerged as promising platforms for photocatalytic synthesis of hydrogen peroxide (H2O2) due to their tunable chemical compositions and efficient catalytic functionalities. Inspired by the role of the microenvironment in enzyme catalysis, this study introduces various N-heterocyclic species into β-ketoenamine COFs (Nx-COFs, where Nx represents the number of nitrogen atoms in the N-heterocycle) to regulate the microenvironment around catalytic sites on acceptor-donor-acceptor (A-D-A) COFs foroverall H2O2 photosynthesis in pure water. The Nx-COFs exhibit distinct H2O2 photosynthetic rates following the number of nitrogen atoms sequence of N3-COF > N2-COF > N1-COF > N0-COF, with N3-COF with triazine structure showing the highest H2O2 generation rate (4881 µmol h-1 g-1) and the decent solar-to-chemical conversion (SCC) efficiency (0.413%), surpassing many existing COF-based catalysts. In situ characterization and theoretical calculations support the experimental results, revealing that N-heterocyclic species promote the photosynthesis of H2O2 through both an indirect stepwise single-electron oxygen reduction reaction (1e- ORR) mechanism and a direct two-electron water oxidation (2e- WOR) pathway. This study advances the design paradigm of photocatalysts by modulating the microenvironment within A-D-A COFs, paving the way for the development of more efficient and robust photocatalytic systems for the overall photosynthesis of H2O2.
Collapse
Affiliation(s)
- Yangpeng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - You Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hailing Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yue Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoli Fan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuehan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zhonghua Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
5
|
Wang D, Tan F, Zhao W, Zhou S, Xu Q, Kan L, Zhu L, Gu P, Lu J. Develop Complex Photocatalytic System of D-π-A-type Conjugated Porous Polymers and Benzyl Alcohol Mediated Autocatalysis for Practical Artificial Photosynthesis of H 2O 2. Angew Chem Int Ed Engl 2025:e202425017. [PMID: 40113556 DOI: 10.1002/anie.202425017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
Artificial photosynthesis of H2O2 is conceived to be an ideal approach for replacing the industrial anthraquinone method that suffers from hefty energy penalties and environmental toxicity. However, the low concentration of H2O2 resides as the biggest hurdle for industrial production. Herein, with a focus on fabricating high-performance heterogeneous photocatalysts and establishing a highly efficient complex photocatalytic system, we report the preparation of D-π-A-type conjugated porous polymers containing a photosensitizer and redox-active anthraquinone moiety for endowing highly efficient H2O2 production up to 3.0 mmol g-1 h-1. Further, by exploiting the autocatalytic photooxidation feature of benzyl alcohol, •OOH as the key species contributing to H2O2 formation received a substantial accumulation, which stems from the collaboration of the photocatalytic and autocatalytic cycle. Mechanistically, the hydrogen bonding and π-π stacking between the photocatalyst and benzyl alcohol are formed to lower the free energy of the transition states, thus leading to unprecedentedly high efficiency in the photosynthesis of H2O2 up to 140.4 mmol g-1 h-1, with the concentration of 35.1 mmol L-1 and an apparent quantum yield of 49%. This work provides critical insights in advancing sustainable energy conversion research.
Collapse
Affiliation(s)
- Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feiyang Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Wuzi Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of SuzhouNano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Lixuan Kan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Center of Physical Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Center of Physical Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of SuzhouNano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Zhang Y, Xuan B, Wang J, Chen X, Zhao C, Zhao L, Kang J. Synergistic Mechanism of Hydroxyl Regulation and a Polyvinylpyrrolidone Surfactant in Enhancing the Catalytic Oxidation Abilities of BiOBr. Molecules 2025; 30:1286. [PMID: 40142063 PMCID: PMC11945476 DOI: 10.3390/molecules30061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The rational design of BiOBr photocatalysts with optimized surface properties and enhanced photooxidative capacities is crucial. This study proposes a synergistic strategy combining hydroxyl-rich solvents with polyvinylpyrrolidone (PVP) surfactants to modulate the structural and electronic properties of BiOBr through a solvothermal approach. The resulting self-assembled microspheres demonstrated exceptional efficiency in degrading ciprofloxacin (CIP), methyl orange (MO), and rhodamine B (RhB). Among the synthesized variants, BiOBr-EG-PVP (fabricated with ethylene glycol and PVP) exhibited the highest photocatalytic activity, achieving near-complete removal of 20 mg/L CIP and RhB within 10 min under visible light irradiation, with degradation rates 60.12-101.73 times higher than pristine BiOBr. The structural characterization revealed that ethylene glycol (EG) not only induced the formation of self-assembled microspheres but also introduced abundant surface hydroxyl groups, which simultaneously enhanced the hole-mediated oxidation capabilities. The incorporation of PVP further promoted the development of hierarchical honeycomb-like microspheres and synergistically enhanced both the hydroxyl group density and photooxidative potential through interfacial engineering. Density functional theory (DFT) calculations confirmed that the enhanced photooxidative performance originated from an increased surface oxygen content. This work elucidates the synergistic effects of hydroxyl-rich solvents and surfactant modification in the fabrication of advanced BiOBr-based photocatalysts, providing new insights for high-performance photocatalysis for environmental remediation.
Collapse
Affiliation(s)
- Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Boyuan Xuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Jiekai Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Xiang Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Changwei Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ec-Toxicology, Research Center for Eco-Envronmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Jing Kang
- China Institute for Radiation Protection, Taiyuan 030006, China;
| |
Collapse
|
7
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Xin Y, Tian J, Xiong X, Wu C, Carabineiro SAC, Yang X, Chen Z, Xia Y, Jin Y. Enhanced Photocatalytic Efficiency Through Oxygen Vacancy-Driven Molecular Epitaxial Growth of Metal-Organic Frameworks on BiVO 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417589. [PMID: 39828610 DOI: 10.1002/adma.202417589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO4 surfaces (Ov-BiVO4), enabling interactions with the oxygen-rich ligands of MIL-101. This reduces the formation energy and promotes conformal growth on BiVO4. The Ov-BiVO4/MIL-101 composite exhibits an ideal semiconductor/cocatalyst interface, achieving an impressive photocurrent density of 5.91 mA cm-2 at 1.23 VRHE, along with excellent stability. This high-performing photoanode enables an unbiased tandem device with an Ov-BiVO4/MIL-101-Si solar cell system, achieving a solar-to-hydrogen efficiency of 4.33%. The molecular-level integration mitigates surface states and enhances the internal electric field, facilitating the migration of photogenerated holes into the MIL-101 overlayer. This process activates highly efficient Fe catalytic sites, which effectively adsorb water molecules, lowering the energy barrier for water oxidation and improving interfacial kinetics. Further studies confirm the broad applicability of oxygen vacancy-induced molecular epitaxial growth in various MOFs, offering valuable insights into defect engineering for optimizing interfaces and enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Yulei Xin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Chenglin Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Xiaogang Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
| | - Zhangxing Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 313200, P. R. China
| | - Yanxian Jin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| |
Collapse
|
9
|
Liu J, Li J, Lin Z, Ye S, Lin W, Yang X, Gao SY, Cao R. In Situ Integration of Metallic Catalytic Sites and Photosensitive Centers within Covalent Organic Frameworks for the Enhanced Photocatalytic Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411315. [PMID: 39744766 DOI: 10.1002/smll.202411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Indexed: 02/21/2025]
Abstract
Covalent organic frameworks (COFs) are a promising platform for heterogeneous photocatalysis due to their stability and design diversity, but their potential is often restricted by unmanageable targeted excitation and charge transfer. Herein, a bimetallic COF integrating photosensitizers and catalytic sites is designed to facilitate locally ultrafast charge transfer, aiming to improve the photocatalytic reduction of CO2. The strategy uses a "one-pot" method to synthesize the bimetallic COF (termed PBCOFRuRe) through in situ Schiff-base condensation of Pyrene with MBpy (M = Ru, Re) units. In this structure, Ru and Re are anchored within bipyridine as the photosensitive center and catalytic site, respectively. The bimetallic architecture of PBCOFRuRe significantly boosts the photocatalytic efficiency for CO2 reduction, achieving an impressive CO yield of 8306.6 µmol g-1 h-1 with 99.8% selectivity, surpassing most reported COF materials. This improvement is attributed to the localized ultrafast charge transfer (0.23 ps) from Ru to Re, as demonstrated by femtosecond transient absorption spectroscopy (TAS). Further investigations demonstrate its heterogeneous feature, showcasing exceptional long-term stability and recyclability. This study represents a versatile approach for designing bimetallic COFs with ultrafast charge transfer, paving the pathway for advancements in artificial photosynthesis.
