1
|
Deng J, Lu H, Ye H, Hai Y, Liu Z, You L. Precise assembly/disassembly of homo-type and hetero-type macrocycles with photoresponsive and non-photoresponsive dynamic covalent bonds. Org Biomol Chem 2025; 23:2498-2509. [PMID: 39917954 DOI: 10.1039/d5ob00094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Dynamic covalent macrocycles offer the advantage of tunable ring-opening/ring-closure and structural transformation, but their control with precision remains a daunting task due to the labile nature of reversible bonds. Herein we demonstrate the precise formation/scission of covalent macrocycles with varied sizes by contrasting the reactivity, stability, and degradability of light-active and light-inactive dynamic covalent bonds. The incorporation of photoswitchable and non-photoresponsive aldehyde sites into one single dialdehyde component afforded the creation of [1 + 1] type macrocycles with primary diamines of suitable lengths. The manipulation of light and acid/base stimuli allowed on-demand breaking/remaking of macrocycles, achieving the interconversion between macrocyclic and linear skeletons. Moreover, a combination of the dialdehyde, primary diamines, and secondary diamines enabled the construction of hetero-type [2 + 1 + 1'] macrocycles via enhanced discrimination and hierarchical assembly. Light-induced kinetic locking/unlocking of dynamic bonds further afforded macrocycle-to-macrocycle conversion when needed. Through leveraging controllable covalent connection/disconnection, switchable formation/disintegration of mechanically interlocked catenanes was further accomplished. The results described showcase the potential of photoinduced dynamic covalent chemistry for preparing complex architectures and should set the stage for molecular recognition, dynamic assemblies, synthetic motors, and responsive materials.
Collapse
Affiliation(s)
- Junmiao Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Konopka M, Halgreen L, Dascalu AE, Chvojka M, Valkenier H. Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines. Chem Sci 2025; 16:3509-3515. [PMID: 39877820 PMCID: PMC11770589 DOI: 10.1039/d4sc08580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.
Collapse
Affiliation(s)
- Marcin Konopka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Anca-Elena Dascalu
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Matúš Chvojka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University Brno 62500 Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| |
Collapse
|
3
|
Kozhunova EY, Sentyurin VV, Inozemtseva AI, Nikolenko AD, Khokhlov AR, Magdesieva TV. Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization. Polymers (Basel) 2024; 17:60. [PMID: 39795463 PMCID: PMC11722628 DOI: 10.3390/polym17010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.
Collapse
Affiliation(s)
- Elena Yu. Kozhunova
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vyacheslav V. Sentyurin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alina I. Inozemtseva
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
| | - Anatoly D. Nikolenko
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
| | | |
Collapse
|
4
|
Fang S, Bao Z, Liu Z, Wu Z, Tan JP, Wei X, Li B, Wang T. Cationic Foldamer-Catalyzed Asymmetric Synthesis of Inherently Chiral Cages. Angew Chem Int Ed Engl 2024; 63:e202411889. [PMID: 39086010 DOI: 10.1002/anie.202411889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.
Collapse
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zhaowei Bao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zhengdong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, No. 88, Fuxing East Road, Xiangtan, 411104, P. R. China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University
| | - Bo Li
- Queen Mary Engineering School, Northwestern Polytechnical University, 1 Dongxiang Road, Chang'an District, Xi'an, 710129, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Lei Z, Wang Z, Jiang H, Cahn JR, Chen H, Huang S, Jin Y, Wang X, Yu K, Zhang W. Dual-Factor-Controlled Dynamic Precursors Enable On-Demand Thermoset Degradation and Recycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407854. [PMID: 39225419 DOI: 10.1002/adma.202407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Thermosets are well known for their advantages such as high stability and chemical resistance. However, developing sustainable thermosets with degradability and recyclability faces several principal challenges, including reconciling the desired characteristics during service with the recycling and reprocessing properties required at the end of life, establishing efficient methods for large-scale synthesis, and aligning with current manufacturing process. Here a general strategy is presented for the on-demand degradation and recycling of thermosets under mild conditions utilizing dynamic precursors with dual-factor-controlled reversibility. Specifically, dynamic triazine crosslinkers are introduced through dynamic nucleophilic aromatic substitution (SNAr) into the precursor polyols used in polyurethane (PU) synthesis. Upon removal of the catalyst and alcohol, the reversibility of SNAr is deactivated, allowing for the use of standard PU polymerization techniques such as injection molding, casting, and foaming. The resulting cyanurate-crosslinked PUs maintain high stability and diverse mechanical properties of traditional crosslinked PUs, yet offer the advantage of easy on-demand depolymerization for recycling by activating the reversibility of SNAr under specific but mild conditions-a combination of base, alcohol, and mild heat. It is envisioned that this approach, involving the pre-installation of dual-factor-controlled dynamic crosslinkers, can be broadly applied to current thermosetting plastic manufacturing processes, introducing enhanced sustainability.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zirui Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Jackson R Cahn
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Xiaohui Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
6
|
Hiscock LK, Gogoulis AT, Diamantopoulos M, Patel VS, Dawe LN, Hudson ZM, Maly KE. Reversible Nucleophilic Ring-Opening of Tetraoxapentacene Derivatives: Accessing New Materials for Thermally Activated Delayed Fluorescence. J Org Chem 2024; 89:15598-15606. [PMID: 39441742 DOI: 10.1021/acs.joc.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the unexpected nucleophilic ring-opening reaction of electron deficient dioxins in the presence of carbazole under basic conditions. This nucleophilic ring-opening reaction is reversible under basic conditions in the absence of nucleophiles. Further, we demonstrate that this unexpected reactivity can be used to prepare novel donor-acceptor compounds that are emissive in solution and as thin films and exhibit thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Lana K Hiscock
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Athan T Gogoulis
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Madison Diamantopoulos
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Vishvam S Patel
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kenneth E Maly
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
7
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Gahlot S, Schmitt JL, Chevalier A, Villa M, Roy M, Ceroni P, Lehn JM, Gingras M. "The Sulfur Dance" Around Arenes and Heteroarenes - the Reversible Nature of Nucleophilic Aromatic Substitutions. Chemistry 2024; 30:e202400231. [PMID: 38289151 DOI: 10.1002/chem.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SNAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SNAr is confirmed by three methods: a convergence of the products distribution in reversible SNAr systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SNAr in aromatic chemistry and in DCC.
Collapse
Affiliation(s)
- Sapna Gahlot
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Aline Chevalier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marco Villa
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, 75005, Paris, France
| | - Paola Ceroni
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| |
Collapse
|
9
|
Ortega-Zamora C, González-Sálamo J, Rivero DS, Carrillo R, Hernández-Borges J. Tetrazine-based dynamic covalent polymers as degradable extraction materials in sample preparation. Anal Chim Acta 2024; 1318:342925. [PMID: 39067932 DOI: 10.1016/j.aca.2024.342925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Current trends in Analytical Chemistry are highly focused on the introduction of new extraction materials with a high selectivity towards the target analytes, high extraction capacity as well as sustainable characteristics. In this context, the introduction of smart materials able to respond to an external stimulus constitutes a promising approach in the field. However, investigations regarding the development of such stimuli-responsive polymers have been basically centered on their synthesis and the control of their properties, and hardly on exploiting such properties to generate polymers that, once their extraction function is fulfilled, they can be degraded into fragments with little or negligible toxicity, or even into their constituent monomers for an efficient recycling. RESULTS The applicability of a degradable and recyclable dynamic covalent polymer based on the use of tetrazine as a linker was assessed as sorbent for the extraction of a group of 37 persistent organic pollutants, including 10 polycyclic aromatic hydrocarbons, 11 organochlorine pesticides, 14 polychlorinated biphenyls, and 2 antibacterial agents, from water samples. A microdispersive solid-phase extraction procedure was developed for the selective extraction of the target analytes, while their separation, determination, and quantification were achieved by gas chromatography coupled to mass spectrometry. The optimized procedure was validated for seawater and wastewater obtaining mean relative recovery values between 72 and 112 % for almost all the analytes, with satisfactory relative standard deviation values (<18 %). After extraction, the polymer could be degraded by adding the amino acid L-tyrosine, being possible a quantitative recovery of the initial functional monomer. SIGNIFICANCE A responsive polymer based on the chemical versatility of the tetrazine ring was used as sorbent in sample preparation providing excellent results, showing good physicochemical properties and the ability to be degraded after use. This polymer constitutes an interesting alternative to reduce chemical waste through the recycling of monomers, contributing to the development of more sustainable analytical methodologies.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain.