Collapse
Affiliation(s)
- Jiaying Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
- College of Life Science, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zujin Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Shihua Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Wenlie Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Shui-Ying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
- College of Life Science, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
10
|
Sun J, Long T, Chen Z, Luo H, Cao J, Xu D, Yuan Z. Rapid and dual-mode nitrite detection with improved sensitivity by nanointerface-regulated ultrafast Griess assay. Anal Chim Acta 2025; 1336:343524. [PMID: 39788677 DOI: 10.1016/j.aca.2024.343524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The rapid and sensitive detection of nitrite is important to human health protection due to its carcinogenic and teratogenic risks with excessive intake. The Griess assay is widely applied for the design of nitrite detection system. However, its relatively slow reaction kinetics and sole colorimetry mode might limit it's the sensitivity and practical application. Therefore, it is highly desirable to explore new detection method with rapid kinetics and multi-mode recognition characters. RESULTS We report a rapid and colorimetry and fluorimetry dual-mode sensing of nitrite by using N-(1-naphthalene)-ethylenediamine-derivated carbon dots (NETH-CDs) as the reporters. NETH-CDs show maximum excitation and emission around 359 nm and 431 nm, accompanying with a quantum yield of 27.1 %. The carbonization of NETH not only increases the fluorescence sensing mode, but also promotes the nanointerfacial Griess assay reaction kinetics within 1 min. High selectivity of dual-mode sensing is exhibited due to the specific reaction. The linear ranges in colorimetry and fluorimetry modes are 0.2-100 μM, and the corresponding limit of detection values are determined to be 0.10 and 0.08 μM, respectively. In addition, the accurate nitrite analysis in urine and serum samples with NETH-CDs nanoprobes. Moreover, the visual nitrite detection is achieved based on NETH-CD-loaded test strips. SIGNIFICANCE This work reports a new dual mode nitrite detection method for the first time by NETH-CDs supported ultrafast interfacial Griess assay, it not only explores sensitive nitrite detection probe, but also provides deep understanding of the relationship between chemical reaction kinetics and interfacial interaction on nanosurface. We believe our findings would benefit the exploration of rapid and sensitive detection systems toward various targets by regulating interfacial chemistry.
Collapse
Affiliation(s)
- Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Zihan Chen
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jiafeng Cao
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China.
| | - Zhiqin Yuan
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Deng X, Zhou M, Ma X. Metal-organic frameworks (MOFs) of an MIL-101-supported iridium(III) complex as efficient photocatalysts in the three-component alkoxycyanomethylation of alkenes. Dalton Trans 2025; 54:989-999. [PMID: 39611381 DOI: 10.1039/d4dt02943g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Metal-organic frameworks (MOFs) exhibit intriguing physicochemical properties due to their manageable structure, abundant porosity, and uniform pore size, which provide ideal environments for photocatalysts to achieve highly efficient photocatalysis. In this work, fac-Ir(ppy)3 is directly anchored to MOFs of MIL-101 with different morphologies via Friedel-Crafts alkylation, affording various MIL-101-supported fac-Ir(ppy)3 without the molecular modification of fac-Ir(ppy)3. The as-fabricated photocatalysts possess high specific surface areas (785-962 m2 g-1), pore volumes (0.42-0.47 cc g-1) and uniform pore sizes (∼1.9 nm). The luminescence properties of anchored fac-Ir(ppy)3 including emission lifetime, band gap energy and quantum yield are enhanced by fabricating a hollow interior and double shell in the frameworks of MIL-101 through etching with acetic acid. In the visible light-induced three-component alkoxycyanomethylation of styrenes with bromoacetonitriles and methanol, comparable catalytic activities (66-90%) to homogeneous fac-Ir(ppy)3 (69-90%) are achieved at room temperature. Furthermore, owing to the good chemical and mechanical stability of the catalyst, no significant decrease in yield (<2%) is observed over ten catalytic cycles. Overall, this study provides a mass/charge transfer-enhanced platform for supported photocatalysts to achieve highly efficient synthesis of fine chemicals in the field of heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Xintao Deng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Mi Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Li C, Li Y, Wu S, Li G, Li J, Zhao Y, Cai H, Shu J, Song M, Fu Q, Yuan J, Gao X, Ai Z, Li X, Chen R, Zuo Z. Flexible Scaffold Modulation of Spatial Structure and Function of Hierarchically Porous Nanoparticle@ZIF-8 Composites to Enhance Field Deployable Disease Diagnostics. SMALL METHODS 2025; 9:e2400738. [PMID: 39082595 DOI: 10.1002/smtd.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Indexed: 01/30/2025]
Abstract
Catalytic nanoparticle@metal-organic framework (MOF) composites have attracted significant interest in point-of-care testing (POCT) owing to their prominent catalytic activity. However, the trade-off between high loading efficiency and high catalytic activity remains challenging because high concentrations of nanoparticles tend to cause the misjoining and collapse of the MOFs. Herein, a facile strategy is reported to encapsulate high concentrations of platinum (Pt) nanoparticles into zeolitic imidazolate framework-8 (ZIF-8) using polydopamine (PDA) as a support for Pt@ZIF-8 and as a flexible scaffold for further immobilization of Pt nanoparticles. The resulting composite (Pt@ZIF-8@PDA@Pt) exhibits ultrahigh Pt nanoparticle loading efficiency, exceptional catalytic activity, stability, and a bright colorimetric signal. Following integration with lateral flow immunoassay (LFIA), the detection limits for pre- and post-catalysis detection of B-type natriuretic peptide (NT-proBNP) are 0.18 and 0.015 ng mL-1, respectively, representing a 6-fold and 70-fold improvement compared to gold nanoparticle-based LFIA. Moreover, Pt@ZIF-8@PDA@Pt-based LFIA achieves 100% diagnostic sensitivity for NT-proBNP in a cohort of 184 clinical samples.