| | - David S Rivero
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología, CSIC, Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206, San Cristóbal de La Laguna, Spain
| |
Collapse
|
10
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
11
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Wu Y, Bei Y, Li W, Lu W, Zhu J, Zhang Z, Zhang T, Liu S, Chen K, Jin H, Li L, Li M, Gao J, Pan X. Advanced Multifunctional Hydrogels for Enhanced Wound Healing through Ultra-Fast Selenol-S NAr Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400898. [PMID: 38647422 DOI: 10.1002/advs.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.
Collapse
Affiliation(s)
- Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, 571199, China
| | - Wenjing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hong Jin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200010, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
13
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Miton L, Antonetti E, Poujade M, Dutasta JP, Nava P, Martinez A, Cotelle Y. Self-assembled tetrazine cryptophane for ion pair recognition and guest release by cage disassembly. Chem Commun (Camb) 2024; 60:5217-5220. [PMID: 38656223 DOI: 10.1039/d4cc01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Hereby, we describe the synthesis of a self-assembled syn-cryptophane using dynamic nucleophilic aromatic substitution of tetrazines. 1H NMR cage titrations reveal that the tetramethylammonium cation binds under slow exchange conditions while counter-anions show a fast exchange regime. Finally, the cryptophane can be disassembled by the addition of thiols allowing guest release.
Collapse
Affiliation(s)
- Louise Miton
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Elise Antonetti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Marie Poujade
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Paola Nava
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Alexandre Martinez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| | - Yoann Cotelle
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR 7313, 13397 Marseille, France.
| |
Collapse
|
15
|
Hollstein S, von Delius M. The Dynamic Chemistry of Orthoesters and Trialkoxysilanes: Making Supramolecular Hosts Adaptive, Fluxional, and Degradable. Acc Chem Res 2024. [PMID: 38286767 PMCID: PMC10882968 DOI: 10.1021/acs.accounts.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe encapsulation of ions into macro(bi)cyclic hosts lies at the core of supramolecular chemistry. While chemically inert hosts such as crown ethers (synthesis) and cyclodextrins (Febreze) have enabled real-world applications, there is a wider and accelerating trend toward functional molecules and materials that are stimuli-responsive, degradable, or recyclable. To endow supramolecular hosts with these properties, a deviation from ether C-O bonds is required, and functional groups that engage in equilibrium reactions under relatively mild conditions are needed.In this Account, we describe our group's work on supramolecular hosts that comprise orthoester and trialkoxysilane bridgeheads. In their simplest structural realization, these compounds resemble both Cram's crown ethers (macrocycles with oxygen donor atoms) and Lehn's cryptands (macrobicycles with 3-fold symmetry). It is therefore not surprising that these new hosts were found to have a natural propensity to bind cations relatively strongly. In recent work, we were also able to create anion-binding hosts by placing disubstituted urea motifs at the center of the tripodal architecture. Structural modifications of either the terminal substituents (e.g., H vs CH3 on the bridgehead), the diol (e.g., chiral), or the bridgehead atom itself (Si vs C) were found to have profound implications on the guest-binding properties.What makes orthoester/trialkoxysilane hosts truly unique is their dynamic covalent chemistry. The ability to conduct exchange reactions with alcohols at the bridgehead carbon or silicon atom is first and foremost an opportunity to develop highly efficient syntheses. Indeed, all hosts presented in this Account were prepared via templated self-assembly in yields of up to 90%. This efficiency is remarkable because the macrobicyclic architecture is established in one single step from at least five components. A second opportunity presented by dynamic bridgeheads is that suitable mixtures of orthoester hosts or their subcomponents can be adaptive, i.e. they respond to the presence of guests such that the addition of a certain guest can dictate the formation of a preferred host. In an extreme example of dynamic adaptivity, we found that ammonium ions can fulfill the dual role of catalyst for orthoester exchange and cationic template for efficient host formation, representing an unprecedented example of a fluxional supramolecular complex. The third implication of dynamic bridgeheads is due to the reaction of orthoesters and trialkoxysilanes with water instead of alcohols. We describe in detail how the hydrolysis rate differs strongly between O,O,O-orthoesters, S,S,S-trithioorthoesters, and trialkoxysilanes and how it is tunable by the choice of substituents and pH.We expect that the fundamental insights into exchange and degradation kinetics described in this Account will be useful far beyond supramolecular chemistry.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
16
|
Jia S, Ye H, He P, Lin X, You L. Selection of isomerization pathways of multistep photoswitches by chalcogen bonding. Nat Commun 2023; 14:7139. [PMID: 37932318 PMCID: PMC10628202 DOI: 10.1038/s41467-023-43013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Multistep photoswitches are able to engage in different photoisomerization pathways and are challenging to control. Here we demonstrate a multistep sequence of E/Z isomerization and photocyclization/cycloreversion of photoswitches via manipulating the strength and mechanism of noncovalent chalcogen bonding interactions. The incorporation of chalcogens and the formyl group on open ethene bridged dithienylethenes offers a versatile skeleton for single photochromic molecules. While bidirectional E/Z photoswitching is dominated by neutral tellurium arising from enhanced resonance-assisted chalcogen bonding, the creation of cationic telluronium enables the realization of photocyclization/cycloreversion. The reversible nucleophilic substitution reactions further allow interconversion between neutral tellurium and cationic telluronium and selection of photoisomerization mechanisms on purpose. By leveraging unique photoswitching patterns and dynamic covalent reactivity, light and pH stimuli-responsive multistate rewritable materials were constructed, triggered by an activating reagent for additional control. The results should provide ample opportunities to molecular recognition, intelligent switches, information encryption, and smart materials.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
| |
Collapse
|
17
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
18
|
Zhu Q, Wei L, Zhao C, Qu H, Liu B, Fellowes T, Yang S, Longcake A, Hall MJ, Probert MR, Zhao Y, Cooper AI, Little MA. Soft Hydrogen-Bonded Organic Frameworks Constructed Using a Flexible Organic Cage Hinge. J Am Chem Soc 2023; 145:23352-23360. [PMID: 37824718 PMCID: PMC10603795 DOI: 10.1021/jacs.3c09246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 10/14/2023]
Abstract
Soft porous crystals combine flexibility and porosity, allowing them to respond structurally to external physical and chemical environments. However, striking the right balance between flexibility and sufficient rigidity for porosity is challenging, particularly for molecular crystals formed by using weak intermolecular interactions. Here, we report a flexible oxygen-bridged prismatic organic cage molecule, Cage-6-COOH, which has three pillars that exhibit "hinge-like" rotational motion in the solid state. Cage-6-COOH can form a range of hydrogen-bonded organic frameworks (HOFs) where the "hinge" can accommodate a remarkable 67° dihedral angle range between neighboring units. This stems both from flexibility in the noncovalent hydrogen-bonding motifs in the HOFs and the molecular flexibility in the oxygen-linked cage hinge itself. The range of structures for Cage-6-COOH includes two topologically complex interpenetrated HOFs, CageHOF-2α and CageHOF-2β. CageHOF-2α is nonporous, while CageHOF-2β has permanent porosity and a surface area of 458 m2 g-1. The flexibility of Cage-6-COOH allows this molecule to rapidly transform from a low-crystallinity solid into the two crystalline interpenetrated HOFs, CageHOF-2α and CageHOF-2β, under mild conditions simply by using acetonitrile or ethanol vapor, respectively. This self-healing behavior was selective, with the CageHOF-2β structure exhibiting structural memory behavior.