Collapse
Affiliation(s)
- Chunyang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Yujian Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedics Research Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Shaoyan Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gui Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Cai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jia Shu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mingxuan Song
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianbo Yuan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhujun Ai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biological Industry Base, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biological Industry Base, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
13
|
Wen L, Chang Q, Zhang X, Li X, Zhong S, Zeng P, Shah SSA, Hu X, Cai W, Li Y. Tailoring the d-Band Center of WS 2 by Metal and Nonmetal Dual-Doping for Enhanced Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407594. [PMID: 39344557 DOI: 10.1002/smll.202407594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Tuning the adsorption energy of nitrogen intermediates and lowering the reaction energy barrier is essential to accelerate the kinetics of nitrogen reduction reaction (NRR), yet remains a great challenge. Herein, the electronic structure of WS2 is tailored based on a metal and nonmetal dual-doping strategy (denoted Fe, F-WS2) to lower the d-band center of W in order to optimize the adsorption of nitrogen intermediates. The obtained Fe, F-WS2 nanosheet catalyst presents a high Faradic efficiency (FE) of 22.42% with a NH3 yield rate of 91.46 µg h-1 mgcat. -1. The in situ characterizations and DFT simulations consistently show the enhanced activity is attributed to the downshift of the d-band center, which contributes to the rate-determining step of the second protonation to form N2H2 * key intermediates, thereby boosting the overall nitrogen electrocatalysis reaction kinetics. This work opens a new avenue to enhanced electrocatalysis by modulating the electronic structure and surrounding microenvironment of the catalytic metal centers.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingfang Chang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xinyang Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Xiaoye Hu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
14
|
Luan BB, Chu X, Wang Y, Qiao X, Jiang Y, Zhang FM. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412653. [PMID: 39422373 DOI: 10.1002/adma.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Covalent organic frameworks (COFs) as a new type of photocatalysts have shown unique advantages in visible-light-driven hydrogen evolution, while the reported overall water-splitting systems are still very rare among various COF-based photocatalysts. Herein, two COFs are integrated to construct a type of organic S-scheme heterojunction for improved overall water splitting. In this system, TpBpy-COF and COF-316 serve as H2- and O2-evolving components, respectively, which are combined through π-π interaction between conjugated aromatic rings. By introducing ultra-small Pt nanoparticles (NPs) into the pores of the TpBpy-COF nanosheets (NS), the resultant COF-316/Pt@TpBpy-COF NS heterostructure achieves extremely high H2 and O2 evolution rates of 220.4 and 110.2 µmol g-1 h-1, respectively, under visible light irradiation (λ ≥ 420 nm). The results of transient absorption spectra (TAS) and photoelectronic measurements indicate that the organic heterojunction interface notably facilitates the separation and transfer of photogenerated electron-hole pairs. Further, theoretical calculations and in situ experiments confirm the spontaneous formation of the COF/COF heterojunction interface and the active sites for overall water splitting.
Collapse
Affiliation(s)
- Bing-Bing Luan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiaoyu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiu Qiao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Yanxia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| |
Collapse
|
15
|
Zhu G, Hou J, Xu J, Li J, Wang C, Yi Y. Enhanced peroxidase-like activity based on electron transfer between platinum nanoparticles and Ti 3C 2T X MXene nanoribbons coupled smartphone-assisted hydrogel platform for detecting mercury ions. Anal Chim Acta 2024; 1329:343250. [PMID: 39396270 DOI: 10.1016/j.aca.2024.343250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Heavy metal pollution poses a serious threat to the ecological environment. Mercury ion (Hg2+) is a class of highly toxic heavy metal ions, which is bioaccumulative, difficult to breakdown, and has a significant affinity with sulfur and thiol-containing proteins, which seriously affects environmental safety and human health. Nanozyme-based sensing methods are expected to be used to detect toxic heavy metal ions. However, the application of precious metal nanozymes to develop portable sensors with simplicity, high stability, and high sensitivity has not been explored to a large extent. RESULTS In this paper, based on MXene's unique adsorption capacity for certain precious metal ions, PtNPs/Ti3C2TXNR composites were successfully prepared by in-situ growth of Pt nanoparticles (PtNPs) on the surface of Ti3C2TX MXene nanoribbons (Ti3C2TXNR) using the hydrothermal technique. Experimental data revealed PtNPs/Ti3C2TXNR exhibited superior peroxidase-like activity, attributed to the synergistic effect of well-dispersed ultrasmall PtNPs and electron transfer effect. Hg2+ can significantly inhibit enzyme-like activity of PtNPs/Ti3C2TXNR due to specific capture and partial in-situ reduction of PtNPs, so a colorimetric sensor was constructed for ultra-trace detection of Hg2+ with a linear range of 0.2 nM and 400 nM. Furthermore, using the portable detecting capabilities of smartphones and hydrogel, a smartphone-assisted hydrogel sensing platform of Hg2+ was constructed. Notably, the two-mode sensing platforms exhibited outstanding detection performance with LOD values as low as 15 pM (colorimetric) and 26 pM (hydrogel), respectively, superior to recently reported nanozyme-based Hg2+ sensors. SIGNIFICANCE Compared with other methods, the PtNPs/Ti3C2TXNR-based dual-mode sensor designed in this paper has superior sensitivity, high selectivity, simple operation and portability. In particular, the dual-output sensing strategy enables self-confirmation of detection results, greatly improving the reliability of the sensor, and is expected to be used for the on-site determination of trace mercury ions.
Collapse
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China
| | - Jieling Hou
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Juan Xu
- Guangzhou Customs District Technology Center, Tower B, Guangzhou Guojian Building, No 66, Huacheng Avenue, Zhujiang New Town, Guangzhou, 510470, PR China
| | - Jing Li
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chenxu Wang
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Fujian Key Laboratory of Agro-products Quality & Safety, Fuzhou, 350003, PR China.
| |
Collapse
|
16
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
17
|
Zahid M, Ismail A, Ullah R, Ali U, Raziq F, Alrebdi TA, Alodhayb AN, Ali S, Qiao L. Pt-N catalytic centres concisely enhance interfacial charge transfer in amines functionalized Pt@MOFs for selective conversion of CO 2 to CH 4. J Colloid Interface Sci 2024; 672:370-382. [PMID: 38850864 DOI: 10.1016/j.jcis.2024.05.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Improving ligand-to-active metal charge transfer (LAMCT) by finely tuning the organic ligand is a decisive strategy to enhance charge transfer in metal organic frameworks (MOFs)-based catalysts. However, in most MOFs loaded with active metal catalysts, electron transmission encounters massive obstacle at the interface between the two constituents owing to poor LAMCT. Herein, amines (-NH2) functionalized MOFs (NH2-MIL-101(Cr)) encapsulated active metal Pt nanoclusters (NCs) catalysts are synthesized by the polyol reduction method and utilized for the photoreduction of CO2. Surprisingly, the introduction of -NH2 (electron donating) groups within the matrix of MIL-101(Cr) improved the electron migration through the LAMCT process, fostering a synergistic interaction with Pt. The combined experimental analysis exposed the high number of metallic Pt (Pt0) in Pt@NH2-MIL-101(Cr) catalyst through seamless electron shuttling from N of -NH2 group to excited Pt generating versatile hybrid Pt-N catalytic centres. Consequently, these versatile hybrid catalytic centres act as electro-nucleophilic centres, which enable the efficient and selective conversion of CO bond in CO2 to harvest CH4 (131.0 µmol.g-1) and maintain excellent stability and selectivity for consecutive five rounds, superior to Pt@MIL-101(Cr) and most reported catalysts. Our study verified that the precise tuning of organic ligands in MOFs immensely improves the surface-active centres, electron migration, and catalytic selectivity of the excited Pt NCs catalysts encaged inside MOFs through an improved LAMCT pathway.