Collapse
Affiliation(s)
- Qiang Zhu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Lei Wei
- School
of Physical Science and Technology, ShanhaiTech
University, Shanghai 201210, China
| | - Chengxi Zhao
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Qu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Bowen Liu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Thomas Fellowes
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Siyuan Yang
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Alexandra Longcake
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Michael J. Hall
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Michael R. Probert
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Yingbo Zhao
- School
of Physical Science and Technology, ShanhaiTech
University, Shanghai 201210, China
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Marc A. Little
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| |
Collapse
|
19
|
Li Y, Piao YZ, Chen H, Shi K, Dai J, Wang S, Zhou T, Le AT, Wang Y, Wu F, Ma R, Shi L, Liu Y. Dynamic covalent nano-networks comprising antibiotics and polyphenols orchestrate bacterial drug resistance reversal and inflammation alleviation. Bioact Mater 2023; 27:288-302. [PMID: 37113688 PMCID: PMC10126917 DOI: 10.1016/j.bioactmat.2023.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
New antimicrobial strategies are urgently needed to meet the challenges posed by the emergence of drug-resistant bacteria and bacterial biofilms. This work reports the facile synthesis of antimicrobial dynamic covalent nano-networks (aDCNs) composing antibiotics bearing multiple primary amines, polyphenols, and a cross-linker acylphenylboronic acid. Mechanistically, the iminoboronate bond drives the formation of aDCNs, facilitates their stability, and renders them highly responsive to stimuli, such as low pH and high H2O2 levels. Besides, the representative A1B1C1 networks, composed of polymyxin B1(A1), 2-formylphenylboronic acid (B1), and quercetin (C1), inhibit biofilm formation of drug-resistant Escherichia coli, eliminate the mature biofilms, alleviate macrophage inflammation, and minimize the side effects of free polymyxins. Excellent bacterial eradication and inflammation amelioration efficiency of A1B1C1 networks are also observed in a peritoneal infection model. The facile synthesis, excellent antimicrobial performance, and biocompatibility of these aDCNs potentiate them as a much-needed alternative in current antimicrobial pipelines.
Collapse
Affiliation(s)
- Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yin-Zi Piao
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China
| | - Hua Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Juqin Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Siran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Corresponding author.
| | - Anh-Tuan Le
- Nano Institute, Phenikaa University, Yen Nghia, Ha Dong, Ha Noi, Viet Nam
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China
| | - Fan Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325001, China
- Corresponding author. Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
20
|
Gavriel K, van Doeselaar DCA, Geers DWT, Neumann K. Click'n lock: rapid exchange between unsymmetric tetrazines and thiols for reversible, chemoselective functionalisation of biomolecules with on-demand bioorthogonal locking. RSC Chem Biol 2023; 4:685-691. [PMID: 37654505 PMCID: PMC10467616 DOI: 10.1039/d3cb00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
The late-stage functionalisation and diversification of complex structures including biomolecules is often achieved with the help of click chemistry. Besides employing irreversible click-like reactions, many synthetic applications benefit from reversible click reaction strategies, so called de-/trans-click approaches. Yet, the combination of both, reversible and irreversible click chemistry - while still respecting the stringent criteria of click transformations - remains so far elusive for modifications of biomolecular structures. Here, we report click'n lock as a concept that enables reversible click reactions and on-demand locking of chemical entities, thus switching from reversible to irreversible modifications of complex biomolecules. For this purpose, we employ the tetrazine-thiol exchange (TeTEx) reaction as a fully traceless click reaction with second order rate constants k2 higher than 2 M-1 s-1 within aqueous environments. Employing TeTEx as a reversible click reaction for the chemoselective modification of biomolecules is made possible by the use of 3,6-disubstituted 1,2,4,5-tetrazines bearing a single sulfide residue. The inherent reactivity of tetrazines towards inverse electron demand Diels-Alder (IEDDA) reactions allows to stabilize the clicked structure, switching from reversible to irreversible systems (click'n lock).
Collapse
Affiliation(s)
- Katerina Gavriel
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Dustin C A van Doeselaar
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Daniëlle W T Geers
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Kevin Neumann
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
21
|
Tallon AM, Xu Y, West GM, am Ende CW, Fox JM. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be "Switched Off" via Bioorthogonal Chemistry Inside Live Cells. J Am Chem Soc 2023; 145:16069-16080. [PMID: 37450839 PMCID: PMC10530612 DOI: 10.1021/jacs.3c04444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Electrophilic small molecules that can reversibly modify proteins are of growing interest in drug discovery. However, the ability to study reversible covalent probes in live cells can be limited by their reversible reactivity after cell lysis and in proteomic workflows, leading to scrambling and signal loss. We describe how thiomethyltetrazines function as reversible covalent warheads for cysteine modification, and this dynamic labeling behavior can be "switched off" via bioorthogonal chemistry inside live cells. Simultaneously, the tetrazine serves as a bioorthogonal reporter enabling the introduction of tags for fluorescent imaging or affinity purification. Thiomethyltetrazines can label isolated proteins, proteins in cellular lysates, and proteins in live cells with second-order rate constants spanning 2 orders of magnitude (k2, 1-100 M-1 s-1). Reversible modification by thiomethyltetrazines can be switched off upon the addition of trans-cyclooctene in live cells, converting the dynamic thiomethyltetrazine tag into a Diels-Alder adduct which is stable to lysis and proteomic workflows. Time-course quenching experiments were used to demonstrate temporal control over electrophilic modification. Moreover, it is shown that "locking in" the tag through Diels-Alder chemistry enables the identification of protein targets that are otherwise lost during sample processing. Three probes were further evaluated to identify unique pathways in a live-cell proteomic study. We anticipate that discovery efforts will be enabled by the trifold function of thiomethyltetrazines as electrophilic warheads, bioorthogonal reporters, and switches for "locking in" stability.
Collapse
Affiliation(s)
- Amanda M. Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yingrong Xu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
22
|
Santos T, Pérez-Pérez Y, Rivero DS, Diana-Rivero R, García-Tellado F, Tejedor D, Carrillo R. Dynamic Hydroxyl-Yne Reaction with Phenols. Org Lett 2022; 24:8401-8405. [PMID: 36350079 PMCID: PMC10443044 DOI: 10.1021/acs.orglett.2c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Dynamic Covalent Chemistry (DCvC) has gained increasing importance in supramolecular chemistry and materials science. Herein we prove the dynamic nature of the exchange between phenols and vinyl ethers. Exchange is fast at room temperature and under mild conditions. The equilibrium constants and the electronic effect of the phenol substituents were calculated. This novel incorporation to the DCvC toolbox could be quite useful, and as a proof it was used for the synthesis of a responsive molecular cage.
Collapse
Affiliation(s)
- Tanausú Santos
- Instituto
Universitario de Bio-Orgánica Antonio González (IUBO),
Universidad de La Laguna, P.O. Box 456, 38206 La Laguna, Tenerife, Spain
| | - Yaiza Pérez-Pérez
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - David S. Rivero
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Raquel Diana-Rivero
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Fernando García-Tellado
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - David Tejedor
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| | - Romen Carrillo
- Instituto
de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez
3, 38206 La Laguna, Spain
| |
Collapse
|
23
|
Lei Z, Wayment LJ, Cahn JR, Chen H, Huang S, Wang X, Jin Y, Sharma S, Zhang W. Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution. J Am Chem Soc 2022; 144:17737-17742. [PMID: 36165690 DOI: 10.1021/jacs.2c00778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report, for the first time, highly crystalline cyanurate-linked covalent organic frameworks synthesized via dynamic nucleophilic aromatic substitution. The high crystallinity is enabled by the bond exchange reaction (self-correction) between 2,4,6-triphenoxy-1,3,5-triazine and diphenols via reversible SNAr catalyzed by triazabicyclodecene. The CN-COFs contain flexible backbones that exhibit a unique AA'-stacking due to interlayer hydrogen bonding interactions. The isoreticular expansion study demonstrates the general applicability of this synthetic method. The resulting CN-COFs exhibited good stability, as well as high CO2/N2 selectivity.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jackson R Cahn
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Dascalu AE, Halgreen L, Torres-Huerta A, Valkenier H. Dynamic covalent chemistry with azines. Chem Commun (Camb) 2022; 58:11103-11106. [PMID: 36102679 DOI: 10.1039/d2cc03523e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent chemistry is used in many applications that require both the stability of covalent bonds and the possibility to exchange building blocks. Here we present azines as a dynamic covalent functional group that combines the best characteristics of imines and acylhydrazones. We show that azines are stable in the presence of water and that dynamic combinatorial libraries of azines and aldehydes equilibrate in less than an hour.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Lau Halgreen
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| |
Collapse
|
25
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
26
|
Perretti MD, Pérez-Pérez Y, Soler-Carracedo K, Martín-Encinas E, Alonso C, Scoccia J, Carrillo R. Hydrogen sulphide-triggered theranostic prodrugs based on the dynamic chemistry of tetrazines. Chem Commun (Camb) 2022; 58:5518-5521. [PMID: 35420098 DOI: 10.1039/d2cc01170k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic nucleophilic aromatic substitution of tetrazines (SNTz) has been employed to build theranostic prodrugs that are activated by hydrogen sulfide. H2S is typically found in high concentrations in some kinds of cancer cells and it is able to trigger the disassembly of tetrazine prodrugs. In such a way, a dual release of drugs and/or fluorescent compounds can be selectively triggered.