Collapse
Affiliation(s)
- Muhammad Zahid
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Ahmed Ismail
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Usman Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
18
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
19
|
Wen L, Liu X, Li X, Zhang H, Zhong S, Zeng P, Shah SSA, Hu X, Cai W, Li Y. Hydrophobic Microenvironment Modulation of Ru Nanoparticles in Metal-Organic Frameworks for Enhanced Electrocatalytic N 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405210. [PMID: 38984453 PMCID: PMC11425667 DOI: 10.1002/advs.202405210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The modulation of the chemical microenvironment surrounding metal nanoparticles (NPs) is an effective means to enhance the selectivity and activity of catalytic reactions. Herein, a post-synthetic modification strategy is developed to modulate the hydrophobic microenvironment of Ru nanoparticles encapsulated in a metal-organic framework (MOF), MIP-206, namely Ru@MIP-Fx (where x represents perfluoroalkyl chain lengths of 3, 5, 7, 11, and 15), in order to systematically explore the effect of the hydrophobic microenvironment on the electrocatalytic activity. The increase of perfluoroalkyl chain length can gradually enhance the hydrophobicity of the catalyst, which effectively suppresses the competitive hydrogen evolution reaction (HER). Moreover, the electrocatalytic production rate of ammonia and the corresponding Faraday efficiency display a volcano-like pattern with increasing hydrophobicity, with Ru@MIP-F7 showing the highest activity. Theoretical calculations and experiments jointly show that modification of perfluoroalkyl chains of different lengths on MIP-206 modulates the electronic state of Ru nanoparticles and reduces the rate-determining step for the formation of the key intermediate of N2H2 *, leading to superior electrocatalytic performance.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xinyang Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Hanlin Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Xiaoye Hu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
20
|
Zhang Y, Wu S, Ma W, Liu X, Li Z. Photocatalytic Hydrosilylation over Pt@UiO-66-NH 2: Enhanced Activity and Polymerization Kinetics. Macromol Rapid Commun 2024; 45:e2400241. [PMID: 38871361 DOI: 10.1002/marc.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Metal-organic frameworks (MOFs) have shown great research and application value in various types of hydrosilylation reactions. However, studies on photocatalysis-induced hydrosilylation using MOFs are extremely rare. Metal nanoparticles (MNPs)@MOFs are extensively studied for their excellent structural tunability and photocatalytic activity, but there are few reports on their application in photocatalytic hydrosilylation. Here, a novel photocatalyst consisting of platinum (Pt) nanoparticles immobilized in a MOF framework is synthesized and used for photocatalytic hydrosilylation. The effects of various factors on hydrosilylation conversion are investigated, including catalyst concentration, substrate ratio, and irradiation intensity. Furthermore, the photoreactivity of the synthesized Pt catalyst is evaluated in the presence of different concentrations of 2-chlorothixanthone as a photosensitizer. It is noteworthy that the conversion of the reaction increases with increasing catalyst concentration or photosensitizer concentration, whereas increasing the polymethylhydrosiloxane content does not lead to a significant increase in conversion. This study demonstrates the potential of MNPs@MOFs as efficient photocatalysts for photoinduced hydrosilylation reactions and paves the way for future applications in this area.
Collapse
Affiliation(s)
- Yushu Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Shufang Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wenqiang Ma
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaoxuan Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhiquan Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
21
|
Hu X, Zhang Z, Lu P, Zhou Y, Zhou Y, Bai Y, Yao J. Cyano-deficient g-C 3N 4 for round-the-clock photocatalytic degradation of tetracycline: Mechanism and application prospect evaluation. WATER RESEARCH 2024; 260:121936. [PMID: 38917504 DOI: 10.1016/j.watres.2024.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Without light at night, the system for photocatalytic degradation of refractory organic pollutants in aquatic environments based on free radicals will fall into a dormant state. Hence, a round-the-clock photocatalyst (CCN@SMSED) was prepared by in situ growth of cyanide-deficient g-C3N4 on the surface of Sr2MgSi2O7:Eu2+,Dy3+ through a simple calcination method. The CCN@SMSED exhibits an outstanding oxidative degradation ability for refractory tetracycline (TC) in water under both light and dark conditions, which is attributed to the synergistic effect of free radical (•O2- and •OH) and non-radical (h+ and 1O2). Electrochemical analyses further indicate that direct electron transfer (DET) is also one of the reasons for the efficient degradation of TC. Remarkably, the continuous working time of the round-the-clock photocatalyst in a dark environment was estimated for the first time (about 2.5 h in this system). The degradation pathways of TC mainly include demethylation, ring opening, deamination and dehydration, and the growth of Staphylococcus aureus shows that the process is biosafe. More importantly, CCN@SMSED holds significant promise for practical application due to its low energy consumption and suitability for removing TC from a variety of complex water bodies. This work provides an energy consumption reference for the practical application of round-the-clock photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Xueli Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian Province 350118, China.
| | - Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
22
|
Hu S, Gao ML, Huang J, Wang H, Wang Q, Yang W, Sun Z, Zheng X, Jiang HL. Introducing Hydrogen-Bonding Microenvironment in Close Proximity to Single-Atom Sites for Boosting Photocatalytic Hydrogen Production. J Am Chem Soc 2024; 146:20391-20400. [PMID: 38987861 DOI: 10.1021/jacs.4c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiajia Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
23
|
Chen Q, Tang Y, Ding YM, Jiang HY, Zhang ZB, Li WX, Liu ML, Sun SP. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF-Polymer Composites: Strategies and Nanofiltration Applications. Polymers (Basel) 2024; 16:1653. [PMID: 38932003 PMCID: PMC11207757 DOI: 10.3390/polym16121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable pore structures. Combining polymers with metal-organic frameworks (MOFs), which possess uniform and intrinsic pore structures, may overcome this limitation. This combination has resulted in three distinct types of membranes: MOF polycrystalline membranes, mixed-matrix membranes (MMMs), and thin-film nanocomposite (TFN) membranes. However, their effectiveness is hindered by the limited regulation of the surface properties and growth of MOFs and their poor interfacial compatibility. The main issues in preparing MOF polycrystalline membranes are the uncontrollable growth of MOFs and the poor adhesion between MOFs and the substrate. Here, polymers could serve as a simple and precise tool for regulating the growth and surface functionalities of MOFs while enhancing their adhesion to the substrate. For MOF mixed-matrix membranes, the primary challenge is the poor interfacial compatibility between polymers and MOFs. Strategies for the mutual modification of MOFs and polymers to enhance their interfacial compatibility are introduced. For TFN membranes, the challenges include the difficulty in controlling the growth of the polymer selective layer and the performance limitations caused by the "trade-off" effect. MOFs can modulate the formation process of the polymer selective layer and establish transport channels within the polymer matrix to overcome the "trade-off" effect limitations. This review focuses on the mechanisms of synergistic construction of polymer-MOF membranes and their structure-nanofiltration performance relationships, which have not been sufficiently addressed in the past.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
| | - Ying Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang-Min Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Ya Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Bo Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| |
Collapse
|
24
|
Gao ML, Liu S, Liu L, Han ZB. Superhydrophobic MOF/polymer composite with hierarchical porosity for boosting catalytic performance in an humid environment. NANOSCALE 2024; 16:10637-10644. [PMID: 38738309 DOI: 10.1039/d4nr00948g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The poor hydrostability of most reported metal-organic frameworks (MOFs) has become a daunting challenge in their practical applications. Recently, MOFs combined with multifunctional polymers can act as a functional platform and exhibit unique catalytic performance; they can not only inherit the outstanding properties of the two components but also offer unique synergistic effects. Herein, an original porous polymer-confined strategy has been developed to prepare a superhydrophobic MOF composite to significantly enhance its moisture or water resistance. The selective nucleation and growth of MOF nanocrystals confined in the pore of PDVB-vim are closely related to the structure-directing and coordination-modulating properties of PDVB-vim. The resultant MOF/PDVB-vim composite not only produces superior superhydrophobicity without significantly disturbing the original features but also exhibits a novel catalytic activity in the Friedel-Crafts alkylation reaction of indoles with trans-β-nitrostyrene because of the accessible sites and synergistic effects.
Collapse
Affiliation(s)
- Ming-Liang Gao
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuo Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
25
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
26
|
Yao SJ, Lin JM, Dong LZ, Li YL, Li N, Liu J, Lan YQ. Ferrocene-functionalized zirconium-oxo clusters for achieving high-performance thermocatalytic redox reactions. Sci Bull (Beijing) 2024; 69:1418-1426. [PMID: 38485624 DOI: 10.1016/j.scib.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 05/28/2024]
Abstract
The Zr(IV) ions are easily hydrolyzed to form oxides, which severely limits the discovery of new structures and applications of Zr-based compounds. In this work, three ferrocene (Fc)-functionalized Zr-oxo clusters (ZrOCs), Zr9Fc6, Zr10Fc6 and Zr12Fc8 were synthesized through inhibiting the hydrolysis of Zr(IV) ions, which show increased nuclearity and regular structural variation. More importantly, these Fc-functionalized ZrOCs were used as heterogeneous catalysts for the transfer hydrogenation of levulinic acid (LA) and phenol oxidation reactions for the first time, and displayed outstanding catalytic activity. In particular, Zr12Fc8 with the largest number of Zr active sites and Fc groups can achieve > 95% yield for LA-to-γ-valerolactone within 4 h (130 °C) and > 98% yield for 2,3,6-trimethylphenol-to-2,3,5-trimethyl-p-benzoquinone within 30 min (80 °C), showing the best catalytic performance. Catalytic characterization combined with theory calculations reveal that in the Fc-functionalized ZrOCs, the Zr active sites could serve as substrate adsorption sites, while the Fc groups could act as hydrogen transfer reagent or Fenton reagent, and thus achieve effectively intramolecular metal-ligand synergistic catalysis. This work develops functionalized ZrOCs as catalysts for thermal-triggered redox reactions.
Collapse
Affiliation(s)
- Su-Juan Yao
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jiao-Min Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ying-Lin Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ning Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Ji X, Zhang J, Zhang G, Li N, Wang R, Lin H, Duan X. Dual interfacing with metallic cobalt boosts the electron shuttle of CdS-carbide nanoassemblies. J Colloid Interface Sci 2024; 660:810-822. [PMID: 38277838 DOI: 10.1016/j.jcis.2024.01.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Harnessing accelerated interfacial redox, thus boosting charge separation, is of great importance in photocatalytic solar hydrogen generation. In effect, nanoassembling non-noble metallic phases in CdS-based systems and elucidating their role in photocatalysis hold the key to eventually boosting electron shuttle in the field. Here we combine an efficient in-situ exsoluted metallic Co0 nanoparticles on a carbides matrix (CMG) with CdS (CdS@CoCMG) for photogeneration of hydrogen. The metallic cobalt phase exhibits strong binding at the CdS-carbide dual interfaces, forming the accelerated "electron converter" mechanism validated by charge transfer kinetics and achieving two orders of magnitude faster hydrogen production (44.42 mmol g-1 h-1) relative to CdS (0.43 mmol g-1 h-1). We propose that the unique catalyst configuration enable the directional electron-relay photocatalysis via harnessing interfaces between Co0 phase, carbides, and CdS clusters, which eventually boosts the redox process and charge separation of the integrated system, leading to high H2 production rates in the suspension.
Collapse
Affiliation(s)
- Xujing Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Jiayang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Guoqing Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Na Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Ruixin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Haiqiang Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Xinping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
28
|
Zhang H, Han G, Liu Y, Zhao L, Zhang W, Tahir Khalil M, Wei H, Wang C, Liu T, Guo X, Wu X, Jiang J, Li B. CoP/Co heterojunction on porous g-C 3N 4 nanosheets as a highly efficient catalyst for hydrogen generation. J Colloid Interface Sci 2024; 658:22-31. [PMID: 38091795 DOI: 10.1016/j.jcis.2023.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Designing non-precious catalysts to synergistically achieve a facilitated exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a hetero-structured catalyst CoP-Co supported on porous g-C3N4 nanosheets (CoP-Co/CN-I) was prepared by pyrolysis and P-inducing strategy. The optimal catalyst achieves a turnover frequency (TOF) of 26 min-1 at room temperature and the apparent activation energy (Ea) is 35.5 kJ·mol-1. The catalytic activity is ranked top among the non-precious metal phosphides or the other supports. Meanwhile, the catalytic activity has no significant decrease even after 5 cycles. The CoP/Co interfaces provide richly exposed active sites, optimize hydrogen/water absorption free energy via electronic coupling, and thus improve the catalytic activity. The experimental results reveal that the CoP/Co heterojunction improves the catalytic activity due to the construction of dual-active sites. This research facilitates the innovative construction of non-noble metal catalysts to meet industrial demand for heterogeneous catalysis.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Guosheng Han
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China.
| | - Lingli Zhao
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Wenbo Zhang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China
| | - Muhammad Tahir Khalil
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Chengming Wang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Tao Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianji Guo
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
29
|
Gong H, Xing Y, Li J, Liu S. Functionalized Linear Conjugated Polymer/TiO 2 Heterojunctions for Significantly Enhancing Photocatalytic H 2 Evolution. Molecules 2024; 29:1103. [PMID: 38474617 DOI: 10.3390/molecules29051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in recent years due to their structural abundance and tunable energy bands. Compared with CP-based materials, the inorganic semiconductor TiO2 has the advantages of low cost, non-toxicity and high photocatalytic hydrogen production (PHP) performance. However, studies on polymeric-inorganic heterojunctions, composed of D-A type CPs and TiO2, for boosting the PHP efficiency are still rare. Herein, an elucidation that the photocatalytic hydrogen evolution activity can actually be improved by forming polymeric-inorganic heterojunctions TFl@TiO2, TS@TiO2 and TSO2@TiO2, facilely synthesized through efficient in situ direct C-H arylation polymerization, is given. The compatible energy levels between virgin TiO2 and polymeric semiconductors enable the resulting functionalized CP@TiO2 heterojunctions to exhibit a considerable photocatalytic hydrogen evolution rate (HER). Especially, the HER of TSO2@TiO2 heterojunction reaches up to 11,220 μmol g-1 h-1, approximately 5.47 and 1260 times higher than that of pristine TSO2 and TiO2 photocatalysts. The intrinsic merits of a donor-acceptor conjugated polymer and the interfacial interaction between CP and TiO2 account for the excellent PHP activity, facilitating the separation of photo-generated excitons. Considering the outstanding PHP behavior, our work discloses that the coupling of inorganic semiconductors and suitable D-A conjugated CPs would play significant roles in the photocatalysis community.