Collapse
Affiliation(s)
- Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain. .,Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain.
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain.
| | - Kevin Soler-Carracedo
- Departamento de Física, Universidad de La Laguna, Apdo. 456, E-38200, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Endika Martín-Encinas
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Concepción Alonso
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Jimena Scoccia
- Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain.
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain. .,Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain.
| |
Collapse
|
27
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
28
|
Rivero DS, Paiva-Feener RE, Santos T, Martín-Encinas E, Carrillo R. Tetrazine Dynamic Covalent Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David S. Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain
| | - Rafael E. Paiva-Feener
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain
| | - Tanausú Santos
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain
| | - Endika Martín-Encinas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, P.O. Box 456, 38200, La Laguna, Spain
| |
Collapse
|
29
|
Turlik A, Houk KN, Svatunek D. Origin of Increased Reactivity in Rhenium-Mediated Cycloadditions of Tetrazines. J Org Chem 2021; 86:13129-13133. [PMID: 34468143 PMCID: PMC8453624 DOI: 10.1021/acs.joc.1c01564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pyridyl tetrazines coordinated to metals like rhenium have been shown to be more reactive in [4 + 2] cycloadditions than their uncomplexed counterparts. Using density functional theory calculations, we found a more favorable interaction energy caused by stronger orbital interactions as the origin of this increased reactivity. Additionally, the high regioselectivity is due to a greater degree of charge stabilization in the transition state, leading to the major product.
Collapse
Affiliation(s)
- Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
30
|
Santos T, Rivero DS, Pérez‐Pérez Y, Martín‐Encinas E, Pasán J, Daranas AH, Carrillo R. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angew Chem Int Ed Engl 2021; 60:18783-18791. [PMID: 34085747 PMCID: PMC8457238 DOI: 10.1002/anie.202106230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/13/2022]
Abstract
A dynamic nucleophilic aromatic substitution of tetrazines (SN Tz) is presented herein. It combines all the advantages of dynamic covalent chemistry with the versatility of the tetrazine moiety. Indeed, libraries of compounds or sophisticated molecular structures can be easily obtained, which are susceptible to post-functionalization by inverse electron demand Diels-Alder (IEDDA) reaction, which also locks the exchange. Additionally, the structures obtained can be disassembled upon the application of the right stimulus, either UV irradiation or a suitable chemical reagent. Moreover, SN Tz is compatible with the imine chemistry of anilines. The high potential of this methodology has been proved by building two responsive supramolecular systems: A macrocycle that displays a light-induced release of acetylcholine; and a truncated [4+6] tetrahedral shape-persistent fluorescent cage, which is disassembled by thiols unless it is post-stabilized by IEDDA.
Collapse
Affiliation(s)
- Tanausú Santos
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - David S. Rivero
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Yaiza Pérez‐Pérez
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Endika Martín‐Encinas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL)Departamento de FísicaUniversidad de La Laguna (ULL)38206La LagunaTenerifeSpain
| | - Antonio Hernández Daranas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Romen Carrillo
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| |
Collapse
|