Collapse
Affiliation(s)
- Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yuqin Xing
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jinhua Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
30
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
31
|
Yu J, Wang X, Wang Y, Xie X, Xie H, Vorayos N, Sun J. Heating-induced adsorption promoting the efficient removal of toluene by the metal-organic framework UiO-66 (Zr) under visible light. J Colloid Interface Sci 2024; 653:1478-1487. [PMID: 37804616 DOI: 10.1016/j.jcis.2023.09.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
The removal of indoor/outdoor toluene by photocatalysis has drawn much attention due to its low energy consumption and easy availability. However, light inevitably generates heat, and pollutants desorb from catalysts as the temperature rises, which is not beneficial to degradation. Contrast to the frequently occurred phenomena, we firstly found that the adsorption capacity of UiO-66 (Zr) on toluene increased with increasing temperature as adsorption isotherms and in-situ Fourier transform infrared spectra (in-situ FTIR) showed. The optimum temperature was 30 °C. This stage in which adsorption capacity was positively correlated with temperature was called heating-induced adsorption, which achieved a toluene removal efficiency of 69.6 %. By density functional theory (DFT) calculations and changing the metal centers and organic ligands of UiO-66 (Zr) respectively, we disclosed that the heating-induced adsorption was mainly related to the π-π stacking interaction of MOF ligands and toluene. The analysis of samples before and after adsorption showed that the interaction between UiO-66 (Zr) and adsorbed toluene facilitated the charge transfer and prolonged the carrier lifetime, leading to the increase of hydroxyl radicals (•OH) in photocatalysis. Therefore, a synergistic effect between heating-induced adsorption and photocatalysis was proposed by analyzing the adsorption of toluene on UiO-66 (Zr) in detail. This work provided new viewpoint to understand the role of concomitant heat contributed to the adsorption and degradation of toluene during photocatalysis.
Collapse
Affiliation(s)
- Jiajun Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, China
| | - Xiao Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Yan Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Xiaofeng Xie
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., No. 712 Wen'er West Road, Hangzhou, Zhejiang 310003, China
| | - Nat Vorayos
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Thailand
| | - Jing Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China.
| |
Collapse
|
32
|
Kavun V, Uslamin E, van der Linden B, Canossa S, Goryachev A, Bos EE, Garcia Santaclara J, Smolentsev G, Repo E, van der Veen MA. Promoting Photocatalytic Activity of NH 2-MIL-125(Ti) for H 2 Evolution Reaction through Creation of Ti III- and Co I-Based Proton Reduction Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54590-54601. [PMID: 37966899 PMCID: PMC10694822 DOI: 10.1021/acsami.3c15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Titanium-based metal-organic framework, NH2-MIL-125(Ti), has been widely investigated for photocatalytic applications but has low activity in the hydrogen evolution reaction (HER). In this work, we show a one-step low-cost postmodification of NH2-MIL-125(Ti) via impregnation of Co(NO3)2. The resulting Co@NH2-MIL-125(Ti) with embedded single-site CoII species, confirmed by XPS and XAS measurements, shows enhanced activity under visible light exposure. The increased H2 production is likely triggered by the presence of active CoI transient sites detected upon collection of pump-flow-probe XANES spectra. Furthermore, both photocatalysts demonstrated a drastic increase in HER performance after consecutive reuse while maintaining their structural integrity and consistent H2 production. Via thorough characterization, we revealed two mechanisms for the formation of highly active proton reduction sites: nondestructive linker elimination resulting in coordinatively unsaturated Ti sites and restructuring of single CoII sites. Overall, this straightforward manner of confinement of CoII cocatalysts within NH2-MIL-125(Ti) offers a highly stable visible-light-responsive photocatalyst.
Collapse
Affiliation(s)
- Vitalii Kavun
- Department
of Separation Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Evgeny Uslamin
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Bart van der Linden
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Stefano Canossa
- Department
of Nanochemistry, Max Planck Institute for
Solid State Research, 70569 Stuttgart, Germany
| | - Andrey Goryachev
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Emma E. Bos
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Jara Garcia Santaclara
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | | | - Eveliina Repo
- Department
of Separation Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Monique A. van der Veen
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
33
|
Hu S, Xie C, Xu YP, Chen X, Gao ML, Wang H, Yang W, Xu ZN, Guo GC, Jiang HL. Selectivity Control in the Direct CO Esterification over Pd@UiO-66: The Pd Location Matters. Angew Chem Int Ed Engl 2023; 62:e202311625. [PMID: 37656120 DOI: 10.1002/anie.202311625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chenfan Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu-Ping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuelu Chen
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structural of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35000, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
34
|
Wu Y, Yu Y, Shen W, Jiang Y, He R, Li M. Anion-induced electronic localization and polarized cobalt clusters for highly efficient water splitting. MATERIALS HORIZONS 2023; 10:5633-5642. [PMID: 37753534 DOI: 10.1039/d3mh01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It is a promising pathway to use anions to regulate electronic structures, reasonably design and construct highly efficient catalysts for water splitting. Herein, a N-regulated Co cluster catalyst confined in carbon nanotubes, N-Co NCNTs, was constructed successfully. Nitrogen anions played a crucial role in optimizing the electronic structures of Co clusters and enhancing localization of electrons, resulting in polarized cobalt clusters. The N-induced electronic localization and the resulting polarized Co clusters are responsible for the improvement of catalytic activity. N-Co NCNTs exhibited ultra-low overpotentials of 178 mV and 92 mV for the OER and HER to achieve 10 mA cm-2 in an alkaline electrolyte, respectively. Its long-term catalytic durability is mainly attributed to the obstacle to the surface oxidation of Co clusters caused by N-regulation. N-Co NCNTs maintained a stable current density for 160 h at 10 mA cm-2. DFT computations confirmed the decisive role played by nitrogen anions in regulating the electronic structure. This work provides a pathway for understanding and designing highly efficient anion-regulated catalysts.
Collapse
Affiliation(s)
- Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
35
|
Bao Z, Yao Z, Zhu C, Liu Y, Zhang S, Zhao J, Ding L, Xu Z, Zhong X, Zhu Y, Wang J. Coherent Sub-Nanometer Interface between Crystalline and Amorphous Materials Boosts Electrochemical Synthesis of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302380. [PMID: 37357155 DOI: 10.1002/smll.202302380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Indexed: 06/27/2023]
Abstract
There are enormous yet largely underexplored exotic phenomena and properties emerging from interfaces constructed by diverse types of components that may differ in composition, shape, or crystal structure. It remains poorly understood the unique properties a coherent interface between crystalline and amorphous materials may evoke, and there lacks a general strategy to fabricate such interfaces. It is demonstrated that by topotactic partial oxidation heterostructures composed of coherently registered crystalline and amorphous materials can be constructed. As a proof-of-concept study, heterostructures consisting of crystalline P3 N5 and amorphous P3 N5 Ox can be synthesized by creating amorphous P3 N5 Ox from crystalline P3 N5 without interrupting the covalent bonding across the coherent interface. The heterostructure is dictated by nanometer-sized short-range-ordered P3 N5 domains enclosed by amorphous P3 N5 Ox matrix, which entails simultaneously fast charge transfer across the interface and bicomponent synergistic effect in catalysis. Such a P3 N5 /P3 N5 Ox heterostructure attains an optimal adsorption energy for *OOH intermediates and exhibits superior electrocatalytic performance toward H2 O2 production by adopting a selectivity of 96.68% at 0.4 VRHE and a production rate of 321.5 mmol h-1 gcatalyst -1 at -0.3 VRHE . The current study provides new insights into the synthetic strategy, chemical structure, and catalytic property of a sub-nanometer coherent interface formed between crystalline and amorphous materials.
Collapse
Affiliation(s)
- Zhikang Bao
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zihao Yao
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chongzhi Zhu
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yikuan Liu
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shijie Zhang
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jinyan Zhao
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lei Ding
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zaixiang Xu
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xing Zhong
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yihan Zhu
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianguo Wang
- Institute of Industrial Catalysis, Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
36
|
Du Y, Jie G, Jia H, Liu J, Wu J, Fu Y, Zhang F, Zhu W, Fan M. Visible-light-induced photocatalytic CO 2 reduction over zirconium metal organic frameworks modified with different functional groups. J Environ Sci (China) 2023; 132:22-30. [PMID: 37336607 DOI: 10.1016/j.jes.2022.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/21/2023]
Abstract
The reduction of CO2 into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects. In the current work, an amino-functionalized zirconium metal organic framework (Zr-MOF) was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde (PA), salicylaldehyde (SA), benzaldehyde (BA), and trifluoroacetic acid (TA), named Zr-MOF-X (X = PA, SA, BA, and TA), respectively, through the post-synthesis modification. Compared with Zr-MOF and Zr-MOF-TA, the introduction of PA, SA, or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO2 capture, but also accelerate the photogenerated charge separation and transfer, thereby improving the photocatalytic ability of Zr-MOF for CO2 reduction. These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO2 reduction. Therefore, the current work provides an instructive approach to improve the photocatalytic efficiency of CO2 reduction through the covalent modification of MOFs.
Collapse
Affiliation(s)
- Yuexian Du
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Guang'an Jie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Huilin Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jieyu Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
37
|
Dou CX, Tian XK, Chen YJ, Yin PP, Guo JH, Yang XG, Guo YM, Ma LF. Fast photocatalytic degradation of rhodamine B using indium-porphyrin based cationic MOF under visible light irradiation. Phys Chem Chem Phys 2023; 25:25139-25145. [PMID: 37706361 DOI: 10.1039/d3cp03255h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A broad light-harvesting range and efficient charge separation are two main ways to enhance the visible photocatalytic performance of semiconductors. Herein, an ionic porphyrin MOF [In(TPyP)]·(NO3) (1) (TPyP = 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin) was synthesized via in situ metalation. The orderly arranged porphyrin photosensitizer and the internal electric field between the MOF host and NO3- guests enable effective visible light response and electron-hole separation. Consequently, the as-synthesized MOF shows efficient photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) organic pollutants. It can degrade 99.07% of RhB within only 20 minutes under visible light irradiation (λ > 420 nm) with a high chemical reaction rate constant of 0.2400 min-1. The photocatalytic activity of the title MOF is more efficient than those of other reported MOFs, COFs and even inorganic semiconductors. The reusability, energy level, band gap, charge distribution and main degradation mechanisms of the photocatalyst were well studied.
Collapse
Affiliation(s)
- Chang-Xun Dou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xu-Ke Tian
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Ying-Jun Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Jia-Hui Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Yu-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Lu-Fang Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|
38
|
Xie M, Li C, Zhang S, Zhang Z, Li Y, Chen XB, Shi Z, Feng S. Topological Insulator Bi 2 Se 3 -Assisted Heterostructure for Ultrafast Charging Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301436. [PMID: 37078904 DOI: 10.1002/smll.202301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The development of fast charging materials offers a viable solution for large-scale and sustainable energy storage needs. However, it remains a critical challenge to improve the electrical and ionic conductivity for better performance. Topological insulator (TI), a topological quantum material that has attracted worldwide attention, hosts unusual metallic surface states and consequent high carrier mobility. Nevertheless, its potential in promising high-rate charging capability has not been fully realized and explored. Herein, a novel Bi2 Se3 -ZnSe heterostructure as excellent fast charging material for Na+ storage is reported. Ultrathin Bi2 Se3 nanoplates with rich TI metallic surfaces are introduced as an electronic platform inside the material, which greatly reduces the charge transfer resistance and improves the overall electrical conductivity. Meanwhile, the abundant crystalline interfaces between these two selenides promote Na+ migration and provide additional active sites as well. As expected, the composite delivers the excellent high-rate performance of 360.5 mAh g-1 at 20 A g-1 and maintains its electrochemical stability of 318.4 mAh g-1 after 3000 long cycles, which is the record high for all reported selenide-based anodes. This work is anticipated to provide alternative strategies for further exploration of topological insulators and advanced heterostructures.
Collapse
Affiliation(s)
- Minggang Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Siqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuxin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC, 3053, Australia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
39
|
Karmakar S, Barman S, Rahimi FA, Rambabu D, Nath S, Maji TK. Confining charge-transfer complex in a metal-organic framework for photocatalytic CO 2 reduction in water. Nat Commun 2023; 14:4508. [PMID: 37495574 PMCID: PMC10371996 DOI: 10.1038/s41467-023-40117-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
In the quest for renewable fuel production, the selective conversion of CO2 to CH4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH4 from CO2. The reported material produces 7.3 mmol g-1 of CH4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Collapse
Affiliation(s)
- Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Soumitra Barman
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sukhendu Nath
- Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
40
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
41
|
Zhang Y, Chen S, Zhang Y, Li R, Zhao B, Peng T. Hydrogen-Bond Regulation of the Microenvironment of Ni(II)-Porphyrin Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210727. [PMID: 36787904 DOI: 10.1002/adma.202210727] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Accurately regulating the microenvironment around active sites is an important approach for boosting the overall water splitting performance of bifunctional electrocatalysts, which can drive both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in the same electrolyte. Herein, pseudo-pyridine-substituted Ni(II)-porphyrins (o-NiTPyP, m-NiTPyP, and p-NiTPyP) with pseudo-pyridine N-atoms located at the ortho-, meta-, or para-position are prepared and used as model catalysts for alkaline water splitting. Experimental and theoretical results reveal that the pseudo-pyridine N-atom positions can regulate the microenvironment around the active sites and the adsorption free energy of H-donating substances by affecting the H-bonding interaction and the NNiN bond angles of active sites, and thus those pseudo-pyridine-substituted Ni(II)-porphyrins deliver better electrocatalytic activity than the Ni(II)-tetraphenylporphyrin (NiTPP) without pseudo-pyridine N-atoms. Among them, m-NiTPyP on carbon nanotubes delivers the lowest overpotentials of 267 and 138 mV at 10 mA cm-2 for the OER and HER, respectively. Specifically, m-NiTPyP as bifunctional electrocatalyst in an alkaline electrolyzer requires only 1.62 V to drive efficient overall water splitting at 10 mA cm-2 while remaining durable. This work proposes a new H-bond-regulating approach of the microenvironment of electrocatalysts for effectively boosting the overall water splitting activity and deeply understanding its related mechanism.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Shengtao Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Renjie Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tianyou Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
42
|
Ouyang YS, Yang QY. High-Performance Visible-Light Photocatalysts for H 2 Production: Rod-Shaped Co 3O 4/CoO/Co 2P Heterojunction Derived from Co-MOF-74. J Colloid Interface Sci 2023; 644:346-357. [PMID: 37120883 DOI: 10.1016/j.jcis.2023.04.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Photocatalyst systems generally consist of catalysts and cocatalysts to realize light capture, charge carrier migration, and surface redox reactions. Developing a single photocatalyst that performs all functions while minimizing efficiency loss is extremely challenging. Herein, rod-shaped photocatalysts Co3O4/CoO/Co2P are designed and prepared using Co-MOF-74 as a template, which displays an outstanding H2 generation rate of 6.00 mmol·g-1·h-1 when exposed to visible light irradiation. It is 12.8 times higher than pure Co3O4. Under light excitation, the photoinduced electrons migrate from the catalysts of Co3O4 and CoO to the cocatalyst Co2P. The trapped electrons can subsequently undergo a reduction reaction to produce H2 on the surface. Density functional theory calculations and spectroscopic measurements reveal that enhanced performance results from the extended lifetime of photogenerated carriers and higher charge transfer efficiency. The ingenious structure and interface design presented in this study may guide the general synthesis of metal oxide/metal phosphide homometallic composites for photocatalysis.
Collapse
Affiliation(s)
- Yi-Shan Ouyang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
43
|
Wen L, Sun K, Liu X, Yang W, Li L, Jiang HL. Electronic State and Microenvironment Modulation of Metal Nanoparticles Stabilized by MOFs for Boosting Electrocatalytic Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210669. [PMID: 36871151 DOI: 10.1002/adma.202210669] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Modulation of the local electronic structure and microenvironment of catalytic metal sites plays a critical role in electrocatalysis, yet remains a grand challenge. Herein, PdCu nanoparticles with an electron rich state are encapsulated into a sulfonate functionalized metal-organic framework, UiO-66-SO3 H (simply as UiO-S), and their microenvironment is further modulated by coating a hydrophobic polydimethylsiloxane (PDMS) layer, affording PdCu@UiO-S@PDMS. This resultant catalyst presents high activity toward the electrochemical nitrogen reduction reaction (NRR, Faraday efficiency: 13.16%, yield: 20.24 µg h-1 mgcat. -1 ), far superior to the corresponding counterparts. Experimental and theoretical results jointly demonstrate that the protonated and hydrophobic microenvironment supplies protons for the NRR yet suppresses the competitive hydrogen evolution reaction reaction, and electron-rich PdCu sites in PdCu@UiO-S@PDMS are favorable to formation of the N2 H* intermediate and reduce the energy barrier of NRR, thereby accounting for its good performance.
Collapse
Affiliation(s)
- Lulu Wen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kang Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
44
|
Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J Am Chem Soc 2023; 145:6112-6122. [PMID: 36883963 DOI: 10.1021/jacs.2c11509] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.
Collapse
Affiliation(s)
- Jing-Jing Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yi Kuang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jing-Wen Shi
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Zhang Dong
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Ni Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
45
|
Zhang J, Lin Y, Liu L. Electron transfer in heterojunction catalysts. Phys Chem Chem Phys 2023; 25:7106-7119. [PMID: 36846919 DOI: 10.1039/d2cp05150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterojunction catalysis, the cornerstone of the modern chemical industry, shows potential to tackle the growing energy and environmental crises. Electron transfer (ET) is ubiquitous in heterojunction catalysts, and it holds great promise for improving the catalytic efficiency by tuning the electronic structures or building internal electric fields at interfaces. This perspective summarizes the recent progress of catalysis involving ET in heterojunction catalysts and pinpoints its crucial role in catalytic mechanisms. We specifically highlight the occurrence, driving forces, and applications of ET in heterojunction catalysis. For corroborating the ET processes, common techniques with measurement principles are introduced. We end with the limitations of the current study on ET, and envision future challenges in this field.
Collapse
Affiliation(s)
- Jianhua Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Yuan Lin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lijun Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| |
Collapse
|
46
|
Eads CN, Hu T, Tian Y, Kisslinger K, Tenney SA, Head AR. Active site identification and CO oxidation in UiO-66-XX thin films. NANOTECHNOLOGY 2023; 34:205702. [PMID: 36801839 DOI: 10.1088/1361-6528/acbcd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) offer an intrinsically porous and chemically tunable platform for gas adsorption, separation, and catalysis. We investigate thin film derivatives of the well-studied Zr-O based MOF powders to understand their adsorption properties and reactivity with their adaption to thin films, involving diverse functionality with the incorporation of different linker groups and the inclusion of embedded metal nanoparticles: UiO-66, UiO-66-NH2, and Pt@UiO-66-NH2. Using transflectance IR spectroscopy, we determine the active sites in each film upon consideration of the acid-base properties of the adsorption sites and guest species, and perform metal-based catalysis with CO oxidation of a Pt@UiO-66-NH2film. Our study shows how surface science characterization techniques can be used to characterize the reactivity and the chemical and electronic structure of MOFs.
Collapse
Affiliation(s)
- Calley N Eads
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Tianhao Hu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Yi Tian
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| |
Collapse
|
47
|
Zhong Y, Liao P, Kang J, Liu Q, Wang S, Li S, Liu X, Li G. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. J Am Chem Soc 2023; 145:4659-4666. [PMID: 36791392 DOI: 10.1021/jacs.2c12590] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.
Collapse
Affiliation(s)
- Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shihan Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xianlong Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
48
|
Li Z, Ul Hassan Q, Zhang W, Zhu L, Gao J, Shi X, Huang Y, Liu P, Zhu G. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3–δ: Experimental and theoretical verification. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
49
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
50
|
Chen J, Wang Y, Wang F, Li Y. Photo-Induced Switching of CO 2 Hydrogenation Pathway towards CH 3 OH Production over Pt@UiO-66-NH 2 (Co). Angew Chem Int Ed Engl 2023; 62:e202218115. [PMID: 36627240 DOI: 10.1002/anie.202218115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
It is highly desired to achieve controllable product selectivity in CO2 hydrogenation. Herein, we report light-induced switching of reaction pathways of CO2 hydrogenation towards CH3 OH production over actomically dispersed Co decorated Pt@UiO-66-NH2 . CO, being the main product in the reverse water gas shift (RWGS) pathway under thermocatalysis condition, is switched to CH3 OH via the formate pathway with the assistance of light irradiation. Impressively, the space-time yield of CH3 OH in photo-assisted thermocatalysis (1916.3 μmol gcat -1 h-1 ) is about 7.8 times higher than that without light at 240 °C and 1.5 MPa. Mechanism investigation indicates that upon light irradiation, excited UiO-66-NH2 can transfer electrons to Pt nanoparticles and Co sites, which can efficiently catalyze the critical elementary steps (i.e., CO2 -to-*HCOO conversion), thus suppressing the RWGS pathway to achieve a high CH3 OH selectivity.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Fengliang Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|